JPH03108010A - Position controller - Google Patents

Position controller

Info

Publication number
JPH03108010A
JPH03108010A JP24506389A JP24506389A JPH03108010A JP H03108010 A JPH03108010 A JP H03108010A JP 24506389 A JP24506389 A JP 24506389A JP 24506389 A JP24506389 A JP 24506389A JP H03108010 A JPH03108010 A JP H03108010A
Authority
JP
Japan
Prior art keywords
speed control
delay
speed
dead time
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24506389A
Other languages
Japanese (ja)
Other versions
JP2676944B2 (en
Inventor
Yoshifumi Sakaguchi
佳史 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1245063A priority Critical patent/JP2676944B2/en
Publication of JPH03108010A publication Critical patent/JPH03108010A/en
Application granted granted Critical
Publication of JP2676944B2 publication Critical patent/JP2676944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To attain exact coincidence between transient responses to acquire synchronism for position control of plural axes by properly delaying a speed control command in accordance with lengths of response dead times peculiar to respective speed control parts so that they coincide with one another as the whole. CONSTITUTION:The extent of delay of a delay control part 21 is adjusted by the number of stages of delay means 22. When plural position controllers having speed control parts 15 are used to perform the position control of plural corresponding axes, the speed control part having the longest response dead time is found, and differences between the response dead time peculiar to this speed control part and those to the other speed control parts are obtained. Extents of delay in delay control parts 21 of the other speed control parts are set to the number of stages in the increasing direction by these differences. Thus, response dead times of the other speed control parts are matched to that of the speed control part having the longest response dead time, and responses completely coincide with one another in all speed control parts, and the synchronism deviation of transient responses is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばNC工作機械やロボットのコントロー
ラに使用される位置制御装置に係わり、特に測度制御部
を複数用いて位置制御を行い複数軸の同期運転を行うよ
うにした数値制御装置に使用される位置制御装置に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a position control device used, for example, in a controller for an NC machine tool or a robot, and in particular, the present invention relates to a position control device used for example as a controller for an NC machine tool or a robot, and in particular performs position control using a plurality of measurement control units to control the position of a plurality of axes. The present invention relates to a position control device used in a numerical control device that performs synchronous operation.

〔従来の技術〕[Conventional technology]

第2図は、NC工作機械やロボットのコントローラに使
用されている従来の位置制御装置の一例を表わしたもの
である。この位置制御装置は、加算器11とこの出力側
に配置された遅延手段12とを備えている。遅延手段1
2の出力は乗算器13と加算器11に供給されるように
なっている。
FIG. 2 shows an example of a conventional position control device used in a controller for an NC machine tool or a robot. This position control device includes an adder 11 and a delay means 12 arranged on the output side of the adder 11. Delay means 1
The output of 2 is supplied to a multiplier 13 and an adder 11.

加算器11は、単位時間ごとの指令移動量Pとモータ移
動量Rとを入力して、これらの差分を遅延手段12の遅
延出力に加算する。遅延手段12は、加算器11の加算
結果Aを入力して、これを単位サンプル時間だけ遅延さ
せて出力する。この関係を、単位サンプル時間の遅延を
表わす量Zmlを用いて記述すると、次の(1)式のよ
うになる。
The adder 11 inputs the command movement amount P and the motor movement amount R for each unit time, and adds the difference between them to the delayed output of the delay means 12. The delay means 12 inputs the addition result A of the adder 11, delays it by a unit sample time, and outputs it. If this relationship is described using the quantity Zml representing the delay of unit sample time, it will be as shown in the following equation (1).

A = A Z−’ + P −R・・・・・・ (1
)乗算器13は、遅延手段12の遅延出力A Z−’に
、位置制御の応答性を決定するゲインKを乗じ、この結
果を速度制御指令Qとして速度制御部15に供給する。
A = A Z-' + P -R... (1
) The multiplier 13 multiplies the delayed output AZ-' of the delay means 12 by a gain K that determines the responsiveness of position control, and supplies this result to the speed control section 15 as a speed control command Q.

速度制御指令Qは次の(2)式で表わすことができる。The speed control command Q can be expressed by the following equation (2).

Q=KAZ ・・・・・・ (2) 速度制御部15では、速度制御指令Qを入力して、この
出力側に接続されたモータ16の回転速度の制御を行う
。モータ16の回転は、エンコーダ等の位置検出器17
によって検出される。位置検出器17は、単位サンプル
時間ごとのモータ移動量Rを加算器11に出力すること
になる。ここで単位サンプル時間当たりのモータ移動i
Rは、モータ16の回転速度とほぼ等価と考えてよい。
Q=KAZ (2) A speed control command Q is input to the speed control section 15, and the rotational speed of the motor 16 connected to the output side thereof is controlled. The rotation of the motor 16 is controlled by a position detector 17 such as an encoder.
detected by. The position detector 17 outputs the motor movement amount R for each unit sample time to the adder 11. where motor movement i per unit sample time
R may be considered to be approximately equivalent to the rotational speed of the motor 16.

このように第2図に示した従来の位置制御装置は、全体
としてみると指令移動量Pを人力してモータ移動IRを
フィードバックするフィードバック制御システムとなっ
ている。
As described above, the conventional position control device shown in FIG. 2 as a whole is a feedback control system in which the command movement amount P is manually input and the motor movement IR is fed back.

この第2図の装置の応答について考察する。今、速度制
御部15から位置検出器17の出力までの応答特性が単
位サンプリング時間のn倍の応答むだ時間をもったむだ
時間要素だけで表わされるものとする。このとき(3)
式が成立する。
Let us consider the response of the device shown in FIG. Assume now that the response characteristic from the speed controller 15 to the output of the position detector 17 is expressed only by a dead time element having a response dead time n times the unit sampling time. At this time (3)
The formula holds true.

R=QZ ・・・・・・ (3) この場合、指令移動量Pからモータ移動ff1Rの伝達
関数は、(1)〜(3)式を基にして次の(4)式のよ
うに表わすことができる。
R=QZ... (3) In this case, the transfer function from the command movement amount P to the motor movement ff1R is expressed as the following equation (4) based on equations (1) to (3). be able to.

R/P=KZ−”−’/[1−(1−KZ−″)Z−’
]・・・・・・ (4) 第3図は、この(4)式の伝達関数において、K=0.
05とした場合のステップ応答を示したものである。速
度制御部15のむだ時間の大きさを表わす数値n値によ
って過渡特性が大きく異なることがわかる。
R/P=KZ-"-'/[1-(1-KZ-")Z-'
]... (4) Figure 3 shows the transfer function of equation (4) when K=0.
05 shows the step response. It can be seen that the transient characteristics vary greatly depending on the numerical value n representing the size of the dead time of the speed control section 15.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように従来の位置制御装置では、むだ時間の大きさ
を表わす数値n値によって過渡特性が大きく異なる。し
たがって、異なる応答むだ時間を有する複数の速度制御
部をそれぞれ用いて複数の軸の位置制御を行うようにす
ると、次のような問題が生じる。すなわち、例えば複数
の軸を用いて経路の追従制御等の同期運転を行うことに
すると、速度制御部の応答むだ時間の大きさによってこ
れらの位置制御装置の過渡応答が異なるため、軸間で同
期誤差が発生することになる。この結果として、これら
複数の軸を有するシステム全体では経路を正しく追従す
ることができなくなる。
As described above, in the conventional position control device, the transient characteristics vary greatly depending on the numerical value n representing the size of the dead time. Therefore, if a plurality of speed control units having different response dead times are used to control the positions of a plurality of axes, the following problem occurs. In other words, for example, when performing synchronized operation such as path following control using multiple axes, the transient responses of these position control devices differ depending on the response dead time of the speed control section, so synchronization between the axes is difficult. An error will occur. As a result, the entire system with these multiple axes is unable to correctly follow a path.

そこで本発明の目的は、応答むだ時間を有する複数の速
度制御部を用いて位置制御を行う際であっても、これら
の過渡特性を一致させることのできる位置制御装置を提
供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a position control device that can match the transient characteristics of these speed control units even when performing position control using a plurality of speed control units having response dead times.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、(i)位置制御を行うためのモータと、(
ii)このモータの速度を制御する上で固有の応答むだ
時間を有する速度制御部と、(iii )この速度制御
部に出力する速度制御指令を任意の時間だけ遅延させて
出力させる速度制御指令遅延手段とを位置制御装置に具
備させる。
In the present invention, (i) a motor for performing position control;
ii) a speed control section that has a unique response dead time in controlling the speed of this motor; and (iii) a speed control command delay that delays the speed control command to be output to this speed control section by an arbitrary amount of time. The position control device is provided with means.

すなわち本発明では、それぞれの速度制御部の固有の応
答むだ時間に応じて速度制御指令を適宜遅延させること
にして、それぞれの速度側′H部における応答むだ時間
を見掛は上一致させる。
That is, in the present invention, the speed control command is appropriately delayed in accordance with the unique response dead time of each speed control section, so that the response dead times in the respective speed side 'H sections are made to appear to match.

〔実施例〕〔Example〕

以下、実施例につき本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

第1図は本発明の一実施例における位置制御装置を表わ
したものである。この第1図で第2図と同一部分には同
一の符号を付しており、これらの説明を適宜省略する。
FIG. 1 shows a position control device in one embodiment of the present invention. In FIG. 1, the same parts as in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.

この位置制御装置は第2図に示した従来の位置制御装置
と同様に加算器11、遅延手段12、乗算器13を備え
ている。乗算器13から出力される速度制御指令Qは、
遅延制御fpf)21を介して速度制御部15に入力さ
れるようになっている。速度制御部15はモータ16の
回転速度の制御を行う。モータ16の回転は、エンコー
ダ等の位置検出器17によって検出され、モータ移動量
Rとして加算器11に出力される。
This position control device includes an adder 11, a delay means 12, and a multiplier 13 like the conventional position control device shown in FIG. The speed control command Q output from the multiplier 13 is
The signal is input to the speed control unit 15 via the delay control fpf) 21. The speed control section 15 controls the rotational speed of the motor 16. The rotation of the motor 16 is detected by a position detector 17 such as an encoder, and is output as a motor movement amount R to the adder 11.

この装置で、遅延制御部21は遅延手段22をM段(た
だしMは十分大きな整数)接続した直列回路と、これら
の遅延手段22の任意の段数口の出力を外部出力として
取り出すようにした選択回路とによって構成されている
。この例では、m段目(m<M)の出力が速度制御指令
Q′として速度制御部15に出力される様子を表わして
いる。
In this device, the delay control section 21 has a series circuit in which M stages of delay means 22 (where M is a sufficiently large integer) are connected, and the output of an arbitrary number of stages of these delay means 22 is selected to be taken out as an external output. It is composed of a circuit. This example shows how the output of the m-th stage (m<M) is output to the speed control section 15 as the speed control command Q'.

速度制御指令Q′は、遅延制御部21に入力された速度
制御指令Qをmサンプル時間だけ遅延させたものであり
、次の(5)式で表わすことができる。
The speed control command Q' is obtained by delaying the speed control command Q input to the delay control section 21 by m sample times, and can be expressed by the following equation (5).

Q’  =QZ ・・・・・・ (5) 次に、このような位置制御装置の応答について考察する
Q' = QZ (5) Next, the response of such a position control device will be considered.

先の説明と同様に、速度制御部15の応答特性が(3)
式の単位サンプル時間のn倍の応答むだ時間を有するむ
だ時間要素であるとする。この場合、指令移動量Pから
モータ移動量Rの伝達関数は次の(6)式となる。
Similar to the previous explanation, the response characteristic of the speed control section 15 is (3)
It is assumed that the dead time element has a response dead time that is n times the unit sample time of the equation. In this case, the transfer function from the command movement amount P to the motor movement amount R is expressed by the following equation (6).

R/ P = K Z−’−’−’/[1−(1−K 
Zリーh) Z−’]・・・・・・ (6) この(6)式は、(4)式でnの項を(n+m)に置き
換えたものと同一である。
R/P = K Z-'-'-'/[1-(1-K
(6) This equation (6) is the same as equation (4) in which the term n is replaced with (n+m).

すなわち、 N=n+m ・・・・・・ (7) と置くと、(6)式は次の(8)式のように(4)式と
一致する。
That is, if we set N=n+m (7), equation (6) matches equation (4) as shown in equation (8) below.

R/P=KZ−”−’/[1−(l−KZ−’)Z−’
](8) この位置制御装置のステップ応答は、第3図で数値nを
数値Nに置き換えたものと同じである。
R/P=KZ-"-'/[1-(l-KZ-')Z-'
] (8) The step response of this position control device is the same as that in FIG. 3 in which the numerical value n is replaced with the numerical value N.

以上説明した本実施例の位置制御装置は、遅延制御部2
1の遅延量を遅延手段22の段数によって調整すること
ができる。したがって、速度制御部15をそれぞれ有す
る位置制御装置を複数用いて対応する複数軸の位置制御
を行う場合には、その中の最も大きな応答むだ時間をも
つ速度制御部を見つけ、この速度制御部が有する固有の
応答むだ時間と他の速度制御部がそれぞれ有する固有の
応答むだ時間の差を求める。そして、これらの差に相当
する分だけこれら他の速度制御部の遅延制御部21の遅
延量を増加方向の段数に設定する。
The position control device of this embodiment explained above has a delay control section 2.
The delay amount of 1 can be adjusted by the number of stages of the delay means 22. Therefore, when performing position control of a plurality of corresponding axes using a plurality of position control devices each having a speed control section 15, find the speed control section with the largest response dead time among them, and The difference between the unique response dead time and the unique response dead time of each of the other speed controllers is determined. Then, the delay amount of the delay control section 21 of these other speed control sections is set to the number of steps in the increasing direction by an amount corresponding to the difference between them.

これにより、最も大きな応答むだ時間をもつ速度制御部
に他の速度制御部の応答むだ時間を合わせることかでき
る。この結果、すべての速度制御部で応答が完全に一致
することになり、複数の速度制御部に対応させて複数軸
の位置制御を行う場合であっても過渡応答で発生してい
た同期誤差を零にすることができる。
Thereby, it is possible to match the response dead time of other speed control parts to the speed control part having the largest response dead time. As a result, the responses of all speed controllers are completely consistent, and even when controlling the position of multiple axes in response to multiple speed controllers, synchronization errors that occur due to transient responses can be eliminated. It can be made zero.

〔発明の効果〕 以上説明したように本発明によれば、それぞれの速度制
御部の固有の応答むだ時間の長短に応じてこれらが全体
として一致するように速度制御指令を適宜遅延させるこ
とにしたので、応答むだ時間の長短によって過渡応答が
異なる場合でも過渡応答を正確に一致させることができ
、これまで過渡応答で発生していた位置誤差をなくすこ
とができる。したがって、複数の軸の位置制御を行う場
合における同期誤差を零にすることができる。
[Effects of the Invention] As explained above, according to the present invention, the speed control command is appropriately delayed according to the length of the response dead time specific to each speed control section so that these delay times match as a whole. Therefore, even if the transient responses differ depending on the length of the response dead time, it is possible to accurately match the transient responses, and it is possible to eliminate the position error that has conventionally occurred in the transient response. Therefore, it is possible to reduce the synchronization error to zero when performing position control of a plurality of axes.

また、異なった位置制御装置間でそれらの応答特性を予
め一致させておけば、1つの装置が故障したときでも他
の装置と交換して同一特性の確保させることができる。
Furthermore, if the response characteristics of different position control devices are matched in advance, even if one device breaks down, it can be replaced with another device to ensure the same characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における位置制御装置の回路
構成を示すブロック図、第2図は従来の位置制御装置の
回路構成を示すブロック図、第3図はに=0.05とし
た場合のステップ応答を示した特性図である。 15・・・・・・速度制御部、16・・・・・・モータ
、17・・・・・・位置検出器、21・・・・・・遅延
制御部、22・・・・・・遅延手段。
Fig. 1 is a block diagram showing the circuit configuration of a position control device according to an embodiment of the present invention, Fig. 2 is a block diagram showing the circuit structure of a conventional position control device, and Fig. 3 is a block diagram showing the circuit configuration of a position control device according to an embodiment of the present invention. FIG. 3 is a characteristic diagram showing a step response when 15... Speed control section, 16... Motor, 17... Position detector, 21... Delay control section, 22... Delay means.

Claims (1)

【特許請求の範囲】  位置制御を行うためのモータと、 このモータの速度を制御する上で固有の応答むだ時間を
有する速度制御部と、 この速度制御部に出力する速度制御指令を任意の時間だ
け遅延させて出力させる速度制御指令遅延手段 とを具備することを特徴とする位置制御装置。
[Claims] A motor for performing position control, a speed control section having a specific response dead time in controlling the speed of this motor, and a speed control command output to this speed control section for an arbitrary period of time. 1. A position control device comprising a speed control command delay means for outputting a speed control command with a delay of .
JP1245063A 1989-09-22 1989-09-22 Position control device Expired - Fee Related JP2676944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245063A JP2676944B2 (en) 1989-09-22 1989-09-22 Position control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245063A JP2676944B2 (en) 1989-09-22 1989-09-22 Position control device

Publications (2)

Publication Number Publication Date
JPH03108010A true JPH03108010A (en) 1991-05-08
JP2676944B2 JP2676944B2 (en) 1997-11-17

Family

ID=17128039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245063A Expired - Fee Related JP2676944B2 (en) 1989-09-22 1989-09-22 Position control device

Country Status (1)

Country Link
JP (1) JP2676944B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404160B2 (en) 1998-12-24 2002-06-11 Mitsubishi Denki Kabushiki Kaisha Numerical control apparatus
US7136339B2 (en) 2001-05-30 2006-11-14 Nec Corporation Positioning control apparatus and method capable of reducing relative position error without increasing gain and frequency band of transfer characteristics of control system
JP2009091827A (en) * 2007-10-10 2009-04-30 Nippon Steel Corp Guard fence against rock fall and the like

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506561B2 (en) * 2005-05-25 2010-07-21 ソニー株式会社 Automatic control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109382A (en) * 1974-02-09 1975-08-28
JPS6123213A (en) * 1984-07-10 1986-01-31 Kobe Steel Ltd Robot controller
JPS62189682A (en) * 1986-02-17 1987-08-19 Nec Corp Magnetic head positioning controller for floppy disk file
JPS63153604A (en) * 1986-12-17 1988-06-27 Mitsubishi Heavy Ind Ltd Measuring method for phase margin in control system
JPH01138663A (en) * 1987-11-26 1989-05-31 Matsushita Electric Ind Co Ltd Positioning control device for disk device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109382A (en) * 1974-02-09 1975-08-28
JPS6123213A (en) * 1984-07-10 1986-01-31 Kobe Steel Ltd Robot controller
JPS62189682A (en) * 1986-02-17 1987-08-19 Nec Corp Magnetic head positioning controller for floppy disk file
JPS63153604A (en) * 1986-12-17 1988-06-27 Mitsubishi Heavy Ind Ltd Measuring method for phase margin in control system
JPH01138663A (en) * 1987-11-26 1989-05-31 Matsushita Electric Ind Co Ltd Positioning control device for disk device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404160B2 (en) 1998-12-24 2002-06-11 Mitsubishi Denki Kabushiki Kaisha Numerical control apparatus
US7136339B2 (en) 2001-05-30 2006-11-14 Nec Corporation Positioning control apparatus and method capable of reducing relative position error without increasing gain and frequency band of transfer characteristics of control system
JP2009091827A (en) * 2007-10-10 2009-04-30 Nippon Steel Corp Guard fence against rock fall and the like

Also Published As

Publication number Publication date
JP2676944B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
CA1324199C (en) Controlling apparatus of manipulator
US5371451A (en) Predictive repetition control method for a servo motor and an apparatus therefor
JPH11305839A (en) Method for controlling plural servo motors
JPS59177604A (en) Numerical control method
JPWO2002052715A1 (en) Servo motor drive control system
JPS59142603A (en) Control system of high gain feedback
KR920002760B1 (en) Speed controller
JPH03108010A (en) Position controller
Kim et al. Synchronizing dual-drive gantry of chip mounter with LQR approach
WO1989008876A1 (en) Numerical controller
JPH04121085A (en) Digital pulse processor
WO2003100536A1 (en) Numerical value control device synchronization control method
JPH03204009A (en) Biaxial synchronizing driver
JPS59194206A (en) Control system for delay error correction of servo system in numerical control
JPH10111708A (en) Positioning controller
Kapustin et al. Controlling a Robotic Manipulator Using Optical Feedback
JPH0683433A (en) Positioning controller
JPS63268011A (en) Follow-up control method between two servo systems
KR100493606B1 (en) Servo motor drive control system
JP2001100819A (en) Position driving control system and synchronizing/tuning position driving control method
JPH04116703A (en) Control method for robot
JPS58134317A (en) Stopping device of digital servo device at fixed position
JPH01177885A (en) Positioning method for motor
JPH07302749A (en) Multiaxial sampling control device
JPH05250017A (en) Synchronizing method for industrial robot

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees