JPH03106838A - Production of fluorobenzene - Google Patents

Production of fluorobenzene

Info

Publication number
JPH03106838A
JPH03106838A JP23840089A JP23840089A JPH03106838A JP H03106838 A JPH03106838 A JP H03106838A JP 23840089 A JP23840089 A JP 23840089A JP 23840089 A JP23840089 A JP 23840089A JP H03106838 A JPH03106838 A JP H03106838A
Authority
JP
Japan
Prior art keywords
diazonium salt
reaction
fluorobenzene
reaction vessel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23840089A
Other languages
Japanese (ja)
Inventor
Isao Harada
功 原田
Yukihiro Yoda
與田 幸廣
Hisashi Kamanohara
鉾之原 久
Takashi Kuroda
黒田 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP23840089A priority Critical patent/JPH03106838A/en
Publication of JPH03106838A publication Critical patent/JPH03106838A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens

Abstract

PURPOSE:To continuously obtain the subject substance by adding aniline and a nitrous acid donor to anhydrous HF, diazotising at specific temperature, continuously feeding the resultant diazonium salt into a reaction vessel with overflow and pyrolytically decomposing at specific temperature. CONSTITUTION:Aniline and a nitrous acid donor (e.g. NaNO2) are added to anhydrous HF and reacted at 10 deg.C to -40 deg.C (preferably from -10 deg.C to -40 deg.C), then the resultant diazonium salt is pyrolytically decomposed at 30-84.7 deg.C to continuously obtain fluorobenzene. The pyrolytical decomposition is performed for 30-120min using a solution containing fluorobenzene and/or 60-90wt.% HF as a heating medium in a reaction vessel 4 having condenser 6, stirrer 5, overflow pipe 7 and extracting valve 8. Reacting solution is introduced to cooling tank 10 through overflow pipe 7. By said method, the aimed substance is able to be safely mass produced in a low cost without runaway nor clogging, etc., in the reaction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフルオロベンゼンの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing fluorobenzene.

更に、近年フルオロベンゼンは、これを出発原料として
農薬用、医薬用、有機薬品及び染料等に広く使用されて
いる. 〔従来の技術〕 フルオロベンゼンの合成方法には、無水フッ化水素溶媒
中でアニリンを添加し次いで、亜硝酸付与剤を加えてジ
アゾ化しジアゾニウム塩を生威しこれを熱分解する.い
わゆるジアゾ化及び脱ジアゾフッ素化反応が古くから知
られている.しかし一般にジアゾ化反応は低温において
行なわれ、ジアゾニウム塩を形威する反応であり、該ジ
アゾニウム塩の熱分解反応は比較的高温で行なわれるこ
とから、現在これらの反応は殆どがバソチ方式で行われ
ている. 〔発明が解決しようとする課題〕 従来のバッチ方式による製造方法では工業的にコスト面
で不利で在るばかりか、大量生産に不向きなことから連
続方法が望まれている.フルオロベンゼンの連続製造方
法は、上述した如く、ジアゾ化反応とジアゾ化して生威
したジアゾニウム塩の熱分解反応の領域に温度差がある
ことから、連続的に製造することは反応温度の制御、収
率等に問題があり、これを解決することは極めて困難で
あった。
Furthermore, in recent years, fluorobenzene has been widely used as a starting material for agricultural chemicals, medicines, organic chemicals, dyes, etc. [Prior art] The method for synthesizing fluorobenzene involves adding aniline in an anhydrous hydrogen fluoride solvent, then adding a nitrous acid-imparting agent to diazotize it, producing a diazonium salt, which is then thermally decomposed. So-called diazotization and dediazofluorination reactions have been known for a long time. However, in general, the diazotization reaction is carried out at a low temperature and forms a diazonium salt, and the thermal decomposition reaction of the diazonium salt is carried out at a relatively high temperature.Currently, most of these reactions are carried out using the Basoti method. ing. [Problems to be solved by the invention] Conventional batch production methods are not only disadvantageous in terms of industrial costs but also unsuitable for mass production, so a continuous method is desired. As mentioned above, in the continuous production method of fluorobenzene, since there is a temperature difference between the diazotization reaction and the thermal decomposition reaction of the diazonium salt produced by diazotization, continuous production requires control of the reaction temperature, There were problems with yield, etc., and it was extremely difficult to solve these problems.

しかして、これまでの連続方法の一つに、パイプリアク
ターなる製造方法がある。該パイプリアクターによる製
造方法はジアゾ化及びジアゾニウム塩の熱分解までを連
続して行う方法や、ジアゾニウム塩のみを連続的に行う
方法とがある(特開昭62−53935) . しかし、いずれの方法もジアゾ化反応及びジアゾニウム
塩の熱分解の温度コントロールが困難なことから、暴走
反応が起こりやすく、またパイプ内での閉塞等の問題が
ある. さらに、連続方法の一つに次のような方法が開示されて
いる.すなわち、無水フツ酸に亜硝酸ソーダ及びアニリ
ンを各々溶解して、各々の水溶液とし、該水溶液を各々
少量づつ混合し反応温度40℃で、ジアゾ化反応とジア
ゾニウム塩の熱分解を同時に反応・生威する方法(特公
昭53−14057)があるが、本発明者等が行なった
実験結果では収率50〜60%と低く期待する結果が得
られなかった.〔課題を解決するための手段〕 本発明者等は、これらの課題を解決するために、鋭意検
討を重ねた結果、無水フッ化水素にアニリン及び亜硝酸
付与剤を加え、ジアゾ化反応を行い、ジアゾニウム塩を
生成し、該ジアゾニウム塩を連続的に熱分解することを
見出し、本発明を完成するに至ったものである. すなわち無水フッ化水素にアニリン及び亜lI1l1酸
付与剤を添加し、反応温度10〜−40℃で反応させ得
られるジアゾニウム塩を、オーバーフロー付き反応容器
に連続的にフィードし、該オーバーフロー付き反応容器
内の熱媒の温度を30〜84.7℃に保持して熱分解し
、フルオロベンゼンを゛製造する方法であり、更に、オ
ーバーフロー付き反応容器内に使用する熱媒が、フルオ
ロベンゼン及びまたは少なくとも、60〜90重量%の
フッ化水素を含む溶液であることを特徴とする、フルオ
ロベンゼンを製造する方法を提供するものである. 〔発明の詳細な開示〕 本発明を更に詳細に説明する. 本発明のジアゾ化の方法は反応温度lO〜−40℃で無
水フッ化水素にアニリンを加え、アニリンフッ酸塩を作
る.その際のアニリンと無水フッ化水素とのモル比は1
:10ないし1:40であり好ましくは1:15ないし
1:20が最適である. アニリン・フッ酸塩が生戒し
たならば、次に亜硝酸付与剤、例えば、亜硝酸ソーダを
加えジアゾ化を行う。
One of the conventional continuous methods is a manufacturing method called a pipe reactor. The production method using a pipe reactor includes a method in which diazotization and thermal decomposition of the diazonium salt are carried out continuously, and a method in which only the diazonium salt is produced continuously (Japanese Patent Application Laid-Open No. 62-53935). However, in both methods, it is difficult to control the temperature of the diazotization reaction and thermal decomposition of the diazonium salt, so runaway reactions are likely to occur, and there are problems such as blockage in the pipe. Furthermore, the following method is disclosed as one of the continuous methods. That is, sodium nitrite and aniline are each dissolved in hydrofluoric anhydride to form an aqueous solution of each, and the aqueous solutions are mixed in small quantities and the diazotization reaction and thermal decomposition of the diazonium salt are simultaneously carried out at a reaction temperature of 40°C. There is a method (Japanese Patent Publication No. 53-14057), but the experimental results conducted by the present inventors showed a low yield of 50 to 60%, and the expected results could not be obtained. [Means for Solving the Problems] In order to solve these problems, the present inventors, as a result of intensive studies, added aniline and a nitrite-imparting agent to anhydrous hydrogen fluoride and performed a diazotization reaction. They discovered that diazonium salts can be produced and the diazonium salts can be continuously thermally decomposed, leading to the completion of the present invention. That is, aniline and lI1l1 acid imparting agent are added to anhydrous hydrogen fluoride, and the resulting diazonium salt is reacted at a reaction temperature of 10 to -40°C, and the resulting diazonium salt is continuously fed into a reaction vessel with an overflow. This is a method for producing fluorobenzene by thermally decomposing the temperature of the heating medium at 30 to 84.7°C, and further, the heating medium used in the reaction vessel with an overflow contains fluorobenzene and/or at least The present invention provides a method for producing fluorobenzene, characterized in that the solution contains 60 to 90% by weight of hydrogen fluoride. [Detailed Disclosure of the Invention] The present invention will be explained in more detail. In the diazotization method of the present invention, aniline is added to anhydrous hydrogen fluoride at a reaction temperature of 10 to -40°C to produce aniline hydrofluoride. The molar ratio of aniline and anhydrous hydrogen fluoride in this case is 1
:10 to 1:40, preferably 1:15 to 1:20. Once the aniline hydrofluoride has been used, a nitrite-imparting agent, such as sodium nitrite, is added to diazotize the mixture.

これを反応式で示すと次式の如くである。This reaction formula is shown in the following formula.

すなわち、 CaHsNHz + 20HF + NaNOz  →
C,II,NミNF + NaFHF + 211zO
 + 17HF−・−(1)C6!IsN=NF−DC
611SF + L  一・・−一−−−−−−−−−
一・・(2)上記(1)式は無水フッ化水素を20モル
使用した場合のジアゾ化反応であり、(2)式は(1)
式で反応して得られたジアゾニウム塩を熱分解して、フ
ルオロベンゼンを生威する反応工程である.ここで使用
する無氷フッ酸及びアニリンは、通常、工業的に使用さ
れるものであれば何ら差し支えない. 亜硝酸付与剤としては、通常のジアゾ化剤が使用される
.例えば亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸ア
ルキル、ニトロシルハロゲン化物等が好ましく使用され
る.これらの群により、つ以上選沢し、これを添加する
ことが出来るが、コスト的に亜硝酸ナトリウム及び亜硝
酸カリウムを用いるのが好ましい. 亜硝酸付与剤とアニリンとのモル比は1:1ないし1:
1.2が最適である. ジアゾ化時の温度は10〜−40℃であり好ましくは−
10〜−20℃が好適である。10℃を越えると亜硝酸
付与剤の添加と同時にNOx及びN2ガスの発生が見ら
れ、ジアゾ化には不適である。
That is, CaHsNHz + 20HF + NaNOz →
C, II, NmiNF + NaFHF + 211zO
+ 17HF-・-(1)C6! IsN=NF-DC
611SF + L 1・・−1−−−−−−−−−
1...(2) The above formula (1) is the diazotization reaction when 20 moles of anhydrous hydrogen fluoride is used, and the formula (2) is the formula (1).
This reaction process produces fluorobenzene by thermally decomposing the diazonium salt obtained by the reaction according to the formula. Any ice-free hydrofluoric acid and aniline used here may be used as long as they are normally used industrially. A normal diazotization agent is used as the nitrite imparting agent. For example, sodium nitrite, potassium nitrite, alkyl nitrite, nitrosyl halides, and the like are preferably used. More than one of these groups can be selected and added, but it is preferable to use sodium nitrite and potassium nitrite in terms of cost. The molar ratio of the nitrite-imparting agent and aniline is 1:1 to 1:
1.2 is optimal. The temperature during diazotization is 10 to -40°C, preferably -
A temperature of 10 to -20°C is suitable. When the temperature exceeds 10°C, NOx and N2 gases are generated simultaneously with the addition of the nitrite-imparting agent, making it unsuitable for diazotization.

また、−40℃未満では、亜硝酸付与剤が未反応となる
のでこれも好ましくない. 以上の如く、ジアゾ化してジアゾニウム塩を製造する方
法において、反応温度及びモル比を上記条件に適合すれ
ば連続的にこれを製造することも可能である. かくして、反応容器に仕込まれた、無水フッ化水素、ア
ニリン及び亜硝酸付与剤の混合液はそのまま攪拌、反応
してもかまわないが、酸化を防止するため反応容器に仕
込まれた、無水フッ化水素、アニリン及び亜硝酸付与剤
の混合液中に窒素ガスを吹き込みながら、または、反応
容器の気相部に窒素ガスを流通させながら、攪拌、反応
すると、なお好適である. 次にジアゾ化を行なったジアゾニウム塩の熱分解につい
て説明する。
Further, if the temperature is below -40°C, the nitrite-imparting agent becomes unreacted, which is also not preferable. As described above, in the method of producing a diazonium salt by diazotization, it is also possible to produce it continuously if the reaction temperature and molar ratio meet the above conditions. Thus, the mixed solution of anhydrous hydrogen fluoride, aniline, and nitrite-imparting agent charged in the reaction vessel may be stirred and reacted as is, but in order to prevent oxidation, the anhydrous fluoride charged in the reaction vessel may be stirred and reacted as is. It is more preferable to stir and react while blowing nitrogen gas into the mixture of hydrogen, aniline, and nitrite-imparting agent, or while flowing nitrogen gas into the gas phase of the reaction vessel. Next, thermal decomposition of the diazotized diazonium salt will be explained.

前述したように無水フン化水素にアニリン及び亜硝酸付
与剤を加え、反応温度10〜−40℃で反応させ、ジア
ゾ化を行なう。
As described above, aniline and a nitrous acid-imparting agent are added to anhydrous hydrogen fluoride and reacted at a reaction temperature of 10 to -40°C to effect diazotization.

得られたジアゾニウム塩の分解温度は30〜84.7℃
の温度で、好ましくは40〜50℃で熱分解を行なう。
The decomposition temperature of the obtained diazonium salt is 30-84.7°C
Thermal decomposition is carried out at a temperature of, preferably 40 to 50°C.

30″C未満では脱ジアゾ熱分解の速度が遅く、また、
収率が大きく低下する, 84.7℃を越えると、生成
したフルオロベンゼンの沸点が84.7℃であることか
ら、該フルオロベンゼンの沸点以下の温度で熱分解を行
なうのが好ましい. 次にジアゾニウム塩の熱分解について第1図に従って、
詳細に説明する. 本発明のジアゾニウム塩の熱分解は、コンデンサー6及
び攪拌[5、オーバーフロー管マ、抜出しバルプ8を有
する反応容器4を使用する.また、反応容器4は加熱す
る必要があるので外部をヒーティングコイル式、または
、ジャケット式とする.そして反応容器4内に充填する
熱媒には、フルオロベンゼン及びまたは60〜90重量
%のフッ化水素水溶液、また、前記のジアゾニウム塩を
熱分解して得られるフッ化水素(以下HFと称す)及び
副生戒物、フルオロベンゼン及びこれらの混合液を使用
してもかまわない. ここで熱媒とは、反応容器4に熱分解開始前にあらかじ
め加え、反応開始を容易ならしめるため充填する溶液を
いう. ジアゾニウム塩の熱分解を行なうには、熱媒を反応容器
4に入れ、攪拌しながら30〜84.7℃に加熱してお
く必要がある. 該反応容器4に前述のジアゾニウム塩を反応容器lより
送液ポンプ2によってフィード管3によリフイードする
.反応容器4での平均滞留時間は、ジアゾニウム塩のフ
ィードスピード及び温度によって異なるがlO〜300
分、好ましくは30〜120分である。従って場合によ
っては、反応容器4を2〜3個連結して反応、滞留時間
を取ることも可能である。
Below 30″C, the rate of dediazo thermal decomposition is slow, and
If the temperature exceeds 84.7°C, the boiling point of the produced fluorobenzene is 84.7°C, which significantly reduces the yield. Therefore, it is preferable to carry out the thermal decomposition at a temperature below the boiling point of the fluorobenzene. Next, regarding the thermal decomposition of diazonium salt, according to Figure 1,
I will explain in detail. The thermal decomposition of the diazonium salt of the present invention uses a reaction vessel 4 having a condenser 6, stirring [5], an overflow tube, and a withdrawal valve 8. In addition, since the reaction vessel 4 needs to be heated, the exterior thereof is of a heating coil type or a jacket type. The heating medium filled in the reaction vessel 4 includes fluorobenzene and/or a 60 to 90% by weight aqueous hydrogen fluoride solution, and hydrogen fluoride (hereinafter referred to as HF) obtained by thermally decomposing the diazonium salt. Also, by-products, fluorobenzene, and mixtures thereof may be used. Here, the heating medium refers to a solution that is added to the reaction vessel 4 before the start of thermal decomposition to facilitate the start of the reaction. In order to thermally decompose the diazonium salt, it is necessary to place a heat medium in the reaction vessel 4 and heat it to 30 to 84.7°C while stirring. The above-mentioned diazonium salt is re-fed into the reaction vessel 4 from the reaction vessel 1 through the feed pipe 3 using the liquid sending pump 2. The average residence time in the reaction vessel 4 varies depending on the feed speed and temperature of the diazonium salt, but ranges from lO to 300
minutes, preferably 30 to 120 minutes. Therefore, depending on the case, it is also possible to connect two or three reaction vessels 4 to increase reaction and residence time.

