JPH03107482A - Etching method - Google Patents

Etching method

Info

Publication number
JPH03107482A
JPH03107482A JP24743489A JP24743489A JPH03107482A JP H03107482 A JPH03107482 A JP H03107482A JP 24743489 A JP24743489 A JP 24743489A JP 24743489 A JP24743489 A JP 24743489A JP H03107482 A JPH03107482 A JP H03107482A
Authority
JP
Japan
Prior art keywords
flow rate
substrate
etching
susceptor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24743489A
Other languages
Japanese (ja)
Other versions
JP2773294B2 (en
Inventor
Koji Watanabe
孝二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24743489A priority Critical patent/JP2773294B2/en
Publication of JPH03107482A publication Critical patent/JPH03107482A/en
Application granted granted Critical
Publication of JP2773294B2 publication Critical patent/JP2773294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly etch a film to be etched by measuring the temp. of a substrate at plural positions along the periphery of a susceptor and controlling the flow rate of a reactive gas from each of plural gas introducing holes in accordance with the measured values. CONSTITUTION:The temps. T1-T4 of plural positions of a susceptor 4 are measured with temp. sensors 71-74 fitted to the susceptor 4 supporting a substrate W immediately before dry etching. The data are sent to a controller 9, the optimum flow rate of a reactive gas from each of gas introducing holes 21-24 is calculated from the previously inputted optimum relation between flow rate and temp. and flow rate regulating valves V1-V4 are controlled. After flows of the reactive gas are stabilized, etching is carried out. Etching accuracy in a semiconductor producing process is improved.

Description

【発明の詳細な説明】 〔概要〕 ドライエツチング方法に関し。[Detailed description of the invention] 〔overview〕 Regarding the dry etching method.

複数の導入口からの反応ガスの流量と基板温度の面内分
布を制御する方法を提案し、被エツチング膜のエツチン
グ量分布を均一にすることを目的とし。
We proposed a method to control the flow rate of reactant gas from multiple inlets and the in-plane distribution of substrate temperature, with the aim of making the etching amount distribution of the film to be etched uniform.

エツチングしようとする基板を保持するサセプタの周囲
に沿った複数の温度測定個所で基板温度を測定し2個々
の温度測定個所に向う複数のガス導入口から反応ガスを
導入し1個々のガス導入口の流量を、あらかじめ求めら
れたエツチング量の反応ガス流量及び基板温度に対する
関係から,エッチング量の分布が基板内で均一になるよ
うに決定する構成とする。
The substrate temperature is measured at a plurality of temperature measurement points along the periphery of the susceptor that holds the substrate to be etched, and a reaction gas is introduced from a plurality of gas inlets toward each temperature measurement point. The flow rate is determined based on a predetermined relationship between the etching amount and the reaction gas flow rate and substrate temperature so that the etching amount distribution is uniform within the substrate.

〔産業上の利用分野〕[Industrial application field]

本発明はドライエツチング方法に関する。 The present invention relates to a dry etching method.

ドライエツチング装置1例えば平行平板型装置に反応ガ
スを導入し、平行平板電極間に肛電力を印加して1片側
の極板上におかれた被エツチング膜をエツチングするド
ライエツチング方法は半導体製造プロセスにおいて広く
用いられている。
Dry Etching Apparatus 1 A dry etching method in which a reactive gas is introduced into a parallel plate type apparatus, for example, and a power is applied between parallel plate electrodes to etch a film to be etched placed on one electrode plate is a semiconductor manufacturing process. It is widely used in

〔従来の技術〕[Conventional technology]

以下1本発明のドライエツチングは、上記の典型的な平
行平板型装置を用いて説明する。
The dry etching of the present invention will be explained below using the above-mentioned typical parallel plate type apparatus.

従来の平行平板型装置では1反応ガスの導入口は1箇所
であり、且つ被エツチング膜を被着した基板をのせるサ
セプタの温度管理はその下側を流れるチラーの冷却水温
のみを行った。
In the conventional parallel plate type apparatus, there is only one inlet for each reaction gas, and the temperature of the susceptor on which the substrate with the film to be etched is placed is controlled only by the temperature of the cooling water of the chiller flowing under the susceptor.

又、サセプタは消耗品であり、交換によりエツチング特
性も変わっていた。
Further, the susceptor is a consumable item, and the etching characteristics change when replaced.

実際上、サセプタの面内温度を均一にすることは容易で
はなく,エッチング処理の状況によっても変化するもの
である。
In reality, it is not easy to make the in-plane temperature of the susceptor uniform, and it changes depending on the conditions of the etching process.

