JPH03107314A - Lead in system of overhead power line to substation - Google Patents

Lead in system of overhead power line to substation

Info

Publication number
JPH03107314A
JPH03107314A JP1242045A JP24204589A JPH03107314A JP H03107314 A JPH03107314 A JP H03107314A JP 1242045 A JP1242045 A JP 1242045A JP 24204589 A JP24204589 A JP 24204589A JP H03107314 A JPH03107314 A JP H03107314A
Authority
JP
Japan
Prior art keywords
substation
line
lead
power line
steel tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1242045A
Other languages
Japanese (ja)
Inventor
Atsushi Ozawa
小沢 淳
Kazuya Oishi
一哉 大石
Katsuji Shindo
進藤 勝二
Isao Nishida
西田 功
Yoshiro Kitazumi
北住 義郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1242045A priority Critical patent/JPH03107314A/en
Publication of JPH03107314A publication Critical patent/JPH03107314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To reduce lightning surge in good balance among phases by connecting the bushings of phases having long bus bars at the lead-in section of a substation comprising a gas insulated switchgears to the lower power lines of a closest steel tower and connecting the bushings of phases having short bus bars to the upper power lines of the closest steel tower. CONSTITUTION:The lead-in section 1 for a substation comprises air/gas bushings 3-8, gas bus bars 9-14, line breakers 15-20, and lightning arresters 21-26, which are connected to main bus bars 40 and 41. The power line upper, intermediate, and lower phases 100, 101, and 102 of the first line 50 on a steel tower 2 are connected to bushings 23, 22, and 21 respectively and the power line upper, intermediate, and lower phases 103, 104, 105 of the second line 51 are connected to bushings 24, 25, and 26 respectively. That is, the bushings of the phases with the longest gas bus bars are connected to the lower-phases power lines and the bushings of the phases with the second longest gas bus bars are connected to the intermediate-phase power lines.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は変電所または開閉所における引込部の構成と引
込架空電力線の組み合せに係り、特に、ガス絶縁開閉装
[(GIS)を用いる変電所、及び、開閉所に好適な組
み合せに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a combination of a lead-in section structure and a lead-in overhead power line in a substation or switchyard, and particularly relates to a substation using gas-insulated switchgear [(GIS)]. , and a combination suitable for switching stations.

〔従来の技術〕[Conventional technology]

従来、変電所の絶縁協調については電気学会電気規格調
査会標準規格「酸化亜鉛形避雷器JJEC−217−1
984において解説されている。即ち、避雷器と被保護
機器の距離と前記機器に発生する雷サージ電圧との関係
を示す近似式が(4)式によって与えられており、距離
がある領域まで長くなるまで雷サージ電圧が距離と共に
増加することが示されている。
Conventionally, regarding insulation coordination in substations, the Institute of Electrical Engineers of Japan Electrical Standards Investigation Committee standard “Zinc oxide type lightning arrester JJEC-217-1
984. In other words, an approximate expression showing the relationship between the distance between the lightning arrester and the protected device and the lightning surge voltage generated in the device is given by equation (4), and the lightning surge voltage increases with distance until the distance increases to a certain area. has been shown to increase.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、変電所及び開閉所に引込まれる架空電
力線の配置と被保護機器に発生する雷サージ電圧につい
てまで細かく考慮されておらず、より詳細な変電所の絶
縁協調の手段について示されていなかった。
The above-mentioned conventional technology does not give detailed consideration to the arrangement of overhead power lines drawn into substations and switchyards and the lightning surge voltage generated in protected equipment, and does not provide detailed information on means of insulation coordination in substations. It wasn't.

本発明の目的は、耐雷絶縁の観点からよりコンパクトで
、経済的なGIS変電所、及び、開閉所を提供すること
にある。
An object of the present invention is to provide a GIS substation and a switchyard that are more compact and economical from the standpoint of lightning insulation.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、GIS変電所の引込部母線
が長い相のブッシングと至近鉄塔下側の電力線とつなぎ
、母線が短い相のブッシングと至近鉄塔上側の電力線と
をつなぐようにしたものである。
In order to achieve the above objective, the bushing of the phase with the long lead-in bus of the GIS substation is connected to the power line at the bottom of the nearby steel tower, and the bushing of the phase with the short bus bar is connected to the power line on the top of the nearby steel tower. be.

〔作用〕[Effect]

避雷器と被保護機器の距離がある値まで、長くなるにつ
れてこれら機器に発生する雷サージ電圧は高くなる。
As the distance between the lightning arrester and the protected equipment increases to a certain value, the lightning surge voltage generated in these equipment increases.

一方、鉄塔、あるいは、架空地線に落雷があると、鉄塔
各部の雷サージ電圧は高い位置はど高くなる。一般に、
鉄塔に垂直配列されている電力線では、アークホーンで
逆フラッシュオーバすると上側電力線に現われる雷サー
ジ電圧は下側のそれよりも高くなる。
On the other hand, when a steel tower or an overhead ground wire is struck by lightning, the lightning surge voltage at each part of the tower becomes very high. in general,
For power lines arranged vertically to a steel tower, when a reverse flashover occurs due to an arcing horn, the lightning surge voltage appearing on the upper power line will be higher than that on the lower side.

GIS変電所では全体をなるべくコンパクトに。GIS substations are made as compact as possible.

かつ、経済的にするため変電所の引込部母線の長さは各
相で異なる。
In addition, in order to be economical, the length of the lead-in busbar of the substation is different for each phase.

従って、この関係から引込部母線の長さが長い相を至近
鉄塔の下側に位置する電力線とつなげば。
Therefore, from this relationship, if the phase with a long lead-in bus bar is connected to the power line located below the nearby steel tower.

各相バランスよく、全体的に被保護機器に発生する雷サ
ージ電圧を低減することができる。
With a good balance between each phase, it is possible to reduce the lightning surge voltage generated in the protected equipment as a whole.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図ないし第4図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は変電所の引込部1と第一鉄塔2を主体にした平
面図であり、第2図はこれに対応する側面図である。変
電所引込部1は気中/ガスブッシング3〜8.ガス母線
9〜14.線路遮断器15〜20.避雷器21〜26で
構成されており、これらは主母線40.41につながり
、主母線はタイ遮断器42によりつながっている。なお
、主母線の右側及び変圧器などは省略されている。
FIG. 1 is a plan view mainly showing the lead-in section 1 and the first steel tower 2 of the substation, and FIG. 2 is a corresponding side view. The substation lead-in section 1 has air/gas bushings 3 to 8. Gas bus lines 9-14. Line breakers 15-20. It is composed of lightning arresters 21 to 26, which are connected to main bus bars 40 and 41, and the main bus bars are connected by a tie breaker 42. Note that the right side of the main busbar, transformer, etc. are omitted.

第一鉄塔2には二回線の電力線50,51が鉄塔アーム
52.53に架設されている。また、架空地線60,6
1.62が第一鉄塔2がら変電所引込部1の引留鉄構7
0,71.72に架設されている。
In the first steel tower 2, two power lines 50 and 51 are installed on tower arms 52 and 53. In addition, the overhead ground wire 60,6
1.62 is the restraining steel structure 7 of the substation lead-in part 1 from the first steel tower 2
It is constructed at 0.71.72.

さて、電力線は第2図の側面図に示すように、垂直配列
になっており、通常、上側から上相80゜中相81.下
相82と呼ばれている。
Now, as shown in the side view of FIG. 2, the power lines are arranged vertically, and usually the upper phase is 80 degrees, the middle phase is 81 degrees, and the middle phase is 81 degrees from the top. It is called the lower phase 82.

第1回線50の電力線上相100.中相101゜下相1
02はブッシング23,22.21に、それぞれ、接続
されている。第二回線51においても同様であり、電力
線上相103.中相1o4゜下相105がブッシング2
4,25.26に接続されている。
The power line upper phase 100 of the first line 50. Middle phase 101゜Lower phase 1
02 are connected to bushings 23, 22.21, respectively. The same applies to the second line 51, and the power line upper phase 103. Middle phase 1o4゜Lower phase 105 is bushing 2
4, 25, and 26.

即ち、各回線とも最も長いガス母線を伴う相のブッシン
グには下相の電力線が、その次に長いガス母線を伴う相
のブッシングには中相の電力線が、残りのブッシングに
は上相の電力線が、それぞれ、つながっている。
That is, for each circuit, the bushing of the phase with the longest gas bus bar is connected to the lower phase power line, the bushing of the phase with the next longest gas bus line is connected to the middle phase power line, and the remaining bushings are connected to the upper phase power line. are connected to each other.

ここでは、二回線とも上述の接続方式をとっているが、
ガス母線が短めの回線は必ずしもこの接続方式をとらな
くても良い場合がある。
Here, both lines use the connection method described above,
This connection method may not necessarily be used for lines with short gas bus lines.

第3図は避雷器分岐点から線路遮断器までのガス母線の
距離Qと開極された遮断器点(開放端)に発生する雷サ
ージ電圧■との関係を第一鉄塔における電力線上相80
.中相81.下相82での逆フラッシュオーバをパラメ
ータとして求めた結果である。ガス母線長ρが長い第1
図のガス母線9のような場合(その長さをQ^とする)
、この母線9を伴うブッシング21に上相電力線80を
つなぐと、雷サージ電圧VはVHに高くなり、下相電力
線82につなぐとvしに低くできる。ガス母線長Qが短
いQcの場合、このガス母線を伴うブッシングに上相電
力線80をつないでもVHのレベルに高くならず、Vム
′になる。即ち、第3図のように、各相の開極遮断器に
発生する雷サージ電圧をバランスよく、平均的にVL程
度に低減することができ、GISの絶縁合理化を達成す
ることができる。
Figure 3 shows the relationship between the distance Q of the gas bus from the lightning arrester branch point to the line breaker and the lightning surge voltage generated at the opened circuit breaker point (open end).
.. Middle phase 81. This is the result obtained using the reverse flashover in the lower phase 82 as a parameter. The first gas bus length ρ is long.
In a case like gas bus line 9 in the figure (its length is Q^)
When the upper phase power line 80 is connected to the bushing 21 with this bus bar 9, the lightning surge voltage V increases to VH, and when it is connected to the lower phase power line 82, the lightning surge voltage V can be lowered to VH. When the gas bus length Q is short Qc, even if the upper phase power line 80 is connected to the bushing with this gas bus, the voltage will not rise to the level of VH, but Vm'. That is, as shown in FIG. 3, the lightning surge voltage generated in the open circuit breakers of each phase can be reduced to about VL on average in a well-balanced manner, and rationalization of the insulation of the GIS can be achieved.

なお、第1図において、主母線の右側が省略されている
が、この主母線の長さをなるべく短くするために、第1
図の引込部1のガス母線長さに差異が生じている。主母
線の短尺化は変電所全体の敷地面積を小さくし、かつ、
主母線自身のコンパクト化、経済性向上などに寄与する
Note that in Fig. 1, the right side of the main bus line is omitted, but in order to shorten the length of this main bus line as much as possible, the first
There is a difference in the length of the gas bus bar of the lead-in section 1 in the figure. Shortening the main bus bar reduces the overall site area of the substation, and
This contributes to making the main bus itself more compact and improving economic efficiency.

本実施例によれば、変電所引込部の開極遮断器に発生す
る雷サージ電圧を合理的に抑制することができ、耐雷絶
縁の観点からコンパクトで、かつ、経済的なGIS変電
所を提供することができる。
According to this embodiment, it is possible to rationally suppress the lightning surge voltage generated in the open circuit breaker in the substation lead-in section, and to provide a GIS substation that is compact and economical from the viewpoint of lightning insulation. can do.

本発明にもとづく変形例の一つは、少なくとも一回線内
の最長母線につながるブッシングと至近鉄塔での最も低
い下側の電力線とをつなぐようにすることができる。こ
の場合、他の残る二相分のつなぎはどのように選定して
もGISに発生する雷サージ電圧に大差がない。
A variant according to the invention may be such that the bushing leading to the longest busbar in at least one line is connected to the lowest lower power line in the nearest tower. In this case, no matter how the remaining two-phase connections are selected, there is no significant difference in the lightning surge voltage generated in the GIS.

本発明にもとづく他の変形例は、変電所引込部での外側
の少なくとも片側のブッシングと至急鉄塔での最も低い
下側の電力線とをつなぐようにすることができる。一般
に、引込部での外側のブッシングにつながる母線が最も
長いからである。
Another variant according to the invention can be such that at least one outer bushing at the substation entry is connected to the lowest lower power line at the tower. This is because, generally, the busbar connected to the outer bushing at the lead-in portion is the longest.

第4図は本発明の応用例を単線結線図で示す。FIG. 4 shows an application example of the present invention in a single line diagram.

鉄塔が複数個使われており、その高さが違う場合である
。第4図では、高い方の鉄塔100の電力線101,1
02が短イ母線103,104につながる引込ブッシン
グ105,106につなぎ、低い方の鉄塔200の電力
8201,202が長い母線203,204につながる
引込ブッシング205.206につないでいる。このよ
うにすると引込郡全体に発生する雷サージ電圧を平均化
することができる。
This is the case when multiple steel towers are used and their heights are different. In FIG. 4, power lines 101, 1 of the taller tower 100 are shown.
02 are connected to lead-in bushings 105, 106 connected to the short busbars 103, 104, and power supplies 8201, 202 of the lower tower 200 are connected to lead-in bushings 205, 206 connected to the long busbars 203, 204. In this way, it is possible to average out the lightning surge voltage that occurs over the entire lead-in area.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ガス絶縁開閉装置を使う変電所の線路
遮断器、または、断路器が開極状態で、逆フラッシュオ
ーバによる雷サージ電圧が侵入しても、避雷器分岐点か
ら線路遮断器までのガス母線長に応じて、垂直配列の適
切な位置の電力線と接続することができるので開放遮断
器(または断路器)に発生する雷サージ電圧を合理的に
抑制することができ、耐雷設計の観点からよりコンパク
トで、かつ、経済的なガス絶縁変電所、及び、開閉所を
提供することができる。
According to the present invention, even if the line breaker or disconnector of a substation that uses gas-insulated switchgear is in an open state and lightning surge voltage due to reverse flashover intrudes, the line breaker can be connected from the lightning arrester branch point to the line breaker. According to the length of the gas bus bar, it can be connected to the power line at an appropriate position in the vertical arrangement, so the lightning surge voltage generated at the open circuit breaker (or disconnector) can be reasonably suppressed, and the lightning-resistant design From this point of view, it is possible to provide a more compact and economical gas-insulated substation and switchyard.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の変電所引込部と第一鉄塔を
主体とする平面図、第2図は第1図に対応する側面図、
第3図はガス母線長と雷サージ電圧との関係図、第4図
は本発明の他の実施例を示す単線結線図である。 1・・・変電所引込部、2・・・第一鉄塔、3〜8・・
・ブッシング、9〜14・・・ガス母線、15〜20・
・・線路笑 1 図 第2図 第3図 ノー− 第4図
FIG. 1 is a plan view mainly showing the substation lead-in part and the first steel tower according to an embodiment of the present invention, and FIG. 2 is a side view corresponding to FIG. 1.
FIG. 3 is a relationship diagram between gas bus length and lightning surge voltage, and FIG. 4 is a single line diagram showing another embodiment of the present invention. 1... Substation lead-in section, 2... First steel tower, 3-8...
・Bushing, 9~14... Gas bus bar, 15~20・
...Railway lol 1 Figure 2 Figure 3 No- Figure 4

Claims (1)

【特許請求の範囲】 1、線路用遮断器から線路用避雷器までの少なくとも一
回線内の各相母線の長さが異なるガス絶縁開閉装置を用
いる変電所の引込部と、前記変電所に近い鉄塔で垂直配
列になつている電力線とを接続するものにおいて、 少なくとも一回線内の長尺、中尺、短尺母線につながる
各相ブッシングと前記鉄塔での高さが下側、中間、上側
の前記電力線とそれぞれつなぐようにしたことを特徴と
する変電所への架空電力線の引込方式。 2、線路用遮断器から線路用避雷器までの少なくとも一
回線内の各毎母線の長さが異なるガス絶縁開閉装置を用
いる変電所の引込部と前記変電所に近い鉄塔で垂直配列
になつている電力線とを接続するものにおいて、 少なくとも一回線内の最長母線につながるブッシングと
前記鉄塔での最も低い下側の前記電力線とをつなぐよう
にしたことを特徴とする変電所への架空電力線の引込方
式。 3、変電所または開閉所の引込部での外側の少なくとも
片側の線路用遮断器から線路用避雷器までの母線の長さ
が他の相の母線の長さより長くなつている変電所の引込
部と変電所に近い鉄塔で垂直配列になつている電力線と
を接続するものにおいて、 前記引込部での外側の少なくとも片側のブッシングと前
記鉄塔での最も低い高さの下側電力線とをつなぐように
したことを特徴とする変電所への架空電力線の引込方式
。 4、変電所の引込部の各回線間の母線長が異なり、また
、至近鉄塔の高さが異なる条件で、母線の長い回線の引
込部と低い鉄塔の電力線とを、前記母線の短い回線の引
込部と高い鉄塔の電力線とをつなぐようにしたことを特
徴とする変電所への架空電力線の引込方式。
[Scope of Claims] 1. A lead-in part of a substation using a gas-insulated switchgear in which each phase bus in at least one line from a line breaker to a line lightning arrester has a different length, and a steel tower near the substation and vertically arranged power lines, each phase bushing connected to a long, medium, or short bus bar in at least one circuit and the power line whose height at the tower is lower, intermediate, or upper. A system for connecting overhead power lines to a substation, which is characterized by being connected to each substation. 2. Each bus bar in at least one circuit from a line breaker to a line surge arrester is arranged vertically at the lead-in part of a substation using gas-insulated switchgear and a steel tower near the substation. A method for bringing an overhead power line into a substation, which connects a power line to a substation, characterized in that a bushing connected to the longest bus bar in at least one circuit is connected to the lowest lower power line on the tower. . 3. At the lead-in part of a substation or switchyard, the length of the busbar from the line breaker to the line lightning arrester on at least one side of the outside of the lead-in part of a substation or switchyard is longer than the length of the busbar of the other phase. For connecting vertically arranged power lines on a steel tower near a substation, the outer bushing on at least one side of the lead-in part is connected to the lower power line at the lowest height on the tower. A system for connecting overhead power lines to a substation, which is characterized by: 4. Under the conditions that the bus length between the lines at the substation lead-in part is different and the height of the nearby steel tower is different, the lead-in part of the line with the long bus bar and the power line of the low tower are connected to the power line of the short line of the bus bar. An overhead power line lead-in method to a substation characterized by connecting the lead-in part to a power line on a high steel tower.
JP1242045A 1989-09-20 1989-09-20 Lead in system of overhead power line to substation Pending JPH03107314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242045A JPH03107314A (en) 1989-09-20 1989-09-20 Lead in system of overhead power line to substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242045A JPH03107314A (en) 1989-09-20 1989-09-20 Lead in system of overhead power line to substation

Publications (1)

Publication Number Publication Date
JPH03107314A true JPH03107314A (en) 1991-05-07

Family

ID=17083450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242045A Pending JPH03107314A (en) 1989-09-20 1989-09-20 Lead in system of overhead power line to substation

Country Status (1)

Country Link
JP (1) JPH03107314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593207B2 (en) 2003-01-22 2009-09-22 Abb Technology Ag Gas-insulated switchgear assembly or component of a gas-insulated switchgear assembly having an outdoor bushing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593207B2 (en) 2003-01-22 2009-09-22 Abb Technology Ag Gas-insulated switchgear assembly or component of a gas-insulated switchgear assembly having an outdoor bushing

Similar Documents

Publication Publication Date Title
JPH01185107A (en) Gas insulated switchgear
TWM263679U (en) Gas insulation switch
KR100428556B1 (en) Gas-insulated switch
US4291363A (en) Gas-insulated switchgear apparatus
JPH044707A (en) Gas insulation switchgear
JPH03107314A (en) Lead in system of overhead power line to substation
Milton et al. Tennessee Valley Authority's 500-kY System-Step-Down Substation Design
JPH0515020A (en) Gas insulating switch
JPH04304105A (en) Gas-insulated switchgear
JP2000253520A (en) Gas-insulated switch device
JP2000312411A (en) Gas insulated breaker
JP3763988B2 (en) How to update switchgear
JP4346172B2 (en) Gas insulated switchgear
JPH02266806A (en) Compressed-gas-insulated switchgear
JPH0210722Y2 (en)
JPS6213377Y2 (en)
JP3906596B2 (en) Gas insulated switchgear
JPS6223206Y2 (en)
JPS5915443B2 (en) Power distribution equipment using gas-insulated switchgear
JPS6311844B2 (en)
JPH114509A (en) Substation for power distribution
JPH0793774B2 (en) Gas insulated switchgear
JPH10257624A (en) Gas-insulated switchgear
JP2001231115A (en) Power transmission line
JPH08308045A (en) Gas insulated switchgear