熱媒がジアゾニウム塩の熱分解によって得られるIIF
及び副生物とフルオロベンゼンの混合液として均一にな
るように攪拌はやや速くする。ジアゾニウム塩の添加に
よって、反応液はオーバーフロー管7を経て、冷却槽l
Oに導かれる.冷却槽10の温度は、特に限定されるも
のではないが、10”C以下にすることが好ましい.ま
た発生する窒素ガスは冷却管6を経て排出される. 〔実施例〕 以下、実施例により、本発明を具体的に説明する. 実施例l 撹拌器、冷却用コンデンサー、試料投入口及び窒素ガス
送入口を備えたジャケット式の3lステンレス製(以下
、他の反応容器、冷却用コンデンサー、攪拌翼、ポンプ
及びパイプライン等は総てステンレス製を使用)反応容
器1を用い、ジャケット及び冷却用コンデンサーに−2
0℃の冷媒を循環し冷却した.反応容器1に無水フッ化
水素1600g(80モル)を入れ撹拌しながら−15
℃まで冷却した.次いでアニリンを内温か−10℃を越
えない様に372g (4モル)徐々に添加しアニリン
・フン酸塩を製造した. さらに、内温を−10℃に保ち乾燥した亜硝酸ソーダ粉
末276g (4モル)を添加し、約2時間攪拌してジ
アゾ化を行なった.反応後のジアゾ化液の液温は−20
℃に保持した. この間、反応容器l内の気相部に窒素ガス30Id/w
inを流通させ酸化を防止しながら反応を行なった. ジアゾ化したジアゾニウム塩を連続して熱分解を行なう
には攪拌器5、冷却用コンデンサー6、オーバーフロー
管7を備えたジャケット式の0.52の反応容器4を用
い該反応容器4内に前述のジアゾニウム塩を熱分解した
時のIIF及び副生物の組威すなわちHF 300g(
15モル) 、NaP 31.5g  (0.75モル
) , Hz0 27g (1.5モル)を入れてター
ビン羽根を使用し液全体が均一に混合するように300
rpmで攪拌した.反応容器4内の熱媒の温度を40℃
に保つようにジャケットに温水をw1環して調節した.
また、冷却用コンデンサー6には−20℃の冷媒を循環
した.反応容器4が40℃になったことを確認して、前
述のジアゾニウム塩を4d/sinの速度で反応容器4
に滴下した.滴下後10分程度でオーバーフロー管7よ
り、オーバーフローし始めた.オーバーフローした液は
0.5 ffiの冷却槽10に導き冷却した.1時間毎
にバルブ11より液を抜出し分析を行なった.反応容器
4にジアゾニウム塩を滴下し始めて、1.5時間程度で
フルオロベンゼンの反応はほぼ定常状態となり、更に7
時間連続的に製造を行なった.その結果フルオロベンゼ
ンの収率はアニリンに対して82%と高収率であった.
実施例2 ジアゾ化温度、ジアゾニウム塩のフィード量及び熱媒の
温度を、第1表の条件で行なった以外は、すべて実施例
lに従って行なった.その結果、フルオロベンゼンの収
率は第1表に示すような結果であった. 比較例l〜2 ジアゾ化温度、ジアゾニウム塩のフイード量及び熱媒の
温度を、第1表の条件で行なった以外は、すべて実施例
1に従って行なった.その結果、フルオロベンゼンの収
率は第1表に示すような結果であった. このようにジアゾ化温度が20℃と高い場合(比較例1
)、又は熱媒の温度が低い場合(比較例2)の何れも収
率が低いことが判明した. 〔発明の効果〕 以上詳細に説明した通り、本発明は無水フン化水素にア
ニリンおよび亜硝酸付与剤を添加し、特定の温度でジア
ゾ化し、得られたジアゾニウム塩をオーバーフロー付き
反応容器に連続的にフイードし、特定の温度で連続的に
フルオロベンゼンを製造するものである.この発明によ
り、従来技術での反応中の暴走や閉塞等連続的な製造に
おいて最も懸念される問題をクリアーし、しかも高収率
でフルオロベンゼンを得ることが出来るのである.また
、バッチ方式に比べ製造コストが格段に低減されるばか
りか、安全に、しかも大量生産が可能となり、安価なフ
ルオロベンゼンを提供できることは産業上大きなメリソ
トであり本発明の意義は大きい.
IIF in which the heating medium is obtained by thermal decomposition of a diazonium salt
Stirring is done a little faster so that the mixture of by-products and fluorobenzene becomes uniform. By adding the diazonium salt, the reaction solution passes through the overflow pipe 7 and enters the cooling tank l.
Guided by O. The temperature of the cooling tank 10 is not particularly limited, but is preferably 10"C or less. Also, the generated nitrogen gas is discharged through the cooling pipe 6. [Example] The following is an example. The present invention will be specifically described. Example 1 A jacket-type 3L stainless steel vessel equipped with a stirrer, a cooling condenser, a sample inlet, and a nitrogen gas inlet (hereinafter, other reaction vessels, a cooling condenser, and a stirring All blades, pumps, pipelines, etc. are made of stainless steel) Reaction vessel 1 is used, and jacket and cooling condenser -2 are used.
It was cooled by circulating a 0°C refrigerant. 1,600 g (80 mol) of anhydrous hydrogen fluoride was placed in reaction vessel 1 and heated to -15 with stirring.
Cooled to ℃. Next, 372 g (4 moles) of aniline was gradually added so that the internal temperature did not exceed -10°C to produce aniline fluoride salt. Further, 276 g (4 mol) of dried sodium nitrite powder was added while keeping the internal temperature at -10°C, and diazotization was performed by stirring for about 2 hours. The temperature of the diazotized solution after the reaction is -20
It was kept at ℃. During this time, 30 Id/w of nitrogen gas was added to the gas phase inside the reaction vessel l.
The reaction was carried out while flowing in to prevent oxidation. In order to continuously thermally decompose the diazotized diazonium salt, a 0.52 jacketed reaction vessel 4 equipped with a stirrer 5, a cooling condenser 6, and an overflow pipe 7 is used. The composition of IIF and by-products when diazonium salt is thermally decomposed, i.e. 300 g of HF (
15 mol), 31.5 g (0.75 mol) of NaP, and 27 g (1.5 mol) of Hz0 were added and the mixture was heated using turbine blades to mix the entire liquid uniformly.
Stirred at rpm. The temperature of the heat medium in the reaction vessel 4 is set to 40°C.
I added warm water to the jacket to keep it warm.
In addition, -20°C refrigerant was circulated in the cooling condenser 6. After confirming that the temperature of the reaction vessel 4 has reached 40°C, the above-mentioned diazonium salt is added to the reaction vessel 4 at a rate of 4d/sin.
It was dripped into. About 10 minutes after dropping, overflow began to flow from overflow tube 7. The overflowing liquid was led to a 0.5 ffi cooling tank 10 and cooled. The liquid was extracted from valve 11 every hour and analyzed. The reaction of fluorobenzene reached a nearly steady state in about 1.5 hours after the diazonium salt was dropped into the reaction vessel 4, and the reaction continued for about 7 hours.
Manufacturing was carried out continuously over time. As a result, the yield of fluorobenzene was as high as 82% based on aniline.
Example 2 Everything was carried out in accordance with Example 1, except that the diazotization temperature, the feed amount of diazonium salt, and the temperature of the heat medium were carried out under the conditions shown in Table 1. As a result, the yield of fluorobenzene was as shown in Table 1. Comparative Examples 1 to 2 All procedures were carried out in accordance with Example 1, except that the diazotization temperature, the feed amount of diazonium salt, and the temperature of the heating medium were carried out under the conditions shown in Table 1. As a result, the yield of fluorobenzene was as shown in Table 1. When the diazotization temperature is as high as 20°C (Comparative Example 1)
), or when the temperature of the heating medium was low (Comparative Example 2), the yield was found to be low. [Effects of the Invention] As explained in detail above, the present invention involves adding aniline and a nitrite-imparting agent to anhydrous hydrogen fluoride, diazotizing it at a specific temperature, and continuously transferring the obtained diazonium salt to a reaction vessel with an overflow. fluorobenzene is continuously produced at a specific temperature. This invention overcomes the problems that are most concerning in continuous production, such as runaway and blockage during the reaction in conventional techniques, and makes it possible to obtain fluorobenzene in high yield. In addition, not only is the production cost significantly lower than that of the batch method, but it also enables safe mass production and provides inexpensive fluorobenzene, which is a great industrial advantage, and the present invention has great significance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図において、 l 一−一一反応容器、 2−・・一・送液ポンブ、 3−−−−−−フイード管、 4 −一一・・反応容器、 5−・一・撹拌翼、 6・一一一一一一コンデンサー 7・・・一 オーバーフロー管、 8−・−・・液抜き出し弁、 9−・・一液抜き出し管、 10−−−−−・冷却槽、 1l−・一・−・液抜き出し弁、 l2、l3−・・・冷却槽、 In Figure 1, l 1-11 reaction vessel, 2-...1.Liquid pump, 3---Feed pipe, 4-11...reaction container, 5-.1. Stirring blade, 6.111111 capacitor 7...1 Overflow pipe, 8-----Liquid drain valve, 9-...One-liquid extraction pipe, 10-----Cooling tank, 1l-・1・-・Liquid drain valve, l2, l3-... cooling tank,

Claims (1)

【特許請求の範囲】 1)無水フッ化水素にアニリンおよび亜硝酸付与剤を添
加し、反応温度10〜−40℃で反応させ得られたジア
ゾニウム塩を、オーバーフロー付き反応容器に連続的に
フィードし、該オーバーフロー付き反応容器内の熱媒の
温度を30〜84.7℃に保持して熱分解することを特
徴とするフルオロベンゼンの製造方法。 2)オーバーフロー付き反応容器内に使用する熱媒が、
フルオロベンゼン及びまたは少なくとも、60〜90重
量%のフッ化水素を含む溶液であることを特徴とする特
許請求範囲第1項記載の方法。
[Claims] 1) Aniline and a nitrite-imparting agent are added to anhydrous hydrogen fluoride, and the resulting diazonium salt is reacted at a reaction temperature of 10 to -40°C, and the resulting diazonium salt is continuously fed into a reaction vessel with an overflow. A method for producing fluorobenzene, characterized in that the temperature of the heat medium in the reaction vessel with an overflow is maintained at 30 to 84.7°C for thermal decomposition. 2) The heat medium used in the reaction vessel with overflow is
Process according to claim 1, characterized in that the solution contains fluorobenzene and/or at least 60 to 90% by weight of hydrogen fluoride.
JP23840089A 1989-09-16 1989-09-16 Production of fluorobenzene Pending JPH03106838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23840089A JPH03106838A (en) 1989-09-16 1989-09-16 Production of fluorobenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23840089A JPH03106838A (en) 1989-09-16 1989-09-16 Production of fluorobenzene

Publications (1)

Publication Number Publication Date
JPH03106838A true JPH03106838A (en) 1991-05-07

Family

ID=17029639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23840089A Pending JPH03106838A (en) 1989-09-16 1989-09-16 Production of fluorobenzene

Country Status (1)

Country Link
JP (1) JPH03106838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048576A (en) * 2006-08-21 2008-02-28 Sanken Electric Co Ltd Incorrect connection detector
WO2012043264A1 (en) 2010-09-30 2012-04-05 株式会社キトー Electric winch elevator device drive circuit fault inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048576A (en) * 2006-08-21 2008-02-28 Sanken Electric Co Ltd Incorrect connection detector
WO2012043264A1 (en) 2010-09-30 2012-04-05 株式会社キトー Electric winch elevator device drive circuit fault inspection device

Similar Documents

Publication Publication Date Title
US3234258A (en) Sulfation of alpha olefins
CN108329205A (en) It is double(Aspirin)The preparation method of calcium carbamide compound
JPH03106838A (en) Production of fluorobenzene
US4232175A (en) Nitrosation of aromatic compounds
JPS6131093B2 (en)
US4299965A (en) Preparation of benzotriazole
CN112358404B (en) Preparation method of 2-chloro-6-methylaniline
JPH01261339A (en) Production of fluorinated aromatics
US5041691A (en) Aldol condensation of nitroparaffins
US4328369A (en) Process for the production of 2,6-dinitro-N-alkyl-anilines
CN117447371A (en) Preparation method of 2-chloro-6- (phenylthio) phenylacetic acid
CN110872242A (en) Synthesis method of celecoxib intermediate p-hydrazino benzenesulfonamide hydrochloride
KR100633672B1 (en) Processes for producing 4,6-bis(substituted)phenylazoresorcinols
JP2685563B2 (en) Continuous decomposition of diazonium fluoride
US3355486A (en) Continuous process of synthesizing amino-iminomethane-sulfinic acid
CN107827821A (en) A kind of pyrazolone series of products continuous stream process for cleanly preparing
RU2095389C1 (en) Method for production of cooling liquid for internal combustion engines on the base of glycol solution
JP3951322B2 (en) Method for producing sulfide compound
US2444023A (en) Preparation of dimethyl urea
US5055563A (en) Continuous preparation of aromatic diazonium fluoride salts from corresponding aromatic amines
KR100290617B1 (en) How to prepare sulfide compound
EP2984075B1 (en) Method for obtaining solutions of ota in a concentrated sulphuric acid medium; said solutions; and method for preparing onta
CN112500319A (en) Method for preparing CLT acid by continuous acidification
JPH10298147A (en) Continuous dinitration of aromatic substrate
JPH06220019A (en) Production of 2-hydroxy-3,5-dinitropyridine compounds