基板上の被エツチング膜のエツチング量分布を均一にす
るために、装置に導入する反応ガスの流量と基板温度の
面内分布を制御する必要がある。
In order to make the etching amount distribution of the film to be etched on the substrate uniform, it is necessary to control the flow rate of the reaction gas introduced into the apparatus and the in-plane distribution of the substrate temperature.

又、装置に導入される反応ガスも均一であればよいとい
うものでなく、任意に制御できることが必要となってく
る。
Furthermore, it is not sufficient that the reaction gas introduced into the apparatus be uniform; it also needs to be able to be controlled arbitrarily.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は複数の導入口からの反応ガスの流量と基板温度
の面内分布を制御する方法を提案し、被エツチング膜の
エツチング量分布を均一にすることを目的とする。
The present invention proposes a method of controlling the flow rate of reaction gas from a plurality of inlets and the in-plane distribution of substrate temperature, and aims to make the etching amount distribution of the film to be etched uniform.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は,エッチングしようとする基板を保持
するサセプタの周囲に沿った複数の温度測定個所で基板
温度を測定し3個々の温度測定個所に向う複数のガス導
入口から反応ガスを導入し。
The solution to the above problem is to measure the substrate temperature at multiple temperature measurement points along the periphery of the susceptor that holds the substrate to be etched, and then introduce the reaction gas through multiple gas inlets toward each temperature measurement point. .

個々のガス導入口の流量を、あらかじめ求められたエツ
チング量の反応ガス流量及び基板温度に対する関係から
,エッチング量の分布が基板内で均一になるように決定
するエツチング方法により達成される。
This is achieved by an etching method in which the flow rate of each gas inlet is determined from a predetermined relationship between the etching amount and the reaction gas flow rate and substrate temperature so that the distribution of the etching amount is uniform within the substrate.

〔作用〕[Effect]

本発明は、サセプタの温度(基板温度、更に詳細に基板
上に被着された被エツチング膜の温度)と反応ガスの流
量がそれぞれエツチングレートに大きな関係があるとい
う実験事実をあらかじめ求めておき、この結果を利用し
て、複数の反応ガス= 5 導入口から導入される反応ガスの流量を2反応ガス導入
口の対応・位置におけるサセプタ温度をモニタしながら
制御することにより被エツチング膜のエツチング量分布
を均一にするようにしたものである。
In the present invention, the experimental fact that the temperature of the susceptor (substrate temperature, more specifically, the temperature of the film to be etched deposited on the substrate) and the flow rate of the reaction gas have a large relationship with the etching rate is determined in advance. Using this result, the amount of etching of the film to be etched can be determined by controlling the flow rate of the reactive gas introduced from the plurality of reactive gases = 5 inlets while monitoring the susceptor temperature at the corresponding positions of the 2 reactive gas inlets. This is to make the distribution uniform.

〔実施例〕〔Example〕

第1図は本発明の一実施例を説明する装置の模式断面図
とその制御系統を説明するブロック図である。
FIG. 1 is a schematic sectional view of an apparatus illustrating an embodiment of the present invention and a block diagram illustrating its control system.

図において、1は反応室、21〜24は反応ガス導入口
、3は排気口、4はサセプタ、5は対向電極。
In the figure, 1 is a reaction chamber, 21 to 24 are reaction gas inlets, 3 is an exhaust port, 4 is a susceptor, and 5 is a counter electrode.

71〜74はサセプタの裏面において反応ガス導入口2
1〜24の対応位置に設けられた温度センサ、8はサセ
プタに接続されたRF電源、Wは基板、 Vl〜V4は
流量調節バルブである。
71 to 74 are reaction gas inlet ports 2 on the back side of the susceptor.
Temperature sensors are provided at corresponding positions 1 to 24, 8 is an RF power source connected to the susceptor, W is a substrate, and V1 to V4 are flow rate regulating valves.

次に、実施例によるエツチング方法を順をおって説明す
る。
Next, an etching method according to an embodiment will be explained step by step.

まず,エッチング直前に、サセプタ4に設けられた温度
センサ71〜74によりサセプタの4つの温度測定個所
の温度T+、 Tz、T1. T4を測定する。
First, immediately before etching, the temperature sensors 71 to 74 provided on the susceptor 4 measure the temperatures T+, Tz, T1 . Measure T4.

そのデータをコントローラ9に送り、あらかじめ最適条
件を入力していた各導入口からの流量対温度の関係から
最適な反応ガス流量を決定し、各流量調節バルブv1〜
v4を制御する。
The data is sent to the controller 9, which determines the optimal reaction gas flow rate from the relationship between the flow rate and temperature from each inlet, for which the optimal conditions have been entered in advance, and determines the optimal reaction gas flow rate for each flow rate adjustment valve v1~
Control v4.

次に5反応ガスの流れが安定した状態でエツチングを行
う。
Next, etching is performed while the flow of the reaction gases is stable.

エツチング終了後1次の基板を連続でエツチングする場
合はその都度上記の手順を繰り返して。
If you want to continue etching the first substrate after etching is completed, repeat the above steps each time.

最適ガス流量でエツチングを行う。Perform etching at the optimum gas flow rate.

以上により、毎回基板・は最適条件でエツチングされる
ため、各基板は均一なエツチング量分布となる。
As described above, each substrate is etched under optimal conditions, so each substrate has a uniform etching amount distribution.

次に、実際のエツチング例を説明する。各ガス導入口か
らの最適流量の導出は後記第3図を用いて説明し、ここ
では結果のみを示す。
Next, an example of actual etching will be explained. Derivation of the optimum flow rate from each gas inlet will be explained later using FIG. 3, and only the results will be shown here.

基板:5インチSi基板 被エツチング膜:0CD(スピンオングラス)膜反応ガ
ス:  CP4/C4Fll ガス圧:  0.2 Torr RF電カニ基板当たり400讐 サセプタ温度: T?I  =  20  ’C Tヮ2−15 “C1 T73  =  20  °C T74  =  15  “C1 各ガス導入口の流量: CF4/C,FB  100/80 SC0M全量で1
80 SCCM Gz+−523CCM。
Substrate: 5 inch Si substrate Film to be etched: 0CD (spin-on glass) film Reactive gas: CP4/C4Fll Gas pressure: 0.2 Torr 400mm per RF electric crab substrate Susceptor temperature: T? I = 20 'C Tヮ2-15 "C1 T73 = 20 °C T74 = 15 "C1 Flow rate of each gas inlet: CF4/C, FB 100/80 SC0M total amount 1
80 SCCM Gz+-523CCM.

G2□= 383CCM。G2□=383CCM.

Gzx = 52 SCCM。Gzx = 52 SCCM.

G24 = 383CCM エツチングレート:  1800人/Mエツチング後の
膜厚分布: ±3.0%従来例の膜厚分布:    ±
15.0%(ガス導入口が1箇所の場合) ここでr  T 7 + ” T ? aは各測定個所
71〜74の温度GKI〜G+4は各ガス導入口21〜
24のガス流量である。
G24 = 383CCM Etching rate: 1800 people/M Film thickness distribution after etching: ±3.0% Film thickness distribution of conventional example: ±
15.0% (when there is one gas inlet) Here, r T 7 + " T ? a is the temperature of each measurement point 71 to 74 GKI to G+4 is each gas inlet 21 to
24 gas flow rate.

第2図(1)、 (2)は実施例に使用した装置の正面
の断面図と側面の断面図である。
FIGS. 2(1) and 2(2) are a front sectional view and a side sectional view of the apparatus used in the example.

図において、1は反応室、21〜24はそれぞれ反応ガ
ス導入口、3は排気系に接続される排気口。
In the figure, 1 is a reaction chamber, 21 to 24 are reaction gas inlets, and 3 is an exhaust port connected to an exhaust system.

4は基板を保持するサセプタ、5は接地電位に接続され
た対向電極、6は冷却管、71〜74はサセプタの裏面
において反応ガス導入口21〜24の対応位置に設けら
れた熱電対、8はサセプタに接続されたRF電源、  
      −Wは被エツチング膜を被着した基板であ
る。
4 is a susceptor that holds the substrate; 5 is a counter electrode connected to a ground potential; 6 is a cooling pipe; 71 to 74 are thermocouples provided at positions corresponding to the reaction gas inlets 21 to 24 on the back surface of the susceptor; is the RF power supply connected to the susceptor,
-W is a substrate on which a film to be etched is deposited.

第3図(1)〜(3)は実施例のエツチングに使用した
最適条件を説明する図である。
FIGS. 3(1) to 3(3) are diagrams illustrating the optimum conditions used for etching in the example.

第3図(1)はエツチングレート[!/R対基板温度の
関係を示し。
Figure 3 (1) shows the etching rate [! /R shows the relationship between substrate temperature.

ガス及び流量: CF4/C4F8 100/80 S
CCMガス圧: 0.2 Torr RF電カニ基板当たり400誓 被エツチング膜: OCD膜 に対するものである。
Gas and flow rate: CF4/C4F8 100/80 S
CCM Gas Pressure: 0.2 Torr 400mm per RF electronic substrate Etched Film: For OCD film.

