JPH03107750A - Material recognizing film - Google Patents

Material recognizing film

Info

Publication number
JPH03107750A
JPH03107750A JP24706889A JP24706889A JPH03107750A JP H03107750 A JPH03107750 A JP H03107750A JP 24706889 A JP24706889 A JP 24706889A JP 24706889 A JP24706889 A JP 24706889A JP H03107750 A JPH03107750 A JP H03107750A
Authority
JP
Japan
Prior art keywords
film
functional
sphingomyelin
adsorption
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24706889A
Other languages
Japanese (ja)
Other versions
JP2524411B2 (en
Inventor
Hisashi Akiyama
久 秋山
Hideji Saneyoshi
実吉 秀治
Tomio Wada
和田 富夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1247068A priority Critical patent/JP2524411B2/en
Publication of JPH03107750A publication Critical patent/JPH03107750A/en
Application granted granted Critical
Publication of JP2524411B2 publication Critical patent/JP2524411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To identify many materials with a limited functional dyestuff by using the material recognizing film consisting of a mixed film formed by previously mixing the functional dyestuff which is changed in absorption spectra by the adsorption and desorption of the material and is expressed by formula and film material. CONSTITUTION:The material recognizing film consisting of the mixed film formed by previously mixing the functional dyestuff which is changed in absorption spectra by the adsorption and desorption of the material and is expressed by the formula (where R is the hydrocarbon expressed by general formula CnH2n+1) and sphingomyelin (film material) is used. The functional dyestuff is mixed or coated with the sphingomyelin at the time of formation of the material recognizing film, by which a difference is generated in the way of changing of the absorption spectra at the time when the material is absorbed and desorbed. The same effect as the effect obtd. by changing the kind of the functional dyestuff is exhibited simply by mixing or coating the functional dyestuff with the sphingomyelin. The identification of more materials with the limited functional dyestuff is thus possible.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は光を利用して物質特にガスを検知する物質認識
膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a substance recognition membrane that detects substances, particularly gases, using light.

〈従来技術及び解決すべき課題〉 一般に、ガスセンサには5nOzやZnOなどの酸化物
半導体を用いたものが多く、ガスの物理吸着による酸化
物半導体の導電率等の変化でガスを検知していた。この
ようなガスセンサは特定のガスのみを検知することを目
的としており、それ以外のガスには感度を持たないこと
、及びガス雰囲気以外の状態変化(温度、湿度、圧力等
)に依存しないことが望ましいと考えられていた。この
ため1種々の貴金属触媒を添加して選択性の向上を図−
てきた。しかしこのような選択性の良いセンサは少なく
、識別できるガス種も限られていた。
<Prior art and issues to be solved> In general, many gas sensors use oxide semiconductors such as 5nOz or ZnO, and gas is detected by changes in the conductivity of the oxide semiconductor due to physical adsorption of gas. . These gas sensors are designed to detect only specific gases, and are not sensitive to other gases and do not depend on changes in conditions other than the gas atmosphere (temperature, humidity, pressure, etc.). considered desirable. For this reason, we aim to improve selectivity by adding various noble metal catalysts.
It's here. However, there are few sensors with such good selectivity, and the types of gases that can be identified are also limited.

これに対し、物質(特にガス)の吸脱着によって光の吸
収スペクトルが変化する機能性色素を用いた物質認識膜
は、ガラス等の透明基板上に膜形成されてセンサを構成
するが、吸着する物質の極性や吸着物質との水素結合相
互作用により吸収スペクトルが変化することを利用して
、吸着物質の識別を行うものである。この物質認識膜に
よるガスセンサは上述の酸化物半導体ガスセンサと異な
り、多数の物質に対して感度を有する。このためある吸
着物質を識別し、特定するにはガス感度の異なる複数の
機能性色素を同時に用いる必要がある。そこで、同じ物
質を吸着しても機能性色素ごとに吸収スペクトルの変化
の仕方が異なることを利用し、その変化を特定波長の透
過率で表し、機能性色素ごとの透過率を一組のパターン
として表すことにより、吸着物質を特定することが可能
となる。
On the other hand, substance recognition films using functional dyes that change the absorption spectrum of light by adsorption and desorption of substances (particularly gases) are formed on transparent substrates such as glass to form sensors. Adsorbed substances are identified by utilizing the fact that the absorption spectrum changes due to the polarity of the substance and hydrogen bond interaction with the adsorbed substance. This gas sensor using a substance recognition film is different from the above-mentioned oxide semiconductor gas sensor and has sensitivity to many substances. Therefore, in order to identify and specify a certain adsorbed substance, it is necessary to simultaneously use multiple functional dyes with different gas sensitivities. Therefore, we took advantage of the fact that the absorption spectrum changes differently depending on the functional dye even when the same substance is adsorbed, and expressed this change as the transmittance of a specific wavelength. By expressing it as , it becomes possible to specify the adsorbed substance.

ところで、識別できる吸着物質の数はガス感度の異なる
機能性色素の数に依存する。したがってより多くの吸着
物質を識別するには、ガス感度の異なる機能性色素を数
多く用意する必要がある。
By the way, the number of adsorbed substances that can be identified depends on the number of functional dyes with different gas sensitivities. Therefore, in order to identify more adsorbed substances, it is necessary to prepare a large number of functional dyes with different gas sensitivities.

しかしながら、ガス感度の異なる機能性色素の数は少な
く、結局半導体酸化物ガスセンサと同様に識別できる吸
着物質の数は限られてしまい、実用には供しないという
問題があまた。
However, the number of functional dyes with different gas sensitivities is small, and as with semiconductor oxide gas sensors, the number of adsorbed substances that can be identified is limited, resulting in another problem that it cannot be put to practical use.

く課題を解決するための手段〉 本発明は係る従来技術の問題点に着目してなされたもの
で、限られた機能性色素でより多くの吸着物質を識別す
るために、 物質の吸脱着によって光の吸収スペクトルが変〔但し、
Rは一般式CnHzn+tで表される炭化水素〕で表さ
れる機能性色素とスフィンゴミエリンとを予め混合して
形成した混合膜からなる物質認識膜を提供してなるもの
です。
Means for Solving the Problems> The present invention was made by focusing on the problems of the related art, and in order to identify more adsorbed substances with a limited number of functional dyes, it is possible to identify more adsorbed substances by adsorption and desorption of substances. The absorption spectrum of light changes [However,
R is a hydrocarbon represented by the general formula CnHzn+t] This product provides a material recognition film consisting of a mixed film formed by pre-mixing a functional dye represented by the general formula CnHzn+t with sphingomyelin.

また1本発明は同様に、物質の吸脱着によって光の吸収
スペクトルが変化し、 〔但し、Rは一般式CnH2n+x  で表される炭化
水素〕で表される機能性色素膜と、 該機能性色素膜上に積層されたスフィンゴミエリン膜と
、からなる物質認識膜を提供してなるものです。
The present invention also provides a functional dye film whose light absorption spectrum changes due to adsorption and desorption of a substance, wherein R is a hydrocarbon represented by the general formula CnH2n+x, and the functional dye. It provides a substance recognition membrane consisting of a sphingomyelin membrane laminated on top of the membrane.

〈作 用〉 上述の如く物質認識膜製膜時に1機能性色素にスフィン
ゴミエリンを混合或いは被覆することによ−て、物質が
吸脱着する際の吸収スペクトルの変化の仕方に差が生じ
る。このことは機能性色素にスフィンゴミエリン(膜質
)を混合或いは被覆するだけで機能性色素の種類を替え
るのと同じ働きをなし、限られた機能性色素でより多く
の物質を識別することが可能となる。
<Function> As described above, by mixing or coating a monofunctional dye with sphingomyelin when forming a substance recognition film, a difference occurs in the way the absorption spectrum changes when a substance is adsorbed and desorbed. This means that simply mixing or coating a functional dye with sphingomyelin (membrane) has the same effect as changing the type of functional dye, making it possible to identify more substances with a limited number of functional dyes. becomes.

〈実施例〉 以下、本発明の実施例をその製膜方法と共に詳説するが
、本発明はこれに限定されるものではない。
<Examples> Hereinafter, examples of the present invention will be described in detail together with the film forming method thereof, but the present invention is not limited thereto.

本発明で用いる機能性色素には [但し、Rは一般式CnHzn+iで表される炭化水素
〕が用いられ、以下、この構造式(1)で示される色素
を色素(1)と記す。
The functional dye used in the present invention [wherein R is a hydrocarbon represented by the general formula CnHzn+i] is used, and the dye represented by this structural formula (1) is hereinafter referred to as dye (1).

(混合膜) R位がCH3である上記色素(1)を10 ml/mノ
(Mixed membrane) 10 ml/m of the above dye (1) whose R position is CH3.

スフィンゴミエリンを501+1J’/ Mノの濃度で
有機溶媒に溶解させ、この混合溶液をガラス等の透明基
板上に滴下し、前記透明基板を100 Or−p−mで
10秒間回転させてスピンコーティングを行なう。この
後、自然乾燥させて前記有機溶媒を除去し、透明基板上
に機能性色素(1)とスフィンゴミエリンとの均一な混
合膜を形成する。この時、前記有機溶媒としてエタノー
ルを使用したが、これには限定されない。
Sphingomyelin was dissolved in an organic solvent at a concentration of 501+1 J'/M, this mixed solution was dropped onto a transparent substrate such as glass, and the transparent substrate was rotated at 100 Or-p-m for 10 seconds to perform spin coating. Let's do it. Thereafter, the organic solvent is removed by air drying, and a uniform mixed film of functional dye (1) and sphingomyelin is formed on the transparent substrate. At this time, although ethanol was used as the organic solvent, the organic solvent is not limited thereto.

(積層膜1) R位がCH3である上記色素(1)を5諷P/mノ。(Laminated film 1) The above dye (1) whose R position is CH3 was used at 5 P/m.

高分子(酢酸セルロース)を80111//1ノの濃度
でDMSO(ジメチルスルホオキシド)に溶解し。
A polymer (cellulose acetate) was dissolved in DMSO (dimethyl sulfoxide) at a concentration of 80111//1.

この混合溶液をガラス等の透明基板に滴下し、itl記
透明基板をL 500 r−p−m・で10秒間回転さ
せてスピンコーティングを行なう。この後、80〜90
℃で加熱乾燥させて前記DMSOを除去し、均一な機能
性色素膜を形成する。次いで、スフィンゴミエリンを5
0 ml/1mノの濃度でエタノールに溶解し、この溶
液を前記透明基板の機能性色素膜上に滴下し、@記透明
基板を100 Or、p、m、で10秒間回転させてス
ピンコーティングを行なう。
This mixed solution is dropped onto a transparent substrate such as glass, and the transparent substrate is rotated at L 500 rpm for 10 seconds to perform spin coating. After this, 80-90
The DMSO is removed by heating and drying at .degree. C. to form a uniform functional dye film. Next, 5 sphingomyelin
Dissolved in ethanol at a concentration of 0 ml/1 m, this solution was dropped onto the functional dye film of the transparent substrate, and spin coating was performed by rotating the transparent substrate at 100 Or, p, m for 10 seconds. Let's do it.

この後、自然乾燥させて前記エタノールを除去し。After that, the ethanol was removed by air drying.

@記機能性色素膜上に均一なスフィンゴミエリン膜を積
層し、物質認識膜を得る。
A uniform sphingomyelin film is laminated on the functional dye film to obtain a substance recognition film.

(比較用膜) R位がCH3である上記色素(1)を5好/sJ、高分
子(酢酸セルロース)を110 rd/〜ノの濃度でD
MSOに溶解し、この混合溶液がガラス等の基板に滴下
し、前記透明基板を150 Or、p、m、で1θ秒間
回転させてスピンコーティングを行なう。
(Membrane for comparison) The dye (1) whose R position is CH3 was used at a concentration of 5 rd/sJ, and the polymer (cellulose acetate) was added at a concentration of 110 rd/sJ.
Dissolved in MSO, this mixed solution is dropped onto a substrate such as glass, and spin coating is performed by rotating the transparent substrate for 1θ seconds at 150 Or, p, m.

この後、80〜90℃で加熱乾燥させて前記DMSOを
除去し、均一な機能性色素膜を得る。
Thereafter, the DMSO is removed by heating and drying at 80 to 90°C to obtain a uniform functional dye film.

第1図は乾燥空気、エタノール及びシトラールの吸着に
よる上記混合膜の光の吸収スペクトルを示し、第2図は
乾燥空気、エタノール、及びシトラールの吸着による上
記積層膜1の光の吸収スペクトルを示し、第8図は同じ
く、乾燥空気、エタノール、及びシトラールの吸着によ
る上記比較用膜の光の吸収スペクトルを示す。ここで、
上記各種物質による光の吸収スペクトルの変化は以下に
示す方法で測定した。先ず、測定したい物質(液体)中
に乾燥空気を吹き込み、物質の飽和ガスを発生させる。
FIG. 1 shows the light absorption spectrum of the above-mentioned mixed film due to the adsorption of dry air, ethanol and citral, and FIG. 2 shows the light absorption spectrum of the above-mentioned laminated film 1 due to the adsorption of dry air, ethanol and citral, FIG. 8 also shows the light absorption spectrum of the comparative film obtained by adsorption of dry air, ethanol, and citral. here,
Changes in light absorption spectra due to the various substances mentioned above were measured by the method shown below. First, dry air is blown into the substance (liquid) to be measured to generate a gas saturated with the substance.

この飽和ガスを上述の如く透明基板上に形成した物質認
識膜に吹きつけして、膜に色変化を起こさせる。そして
色変化の後、上記飽和ガスに代わって乾燥空気を吹き付
け、この一連の色変化を測定する。該測定は、物質認識
@を一生面状に形成した透明基板の、主面側上方に発光
素子を配置し、裏面側に受光素子を配置して行なったO
・ 上記第1図乃至第8図から明らかなように、いずれの物
質認識膜も吸着するガスの種類によって吸収スペクトル
が異なり、しかも物質認識膜によっても異なることがわ
かる。
This saturated gas is blown onto the substance recognition film formed on the transparent substrate as described above to cause the film to change color. After the color changes, dry air is blown in place of the saturated gas, and this series of color changes is measured. The measurement was carried out by placing a light emitting element above the main surface of a transparent substrate on which a material recognition @ was formed in the form of a flat surface, and placing a light receiving element on the back side.
- As is clear from the above-mentioned FIGS. 1 to 8, the absorption spectrum of each substance recognition film differs depending on the type of gas to be adsorbed, and also differs depending on the substance recognition film.

(積層膜2) R位がC11H3Fである上記色素(1)を約10  
Mの濃度にてクロロホルムに溶解し、展開溶液とする。
(Laminated film 2) About 10% of the above dye (1) whose R position is C11H3F
Dissolve in chloroform at a concentration of M to obtain a developing solution.

そしてPH9〜11のNaOH水溶液或いはアンモニア
水溶液上に前記展開溶液を展開して色素(1)の単分子
膜を形成するCLB法〕。この単分子膜を表面圧20〜
80mN/mでガラス等の透明基板に累積し1機能性色
素膜を形成する。次いでスフィンゴミエリンを上記と同
じようにスフィンゴミエリンの展開溶液を作成し、純水
上に@記展開溶液を展開してスフィンゴミエリンの単分
子膜を形成する。この単分子膜を表面圧20〜30mN
/mで前記透明基板の機能性色素膜上に累積して、スフ
ィンゴミエリン膜を機能性色素膜上に積層し、物質認識
膜を得る。本積層膜2のスフィンゴミエリン膜は上述の
如<LB法で形成したがこれに限定されるものではなく
、上記積層膜1と同様にスピンコード法を用いてもよい
and the CLB method in which a monomolecular film of the dye (1) is formed by developing the developing solution on a NaOH aqueous solution or an ammonia aqueous solution having a pH of 9 to 11]. This monomolecular film has a surface pressure of 20~
It is accumulated on a transparent substrate such as glass at 80 mN/m to form a monofunctional dye film. Next, a developing solution of sphingomyelin is prepared in the same manner as above, and the developing solution is developed on pure water to form a monomolecular film of sphingomyelin. The surface pressure of this monomolecular film is 20 to 30 mN.
/m on the functional dye film of the transparent substrate, and a sphingomyelin film is laminated on the functional dye film to obtain a substance recognition film. Although the sphingomyelin film of the present laminated film 2 was formed by the LB method as described above, it is not limited thereto, and the spin code method may be used similarly to the laminated film 1 described above.

上記各実施例(混合膜、積層膜1.2)において、R位
がCH3、Cxa H3Pである上記色素(1)を用い
たが、本発明はこれに限定されるものではなく、一般式
CnHzn+x  で表される炭化水素であれば、いず
れでも適用してよい。また、上記各実施例における様々
な条件は記載のあるものに限定されるものではなく、所
望の膜にあわせて適宜設定するものである。
In each of the above Examples (mixed film, laminated film 1.2), the dye (1) whose R position is CH3, Cxa H3P was used, but the present invention is not limited thereto, and the general formula CnHzn+x Any hydrocarbon represented by the formula may be used. Further, the various conditions in each of the above examples are not limited to those described, but may be appropriately set according to the desired film.

第4図[al、 (blは本発明による物質認識膜を用
いた物質認識装置の一例を示すものである。第4図fa
)の如く、ガラス等の透明基板2の一生面上に複数の物
質認識膜1を形成する。また、第4図(blの如く、透
明基板2の裏面上には特定波長のみ通すフィルタ8を配
置し、更に前記物質認識@1上方に発光部4を、前記フ
ィルタ8近傍に受光部5を設ける。こうして特定波長の
み通すフィルタによって複数の物質認識膜の特定波長で
の透過率を測定し、その値を透過率のパターンとして表
せば。
Figure 4 [al, (bl) shows an example of a substance recognition device using the substance recognition membrane according to the present invention. Figure 4fa
), a plurality of substance recognition films 1 are formed on the entire surface of a transparent substrate 2 such as glass. In addition, as shown in FIG. 4 (bl), a filter 8 that allows only a specific wavelength to pass is arranged on the back surface of the transparent substrate 2, and a light emitting section 4 is arranged above the substance recognition @ 1, and a light receiving section 5 is arranged near the filter 8. In this way, the transmittance of a plurality of substance recognition films at a specific wavelength is measured using a filter that allows only specific wavelengths to pass through, and the values are expressed as a transmittance pattern.

そのパターンからガスの種類が判別でき、限られた機能
性色素でも物質の識別が可能となる。更に他の機能性色
素を使用することによって、より多くの物質の識別を感
度良く行うことが可能となる。
The type of gas can be determined from the pattern, and substances can be identified even with limited functional dyes. Furthermore, by using other functional dyes, it becomes possible to identify more substances with high sensitivity.

〈発明の効果〉 本発明により、同一の機能性色素であ−ても吸着物質に
対する感度の異なる物質認識膜を形成することが可能と
なる。これにより機能性色素の種類を替えることと同じ
作用が生じ、限られた機能性色素でもより多くの物質の
識別が可能となる。
<Effects of the Invention> According to the present invention, it is possible to form substance recognition films having different sensitivities to adsorbed substances even when the same functional dye is used. This produces the same effect as changing the type of functional dye, making it possible to identify more substances even with a limited number of functional dyes.

したがって、光を利用したガスセンサの実用化により一
歩近づくことができた。
Therefore, we are one step closer to the practical application of gas sensors that use light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例による特性図、第
3図は従来例による特性図、第4図(a+及びfblは
本発明の使用例を示す斜視図である。 1;物質認識膜、2:透明基板、3:フィルタ、4:発
光部、5:受光部。
1 and 2 are characteristic diagrams according to an embodiment of the present invention, FIG. 3 is a characteristic diagram according to a conventional example, and FIG. 4 (a+ and fbl are perspective views showing an example of use of the present invention. 1; Substance recognition film, 2: transparent substrate, 3: filter, 4: light emitting section, 5: light receiving section.

Claims (1)

【特許請求の範囲】 1、物質の吸脱着によって光の吸収スペクトルが変化し
、化学構造式 ▲数式、化学式、表等があります▼ 〔但し、Rは一般式CnH_2_n_+_1で表される
炭化水素〕で表される機能性色素と、スフィンゴミエリ
ンと予め混合して形成した混合膜からなることを特徴と
する物質認識膜。 2、物質の吸脱着によって光の吸収スペクトルが変化し
、化学構造式 ▲数式、化学式、表等があります▼ 〔但し、Rは一般式CnH_2_n_+_1で表される
炭化水素〕で表される機能性色素膜と、 該機能性色素膜上に積層されたスフィンゴミエリン膜と
、 からなることを特徴とする物質認識膜。
[Claims] 1. The absorption spectrum of light changes due to adsorption and desorption of substances, and there are chemical structural formulas ▲ mathematical formulas, chemical formulas, tables, etc. ▼ [However, R is a hydrocarbon represented by the general formula CnH_2_n_+_1] A substance recognition film comprising a mixed film formed by pre-mixing the expressed functional dye and sphingomyelin. 2. The absorption spectrum of light changes due to adsorption and desorption of substances, and there are chemical structural formulas ▲ mathematical formulas, chemical formulas, tables, etc. ▼ [However, R is a hydrocarbon represented by the general formula CnH_2_n_+_1] Functional dyes A substance recognition film comprising: a film; and a sphingomyelin film laminated on the functional dye film.
JP1247068A 1989-09-21 1989-09-21 Substance recognition membrane Expired - Fee Related JP2524411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247068A JP2524411B2 (en) 1989-09-21 1989-09-21 Substance recognition membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247068A JP2524411B2 (en) 1989-09-21 1989-09-21 Substance recognition membrane

Publications (2)

Publication Number Publication Date
JPH03107750A true JPH03107750A (en) 1991-05-08
JP2524411B2 JP2524411B2 (en) 1996-08-14

Family

ID=17157951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247068A Expired - Fee Related JP2524411B2 (en) 1989-09-21 1989-09-21 Substance recognition membrane

Country Status (1)

Country Link
JP (1) JP2524411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352867A (en) * 1991-06-11 1994-10-04 Sharp Kabushiki Kaisha Heat cooking apparatus with smell sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352867A (en) * 1991-06-11 1994-10-04 Sharp Kabushiki Kaisha Heat cooking apparatus with smell sensor

Also Published As

Publication number Publication date
JP2524411B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
Muthukumar et al. Highly sensitive detection of HCl gas using a thin film of meso-tetra (4-pyridyl) porphyrin coated glass slide by optochemical method
Archer et al. Kinetic factors in the response of organometallic semiconductor gas sensors
CN109294559B (en) Fluorescent sensing material, fluorescent sensing film array, preparation method and application thereof
KR102068731B1 (en) Discoloration sensor and method of manufacturing the same
Ma et al. Rapid DNT fluorescent films detection with high sensitivity and selectivity
JPH01274053A (en) Sensor material for measuring partial pressure of gas or steam and gas sensor
US20190292449A1 (en) Metal organic framework, phosphor film, and molecule detecting device
US5952237A (en) Method for detecting harmful gases which is applicable to broad gas concentration range
Sivalingam et al. Combinatorial selectivity with an array of phthalocyanines functionalized TiO2/ZnO heterojunction thin film sensors
US11112394B2 (en) Ethylenic compound sensor including an organic semiconductor
JPH03107750A (en) Material recognizing film
JPH09171011A (en) Gas reactive coloring matter, gas detecting member employing it, and method and apparatus for detecting gas
Potyrailo et al. pH indicator based ammonia gas sensor: studies of spectral performance under variable conditions of temperature and humidity
Eguchi et al. Optical detection of nitrogen monoxide by metal porphine dispersed in an amorphous silica matrix
CN115148904B (en) Transparent and stable all-inorganic metal halogen perovskite photoelectric detector and preparation method and application thereof
Leray et al. Porphyrins as probe molecules in the detection of gaseous pollutants I: Diffusion of pyridine in polystyrene films containing zinc-tetraphenylporphyrin
CN105136789A (en) Color-change indicator used for detecting oxygen, synthesizing method thereof, oxygen sensor and preparation method of oxygen sensor
CN107607477A (en) A kind of construction method of polymer sensor array of 8 oxyquinoline boronation lithium modification and application
Potyrailo et al. Portable photometric ammonia gas analyser using pH-sensitive polymer dye-films: spectral optimization of performance under field operating conditions
Tanaka et al. Optochemical HCl gas detection based on tetraphenylporphine dispersed in ethylcellulose
JPH03206956A (en) Substance detection element
Mehata et al. Fluorescence characteristics of protonated form of 6-hydroxyquinoline in Nafion® film
JP2000346806A (en) Chemical sensor device
JPH0518371B2 (en)
JPH03170849A (en) Method for measuring humidity

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees