JPH03108670A - Supporting method of angular velocity sensor - Google Patents

Supporting method of angular velocity sensor

Info

Publication number
JPH03108670A
JPH03108670A JP1246814A JP24681489A JPH03108670A JP H03108670 A JPH03108670 A JP H03108670A JP 1246814 A JP1246814 A JP 1246814A JP 24681489 A JP24681489 A JP 24681489A JP H03108670 A JPH03108670 A JP H03108670A
Authority
JP
Japan
Prior art keywords
angular velocity
piezoelectric bimorph
bimorph element
velocity sensor
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1246814A
Other languages
Japanese (ja)
Inventor
Toshihiko Ichise
俊彦 市瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1246814A priority Critical patent/JPH03108670A/en
Publication of JPH03108670A publication Critical patent/JPH03108670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable prevention of the fluctuation of an angular velocity output due to the vibration of or a shock on a piezoelectric bimorph element for detection by fitting a sensor to the fore end of a shock absorber which is fixed at one end to an angular velocity detecting case body and has a cantilever structure. CONSTITUTION:An outer case 11 wherein an angular velocity sensor is held is fitted to the fore end of a shock absorber 13 which is fixed at one end to an angular velocity detecting case body 12 and has a cantilever structure, and the opposite directions of a piezoelectric bimorph element for detection and the direction of deflection of the cantilever are made equal to each other. When a shock is given, according to this constitution, the cantilever of the shock absorber 13 is deflected if the modulus of elasticity thereof is lower than that of the piezoelectric bimorph. Consequently, the whole of the angular velocity sensor fitted to the fore end thereof inclines and no deflection occurs in the piezoelectric bimorph element for detection. When a vibration approximating the resonance frequency of the cantilever is impressed, the cantilever is deflected in a large degree and the angular velocity sensor fitted to the fore end thereof shakes to a large extent. If the resonance frequency of the cantilever is set to be low sufficiently, however, the shaking does not affect an output of the angular velocity sensor. Accordingly, the fluctuation of the angular velocity output due to the vibration can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はセラミック圧電素子を音叉構造に配置した音叉
構造振動型の角速度センサにおいて、このセンサを角速
度検出筐体に取付けた時、筐体の衝撃、振動がセンサの
動作に影響を与えにくい支持方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a tuning fork structure vibration type angular velocity sensor in which a ceramic piezoelectric element is arranged in a tuning fork structure. The present invention relates to a support method in which vibration does not easily affect the operation of a sensor.

従来の技術 従来の角速度センサの支持方法を第8図に示す。Conventional technology A conventional method of supporting an angular velocity sensor is shown in FIG.

第8図において1は音叉構造振動型の角速度センサを内
蔵する外ケース、2は衝撃吸収体、3は取付金具、4は
筐体である。
In FIG. 8, 1 is an outer case housing a tuning fork structure vibration type angular velocity sensor, 2 is a shock absorber, 3 is a mounting bracket, and 4 is a housing.

発明が解決しようとする課題 しかし、この様な支持方法では筐体の振動や衝撃がセン
サ本体に伝わることを防ぐことはできない。音叉構造振
動型の角速度センサは外部からの振動や衝撃によって出
力が変動するという欠点があり、特に検知用圧電バイモ
ルフのたわみ方向の振動や衝撃に弱くかつ、音叉振動の
周波数付近の振動や音叉振動の周波数成分の高調波を含
む衝撃に対して弱いという問題があった。
Problems to be Solved by the Invention However, such a support method cannot prevent vibrations and shocks from the casing from being transmitted to the sensor body. The tuning fork structure vibration type angular velocity sensor has the disadvantage that its output fluctuates due to external vibrations and shocks, and is particularly vulnerable to vibrations and shocks in the direction of deflection of the piezoelectric bimorph used for detection, and is susceptible to vibrations near the frequency of tuning fork vibrations and tuning fork vibrations. The problem was that it was vulnerable to shocks containing harmonics of frequency components.

課題を解決するための手段 上記問題点を解決するために本発明は、一端が角速度検
出筐体に固定された片持ち梁υ構造をなす衝撃吸収体の
先端に取付け、かっ采シのたわみ方向と検知用圧電バイ
モルフ素子の面方向とを一致させたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention has been developed by attaching it to the tip of a shock absorber having a cantilever structure υ whose one end is fixed to an angular velocity detection casing. and the plane direction of the detection piezoelectric bimorph element.

また、角速度検出軸に垂直でかつ第1.第2の検知用圧
電バイモルフ素子の面と平行な軸に対して回転可能な取
付手段を有し、かつこの平行な軸に対して前記第1.第
2の検知用圧電バイモルフ素子が取付けられている側の
質量の方がもう一方よりも重くなる様な重量の配分で角
速度センサを角速度検出筐体に取付けるとともに、並進
加速度が印加された時に前記平行な軸に対する回転力を
抑制する衝撃吸収体を設けたものである。
Also, the first angular velocity detection axis is perpendicular to the angular velocity detection axis. It has a mounting means rotatable about an axis parallel to the plane of the second sensing piezoelectric bimorph element, and the first... The angular velocity sensor is attached to the angular velocity detection housing with a weight distribution such that the mass on the side where the second detection piezoelectric bimorph element is attached is heavier than the other side, and when translational acceleration is applied, the It is equipped with a shock absorber that suppresses rotational force about parallel axes.

作用 上記(?り成によシ振動や衝撃が印加された時、その振
動や衝撃によって生ずる加速度は、センサを支持する梁
りがたわむことによって音叉構造全体を角速度検知軸か
ら傾かせる。これによシ検知軸のズレが生じるが、検知
用圧電バイモルフには振動や衝撃によるたわみが生じな
く、角速度出力が変動するという問題は生じない。
Effect When vibration or impact is applied to the above structure, the acceleration generated by the vibration or impact causes the beam supporting the sensor to deflect, tilting the entire tuning fork structure away from the angular velocity detection axis. Although the detection axis may be misaligned, the piezoelectric bimorph for detection does not deflect due to vibration or impact, and the problem of fluctuations in the angular velocity output does not occur.

実施例 以下、本発明による角速度センサの支持方法の一実施例
を図面に基づいて説明する。
EXAMPLE Hereinafter, an example of a method for supporting an angular velocity sensor according to the present invention will be described with reference to the drawings.

まず、音叉構造振動型角速度センサについて第5図〜第
7図を用いて説明する。
First, a tuning fork structure vibration type angular velocity sensor will be explained using FIGS. 5 to 7.

角速度センサは第6図に示す様な構造であり、主に4つ
の圧電バイモルフからなる駆動素子、モニター素子、第
1及び第2の検知素子で構成され、駆動素子101と第
1の検知素子103を接合部105で直交接合した第1
の振動ユニット109と、モニター素子102と第2の
検知素子104を接合部106で直交接合した第2の振
動ユニット110とを連結板107で連結し、この連結
板107を支持棒108で一点支持した音叉構造となっ
ている。
The angular velocity sensor has a structure as shown in FIG. 6, and is mainly composed of a drive element made of four piezoelectric bimorphs, a monitor element, and first and second detection elements, including a drive element 101 and a first detection element 103. The first
The vibration unit 109 and the second vibration unit 110 in which the monitor element 102 and the second detection element 104 are orthogonally joined at the joint 106 are connected by a connecting plate 107, and this connecting plate 107 is supported at one point by a support rod 108. It has a tuning fork structure.

駆動素子101に正弦波電圧信号を与えると。When a sine wave voltage signal is applied to the drive element 101.

逆圧電効果によシ第1の振動ユニット109か振動を始
め、音叉振動により第2の振動ユニット11oも振動を
開始する。従ってモニター素子102の圧電効果によっ
て素子表面に発生する電荷は駆動素子101へ印加して
いる正弦波電圧信号に比例する。このモニター素子10
2に発生する電荷を検出し、これが一定振幅になる様に
駆動素子101へ印加する正弦波電圧信号をコントロー
ルすることによシ安定した音叉振動を得ることができる
The first vibration unit 109 starts to vibrate due to the inverse piezoelectric effect, and the second vibration unit 11o also starts to vibrate due to the tuning fork vibration. Therefore, the charge generated on the surface of the monitor element 102 due to the piezoelectric effect is proportional to the sinusoidal voltage signal applied to the drive element 101. This monitor element 10
Stable tuning fork vibration can be obtained by detecting the electric charge generated in the tuning fork 2 and controlling the sinusoidal voltage signal applied to the drive element 101 so that the electric charge has a constant amplitude.

このセンサが角速度に比例した出力を発生させるメカニ
ズムを第6図及び第7図を用いて説明する。第6図は第
6図に示した角速度センサを上からみたもので、速度υ
で振動している検知素子103に角速度ωの回転が加わ
ると、検知素子103には「コリオリの力」が生じる。
The mechanism by which this sensor generates an output proportional to the angular velocity will be explained using FIGS. 6 and 7. Figure 6 shows the angular velocity sensor shown in Figure 6 viewed from above, and shows the speed υ
When rotation at an angular velocity ω is applied to the sensing element 103 which is vibrating at , a "Coriolis force" is generated in the sensing element 103.

この「コリオリの力」は速度υに垂直で大きさは2mυ
ωである。検知素子103は音叉振動をしているので、
ある時点で検知素子103が速度υで振動しているとす
れば、検知素子104は速度−〇で振動しておシ「コリ
オリのカ」は−2mυωである。
This "Coriolis force" is perpendicular to the speed υ and has a magnitude of 2 mυ
It is ω. Since the detection element 103 is vibrating like a tuning fork,
If the sensing element 103 is vibrating at a speed υ at a certain point, the sensing element 104 is vibrating at a speed -0, and the "Coriolis force" is -2 mυω.

よって検知素子103 、104は第7図の様に互に「
コリオリの力」が働く方向に変形し、素子表面には圧電
効果によって電荷が生じる。ここでυは音叉振動によっ
て生じる運動であり、音叉振動が (j=ll @sin ωot 良:音叉振動の振幅 ω。: 音叉振動の周期 であるとすれは、「コリオリの力」は F=a−ω* sinωot となり、角速度ω及び音叉振幅aに比例しており。
Therefore, the sensing elements 103 and 104 are connected to each other as shown in FIG.
The device is deformed in the direction of the Coriolis force, and a charge is generated on the surface of the device due to the piezoelectric effect. Here, υ is the motion caused by the vibration of the tuning fork, and if the vibration of the tuning fork is (j = ll @sin ωot Good: amplitude of tuning fork vibration ω.: the period of tuning fork vibration, then the "Coriolis force" is F = a -ω*sinωot, which is proportional to the angular velocity ω and the tuning fork amplitude a.

検知素子103.104を面方向に変形させる力となる
。従って検知素子103 、104の表面電荷量Qは。
This becomes a force that deforms the sensing elements 103 and 104 in the plane direction. Therefore, the amount of surface charge Q of the sensing elements 103 and 104 is.

Qoc a −ω−sinω。t となり、音叉振幅aが一定にコントロールされていると
すれば。
Qoc a −ω−sinω. t, and assuming that the tuning fork amplitude a is controlled to be constant.

Qocω−sinω。1 となり、検知素子103 、104に発生する表面電荷
量Qは角速度ωに比例した出力として得られ、この信号
をω。tで同ル」検波すれば角速度ωに比例した直流信
号が得られる。
Qocω-sinω. 1, and the amount of surface charge Q generated on the sensing elements 103 and 104 is obtained as an output proportional to the angular velocity ω, and this signal is ω. If the waveform is detected at t, a DC signal proportional to the angular velocity ω can be obtained.

尚、このセンサに角速度以外の並進運動を与えても検知
素子1o3と検知素子104の2つの素子表面には同極
性の電荷が生ずるため、直流信号に変換時、互に打ち消
しあって出力は出ない様になっている。
Note that even if a translational motion other than angular velocity is applied to this sensor, charges of the same polarity are generated on the surfaces of the two sensing elements 1o3 and 104, so when converted to a DC signal, they cancel each other out and the output is output. It looks like there isn't.

しかしながら実際には圧電バイモルフ素子の感度バラツ
キやセンサの組立上のバラツキがあるため、振動や衝撃
が加わると、角速度出力は変動してしまう。特に音叉の
共振周波数付近では共振によって検知用圧電バイモルフ
素子に大きなたわみが生じ角速度出力は大きく変動する
However, in reality, there are variations in sensitivity of piezoelectric bimorph elements and variations in sensor assembly, so when vibrations or shocks are applied, the angular velocity output fluctuates. In particular, near the resonant frequency of the tuning fork, resonance causes a large deflection of the sensing piezoelectric bimorph element, resulting in a large fluctuation in the angular velocity output.

第1図は本発明の一実施例であシ、音叉構造振動型角速
度センサを内蔵する外ケース11は一端を角速度検出筐
体12に固定された片持ち梁り構造をなす衝撃吸収体1
3の先端に取付けられ、検知用圧電バイモルフ素子の両
方向と梁りのたわみ方向は等しくなっている。
FIG. 1 shows one embodiment of the present invention, in which an outer case 11 containing a tuning fork structure vibration type angular velocity sensor has a shock absorber 1 having a cantilevered structure with one end fixed to an angular velocity detection housing 12.
3, and both directions of the detection piezoelectric bimorph element and the direction of deflection of the beam are the same.

従来の角速度センサの支持方法で衝撃が加わった場合は
、第2図に示す様に検知用圧電バイモルフ素子はたわみ
が生じ、その表面には電荷が生じてしまう。本発明の角
速度センサの支持方法によれば、衝撃が加わった場合は
第3図に示す様に衝撃吸収体13の梁りが圧電バイモル
フの弾性よりも低い弾性率であれば、これがたわむこと
によって先端の角速度センサ全体が傾き、検知用圧電)
(イモルア素子にたわみは生じない。梁りの共振周波数
付近の振動が印加されると、梁りは大きくたわみ、その
先端の角速度センサは大きくゆれることになるが、梁υ
の共振周波数を充分低く設定すれば、大きくゆれても角
速度センサの出力に影響は及ぼさない。
When an impact is applied using the conventional method of supporting an angular velocity sensor, the piezoelectric bimorph sensing element is deflected as shown in FIG. 2, and an electric charge is generated on its surface. According to the method for supporting an angular velocity sensor of the present invention, when an impact is applied, if the beam of the impact absorber 13 has an elastic modulus lower than that of the piezoelectric bimorph, as shown in FIG. The entire angular velocity sensor at the tip is tilted (piezoelectric for detection)
(No deflection occurs in the immolor element. When vibration near the beam's resonant frequency is applied, the beam deflects greatly and the angular velocity sensor at its tip sways greatly, but the beam υ
If the resonance frequency is set sufficiently low, even large fluctuations will not affect the output of the angular velocity sensor.

第4図は本発明の角速度センサの支持方法の他の実施例
を示す図であり1gf1撃が加わるとセンサ全体が回転
する様に構成されており、第3図で説明したと同じく検
知軸がずれることによシ検知用圧電バイモルフ素子にた
わみが生じない。
FIG. 4 is a diagram showing another embodiment of the method for supporting an angular velocity sensor according to the present invention. The sensor is constructed so that the entire sensor rotates when a 1gf1 impact is applied, and the detection axis is rotated as explained in FIG. 3. The piezoelectric bimorph element for detection does not bend due to misalignment.

第4図において、14は外ケース11の外周部に設けた
保持部材で、角速度検出筐体12に取付けた軸受り板1
6に回動自在に軸支されている。
In FIG. 4, reference numeral 14 denotes a holding member provided on the outer periphery of the outer case 11, and a bearing plate 1 attached to the angular velocity detection housing 12.
6 is rotatably supported.

16は保持部材14の下面に取付けた衝撃吸収体である
16 is a shock absorber attached to the lower surface of the holding member 14.

すなわち、角速度検出軸に垂直でかつ検知用圧電バイモ
ルフ素子の面と平行な軸に対して回転可能な取付手段を
設け、かつこの平行な軸に対して前記検知用圧電バイモ
ルフ素子が取付けられている側の質量の方がもう一方よ
りも重くなる様な重合の配分で角速度センサを角速度検
出筐体12に取付けるとともに、並進加速度が印加され
た時に前記平行な軸に対する回転力を抑制する衝撃吸収
体16を設けたものである。
That is, a mounting means is provided that is rotatable about an axis perpendicular to the angular velocity detection axis and parallel to the surface of the piezoelectric bimorph element for detection, and the piezoelectric bimorph element for detection is attached to this parallel axis. The angular velocity sensor is attached to the angular velocity detection casing 12 in such a manner that the mass of one side is heavier than the other, and a shock absorber suppresses the rotational force with respect to the parallel axis when translational acceleration is applied. 16.

尚、衝撃吸収体1eにはバネ弾性係数のできる限り小さ
い材料が好ましい。
Note that it is preferable for the shock absorber 1e to be made of a material with a spring elastic modulus as small as possible.

発明の効果 本発明によれば、音叉構造振動型角速度センサの最も重
大な問題点であった検知用圧電バイモルフ素子の面方向
の振動や衝撃による角速度出力の変動を防ぐことができ
る。
Effects of the Invention According to the present invention, it is possible to prevent fluctuations in the angular velocity output due to in-plane vibrations and impacts of the detection piezoelectric bimorph element, which are the most serious problem of the tuning fork structure vibrating angular velocity sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による角速度センサの支持方
法を示す斜視図、第2図、第3図はその効果を説明する
ための説明図、第4図は本発明の他の実施例を示す斜視
図、第6図は音叉構造振動型角速度センサの斜視図、第
6図及び第7図は動作説明図、第8図は従来の角速度セ
ンサの支持方法を示す斜視図である。 11・・・・・・外ケース、12・・・・・・角速度検
出筐体。 13.16・・・・・・衝撃吸収体、14・・・・・・
保持部材。 16・・・・・・軸受は板、101・・・・・・駆動素
子、1o2・・・・・・モニター素子、103・・・・
・・第1の検知素子、104・・・・・・第2の検知素
子、106,106・・・・・・接合部、107・・・
・・・連結板、109・・・・・・第1の振動ユニット
、110・・・・・・第2の振動ユニット。
FIG. 1 is a perspective view showing a method for supporting an angular velocity sensor according to an embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams for explaining the effects thereof, and FIG. 4 is another embodiment of the present invention. FIG. 6 is a perspective view of a tuning fork structure vibration type angular velocity sensor, FIGS. 6 and 7 are explanatory diagrams of operation, and FIG. 8 is a perspective view showing a conventional method of supporting an angular velocity sensor. 11... Outer case, 12... Angular velocity detection housing. 13.16... Shock absorber, 14...
Holding member. 16... Bearing is plate, 101... Drive element, 1o2... Monitor element, 103...
...First sensing element, 104... Second sensing element, 106, 106... Joint part, 107...
...Connecting plate, 109...First vibration unit, 110...Second vibration unit.

Claims (2)

【特許請求の範囲】[Claims] (1)駆動用圧電バイモルフ素子と第1の検知用圧電バ
イモルフ素子とを互に直交接合してなる第1の振動ユニ
ット、及びモニター用圧電バイモルフ素子と第2の検知
用圧電バイモルフ素子とを互に直交接合してなる第2の
振動ユニットからなりかつ前記第1、第2の振動ユニッ
トを検知軸に沿って互に平行になるように前記駆動用圧
電バイモルフ素子と前記モニター用圧電バイモルフ素子
の自由端どうしを連結板で連結して音叉構造とした角速
度センサを角速度検出筐体に取付ける際に、一端が角速
度検出筐体に固定された片持ち梁り構造をなす衝撃吸収
体の先端に取付け、かつ梁りのたわみ方向と前記第1、
第2の検知用圧電バイモルフ素子の両方向とを一致させ
た角速度センサの支持方法。
(1) A first vibration unit in which a driving piezoelectric bimorph element and a first sensing piezoelectric bimorph element are mutually orthogonally joined, and a monitoring piezoelectric bimorph element and a second sensing piezoelectric bimorph element are mutually connected. The driving piezoelectric bimorph element and the monitoring piezoelectric bimorph element are arranged so that the first and second vibration units are parallel to each other along the detection axis. When installing an angular velocity sensor with a tuning fork structure in which the free ends are connected by a connecting plate to an angular velocity detection housing, one end is attached to the tip of a shock absorber with a cantilevered structure fixed to the angular velocity detection housing. , and the deflection direction of the beam and the first,
A method for supporting an angular velocity sensor in which both directions of a second piezoelectric bimorph element for detection are aligned.
(2)駆動用圧電バイモルフ素子と第1の検知用圧電バ
イモルフ素子とを互に直交接合してなる第1の振動ユニ
ット、及びモニター用圧電バイモルフ素子と第2の検知
用圧電バイモルフ素子とを互に直交接合してなる第2の
振動ユニットからなりかつ前記第1、第2の振動ユニッ
トを検知軸に沿って互に平行になるように前記駆動用圧
電バイモルフ素子と前記モニター用圧電バイモルフ素子
の自由端どうしを連結板で連結して音叉構造とした角速
度センサを角速度検出筐体に取付ける際に、角速度検出
軸に垂直でかつ前記第1、第2の検知用圧電バイモルフ
素子の面と平行な軸に対して回転可能な取付手段を有し
、かつこの平行な軸に対して前記第1、第2の検知用圧
電バイモルフ素子が取付けられている側の質量の方がも
う一方よりも重くなる様な重量の配合で角速度センサを
角速度検出筐体に取付けるとともに、並進加速度が印加
された時に前記平行な軸に対する回転力を抑制する衝撃
吸収体を設けた角速度センサの支持方法。
(2) A first vibration unit in which a driving piezoelectric bimorph element and a first sensing piezoelectric bimorph element are mutually orthogonally joined, and a monitoring piezoelectric bimorph element and a second sensing piezoelectric bimorph element are mutually connected. The driving piezoelectric bimorph element and the monitoring piezoelectric bimorph element are arranged so that the first and second vibration units are parallel to each other along the detection axis. When installing an angular velocity sensor with a tuning fork structure in which the free ends are connected by a connecting plate to an angular velocity detection housing, a It has a mounting means that is rotatable about the shaft, and the mass of the side on which the first and second sensing piezoelectric bimorph elements are mounted is heavier than the other side with respect to the parallel shaft. A method for supporting an angular velocity sensor, which includes: mounting an angular velocity sensor on an angular velocity detection casing with a different weight ratio; and providing a shock absorber that suppresses rotational force with respect to the parallel axis when translational acceleration is applied.
JP1246814A 1989-09-22 1989-09-22 Supporting method of angular velocity sensor Pending JPH03108670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246814A JPH03108670A (en) 1989-09-22 1989-09-22 Supporting method of angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246814A JPH03108670A (en) 1989-09-22 1989-09-22 Supporting method of angular velocity sensor

Publications (1)

Publication Number Publication Date
JPH03108670A true JPH03108670A (en) 1991-05-08

Family

ID=17154086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246814A Pending JPH03108670A (en) 1989-09-22 1989-09-22 Supporting method of angular velocity sensor

Country Status (1)

Country Link
JP (1) JPH03108670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298281A (en) * 1993-04-19 1994-10-25 Konpetsukusu:Kk Food packaging container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298281A (en) * 1993-04-19 1994-10-25 Konpetsukusu:Kk Food packaging container

Similar Documents

Publication Publication Date Title
US7454971B2 (en) Oscillating micro-mechanical sensor of angular velocity
CN1811338B (en) Vibrating gyro element, support structure of vibrating gyro element, and gyro sensor
JP4719751B2 (en) Vibration micro-mechanical sensor for angular velocity
US6194817B1 (en) Tuning-fork vibratory gyro
US5428995A (en) Counterbalanced vibratory triaxial angular rate sensor with open loop output
CN1318821C (en) Micromachined silicon gyro using tuned accelerometer
US5247252A (en) Sensor for determining angular velocity with piezoceramic component formed as thickness shear oscillator
WO1992014159A1 (en) Coriolis inertial rate and acceleration sensor
JPS62106314A (en) Vibration gyroscope
JPH08159806A (en) Azimuth sensor aand azimuth/distance sensor
JPH0743262B2 (en) Vibrating gyro
JPH03108670A (en) Supporting method of angular velocity sensor
JPS60135815A (en) Multi-sensor
JPH0429012A (en) Vibration gyro
US5578754A (en) Vibration-type angular-velocity sensor
US4445375A (en) Tuned coriolis angular rate measuring device
JP2521493B2 (en) Vibrating gyro
JPS61247915A (en) Vibration gyro
JPS59151016A (en) Gyro device
JP3310029B2 (en) Vibrator
JPH0326411Y2 (en)
JPH0255309A (en) Submirror vibrator
JP2009192403A (en) Angular velocity and acceleration detector
JPH04236321A (en) Angular velocity detecting apparatus
EP0567675B1 (en) Pick-off device for a mechanical spinning gyroscope