第3図(2)はエツチングレートE/R対反応ガスの流
量の関係を示し。
FIG. 3(2) shows the relationship between the etching rate E/R and the flow rate of the reaction gas.

ガス及び混合比: CF4/C4F8 1.0 : 0
.8ガス圧: 0.2 Torr RF電カニ基板当たり400W 被エツチング膜: OCD膜 に対するものである。
Gas and mixing ratio: CF4/C4F8 1.0: 0
.. 8 Gas pressure: 0.2 Torr 400 W per RF electric crab substrate Film to be etched: For OCD film.

第3図(3)は第3図(2)の拡大図で、エラチンブレ
−)E/R対反応ガスの流量の関係を示し、この図を用
いて各ガス導入口の流量を求める。
FIG. 3(3) is an enlarged view of FIG. 3(2), showing the relationship between E/R and the flow rate of the reaction gas, and using this figure, the flow rate of each gas inlet is determined.

いま、サセプタ各部の温度が。Now, what is the temperature of each part of the susceptor?

TR+ = 20°C9 T7□−15°C1 T?3 = 20°C1 Tq< = 15°C4 の場合に対する各ガス導入口の流量を求める。TR+ = 20°C9 T7□-15°C1 T? 3 = 20°C1 Tq<= 15°C4 Find the flow rate of each gas inlet for the case.

■ 制御前 CF4/C4F11を100/803CCM、全流量で
1803CCMを各ガス導入口(ポート)に均等に配分
して流した場合はポート1箇所当たりの流量Gは G =180/4 = 453CCM となる。即ち、各ポートとも453CCMとなるためこ
の流量に対するE/Rは図より T7□=T74 = 15°C:  E/R=1930
人/M。
■ If the CF4/C4F11 before control is 100/803CCM, and the total flow rate is 1803CCM, evenly distributed to each gas inlet (port), the flow rate G per port will be G = 180/4 = 453CCM. . In other words, since each port is 453CCM, the E/R for this flow rate is T7□ = T74 = 15°C: E/R = 1930 from the figure.
Person/M.

Ty+=T73= 20°C:  E/R=1740人
/M。
Ty+=T73=20°C: E/R=1740 people/M.

E/Rの分布幅は190人/M となる。The distribution width of E/R is 190 people/M.

■ 制御後 全流量が1803CCMとなり、更に15°C520°
Cともに同一のE/Rとなる各ポートの流量はGz+ 
=GZ3 = 523CCM。
■ After control, the total flow rate becomes 1803CCM, and further increases to 15°C520°
The flow rate of each port with the same E/R for both C is Gz+
=GZ3 = 523CCM.

Gzz =Gz4= 38 SCCM。Gzz = Gz4 = 38 SCCM.

となり、この時のE/R= 1800人/Mである。Therefore, E/R at this time is 1800 people/M.

以上のようにして前記のエツチング例の流量を導出した
The flow rate for the etching example described above was derived as described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、複数の導入口から
の反応ガスの流量と基板温度の面内分布を制御して、被
エツチング膜のエツチング量分布を均一にすることがで
きるようになった。
As explained above, according to the present invention, it is possible to make the etching amount distribution of the film to be etched uniform by controlling the flow rate of the reaction gas from a plurality of inlets and the in-plane distribution of the substrate temperature. Ta.

この結果、半導体製造プロセスのエツチング精度が上が
り1本発明は高集積、超微細構造のLSI製造工程に適
用可能となった。
As a result, the etching precision of the semiconductor manufacturing process has been improved, and the present invention can be applied to the manufacturing process of highly integrated and ultra-fine structured LSIs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する装置の模式断面図
とその制御系統を説明するブロック図。 第2図(1)、 (2)は実施例に使用した装置の正面
の断面図と側面の断面図。 第3図(1)〜(3)は実施例のエツチングに使用した
最適条件を説明する図で、第3図(1)はエラチングレ
ー)[!/R対基板温度の関係、第3図(2)はエツチ
ングレートE/R対反応ガスの流量の関係、第3図(3
)は第3図(2)の拡大図である。 図において。 1は反応室。 21〜24はそれぞれ反応ガス導入口(ポート)。 3は排気系に接続される排気口。 4は基板を保持するサセプタ。 5は接地電位に接続された対向電極。 6は冷却管。 71〜74はサセプタの裏面において反応ガス導入口2
1〜24の対応位置に設けられた熱電対8はサセプタに
接続されたRF電源。 9はコントローラ。 Wは被エツチング膜を被着した基板。 ■1〜v4は流量調節バルブ
FIG. 1 is a schematic sectional view of an apparatus illustrating an embodiment of the present invention and a block diagram illustrating its control system. FIGS. 2(1) and 2(2) are a front sectional view and a side sectional view of the device used in the example. Figures 3 (1) to (3) are diagrams explaining the optimum conditions used for etching in the example, and Figure 3 (1) is the erating gray) [! /R vs. substrate temperature, Figure 3 (2) shows the relationship between etching rate E/R vs. flow rate of reaction gas, Figure 3 (3).
) is an enlarged view of FIG. 3(2). In fig. 1 is a reaction chamber. 21 to 24 are reaction gas inlets (ports), respectively. 3 is an exhaust port connected to the exhaust system. 4 is a susceptor that holds the substrate. 5 is a counter electrode connected to ground potential. 6 is a cooling pipe. 71 to 74 are reaction gas inlet ports 2 on the back side of the susceptor.
Thermocouples 8 provided at corresponding positions 1 to 24 are RF power sources connected to the susceptor. 9 is the controller. W is a substrate coated with a film to be etched. ■1~v4 are flow rate adjustment valves

Claims (1)

【特許請求の範囲】[Claims]  エッチングしようとする基板を保持するサセプタの周
囲に沿った複数の温度測定個所で基板温度を測定し,個
々の温度測定個所に向う複数のガス導入口から反応ガス
を導入し,個々のガス導入口の流量を,あらかじめ求め
られたエッチング量の反応ガス流量及び基板温度に対す
る関係から,エッチング量の分布が基板内で均一になる
ように決定することを特徴とするエッチング方法。
The substrate temperature is measured at multiple temperature measurement points along the periphery of the susceptor that holds the substrate to be etched, and the reaction gas is introduced from multiple gas inlet ports toward each temperature measurement point, and the reaction gas is An etching method characterized in that the flow rate of the etching amount is determined from a predetermined relationship between the etching amount and the reaction gas flow rate and the substrate temperature so that the distribution of the etching amount is uniform within the substrate.
JP24743489A 1989-09-22 1989-09-22 Etching method Expired - Fee Related JP2773294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24743489A JP2773294B2 (en) 1989-09-22 1989-09-22 Etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24743489A JP2773294B2 (en) 1989-09-22 1989-09-22 Etching method

Publications (2)

Publication Number Publication Date
JPH03107482A true JPH03107482A (en) 1991-05-07
JP2773294B2 JP2773294B2 (en) 1998-07-09

Family

ID=17163384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24743489A Expired - Fee Related JP2773294B2 (en) 1989-09-22 1989-09-22 Etching method

Country Status (1)

Country Link
JP (1) JP2773294B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512519A (en) * 1999-10-20 2003-04-02 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method and apparatus for controlling wafer uniformity using spatially resolved sensors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512519A (en) * 1999-10-20 2003-04-02 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method and apparatus for controlling wafer uniformity using spatially resolved sensors

Also Published As

Publication number Publication date
JP2773294B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
US5269847A (en) Variable rate distribution gas flow reaction chamber
EP1422747B1 (en) Apparatus and method for producing a semiconductor device and method for cleaning a semiconductor producing apparatus
JP2011233905A (en) Gas supply apparatus for semiconductor processing
US20090078197A1 (en) Substrate processing system, control method for substrate processing apparatus and program
JP2758845B2 (en) Plasma CVD equipment
CN112013674A (en) Vertical furnace equipment
EP0473067B1 (en) Wafer processing reactor
JPH03107482A (en) Etching method
JP2008517466A (en) Method and system for wafer temperature control
JPH05291143A (en) Vacuum vapor growth equipment
JP3015540B2 (en) Method for manufacturing semiconductor device
KR20040101197A (en) Film formation method
JPH06132231A (en) Cvd equipment
JPH11350143A (en) Deposition apparatus
JPH05308053A (en) Chemical vapor growth equipment
JPS6236280Y2 (en)
JP3657873B2 (en) Control equipment for plasma equipment
JP2756126B2 (en) Sputtering equipment
JPH09205049A (en) Film deposition system
JPS58140125A (en) Dry etching method
JP3657872B2 (en) Control equipment for plasma equipment
JPH09118600A (en) Film forming device
JPS58182217A (en) Thin film forming method
CN117794349A (en) Preparation method of Josephson junction array and magnetron sputtering equipment
KR0129717Y1 (en) Semiconductor manufacture system having exhaust control apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees