JPH03106570A - Method and device for profile control of weld line - Google Patents

Method and device for profile control of weld line

Info

Publication number
JPH03106570A
JPH03106570A JP24163189A JP24163189A JPH03106570A JP H03106570 A JPH03106570 A JP H03106570A JP 24163189 A JP24163189 A JP 24163189A JP 24163189 A JP24163189 A JP 24163189A JP H03106570 A JPH03106570 A JP H03106570A
Authority
JP
Japan
Prior art keywords
welding line
ultrasonic
receiving means
received
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24163189A
Other languages
Japanese (ja)
Inventor
Jun Nakajima
潤 中嶋
Mitsuaki Haneda
光明 羽田
Noboru Saito
昇 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24163189A priority Critical patent/JPH03106570A/en
Publication of JPH03106570A publication Critical patent/JPH03106570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect the weld line with high accuracy without scanning a flat part by deciding the misalignment direction of the weld line by comparing the time when a reflected wave is not received in both end parts of a reciprocating motion of an ultrasonic wave transmitting/receiving means. CONSTITUTION:A data storage part 14 inputs a scanning position signal Ss from a scanning position detector 9 and checks whether a sensor reaches the right end or not, drives the sensor to the right side again if it does not reach and inputs continuously distance data Sa and a receiving pulse signal Sj. When the sensor reaches the right end of scanning, a timer circuit 15 is started by outputting a timer start signal St, and by bringing a counter of the right side to increment, a period in which the sensor is not receiving an ultrasonic wave is counted. When it is detected that the sensor goes into the receiving period, the counter of the right side is saved in a memory, the counter is reset again and this time a left direction instruction flag is set, and until the scan is ended, the distance data Sa and the receiving pulse signal Sj are inputted, and stored in a storage part 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動溶接に係り、特に超音波式距離計を用いて
溶接線を検出し、溶接トーチを溶接線に倣わせる溶接線
倣い制御方法及び制御装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to automatic welding, and in particular to welding line tracing control that detects a welding line using an ultrasonic distance meter and causes a welding torch to follow the welding line. METHODS AND CONTROL APPARATUS.

〔従来の技術〕[Conventional technology]

この種の従来の装置は,特開昭59−11398l号公
報に記載のように、光学式距離計を溶接線とほぼ直角方
向に走査させ、得られた距離情報をもとにワークの開先
の溶接線の位置を検出する方法等が知られている。
As described in Japanese Patent Application Laid-open No. 59-11398l, this type of conventional device scans an optical distance meter in a direction approximately perpendicular to the welding line, and uses the obtained distance information to determine whether the workpiece has a groove. A method for detecting the position of a weld line is known.

この従来の方法は、TVカメラを用いて画像処理により
溶接線を求める方法と比べ、安価でかつ簡単である利点
があった。
This conventional method has the advantage of being cheaper and simpler than the method of determining the weld line through image processing using a TV camera.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記従来技術は、溶接線を求めるにあたり、ワー
クの少なくとも一方の平坦部を含むようにして光学式距
離計を走査し、距離データを検出する必要があるため、
開先角度が大きくなると、光学式距離計の走査幅もこれ
に伴って大きくなり、その結果検出装置が大がかりにな
るといった問題点があった。また,対象とするワークも
平坦部と開先のあるワークに限定され、すみ肉継手には
適用できない問題があった. 本発明は、上記の点に鑑みて成されたものであり、その
目的とするところは小型で簡単な装置で平坦部を走査す
ることなく、精度良く溶接線を検出し、溶接トーチを溶
接線に倣わせるにある.〔課題を解決するための手段〕 上記の課題は、溶接トーチを該溶接トーチに装着したセ
ンサにより、自動的にワークの溶接線に追従させる溶接
線倣い制御方法において、センサである超音波送受信手
段を前記溶接トーチの進行方向前方に配置し,該超音波
送受信手段を前記溶接線と略直角に交差する方向に所定
の周波数で往復させつつワーク番こ』シて前記溶接線と
前記往復方向とに略直角に超音波を送信する手順と、ワ
ークで反射された前記超音波が前記超音波送受信手段に
受信された時と受信されなかった時のそれぞれに対応し
て設定された受信パルス信号を出力する手順と、該受信
パルス信号の波形の中から、前記所定の周波数成分のパ
ワースペクトルを検出し,該パワースペクトルが所定値
以上の時、超音波送受信手段の往復動の中心位置が溶接
線からずれていると判断する手順と、前記受信パルス信
号に表われる、前記超音波送受信手段の往復動の両端部
分での反射波受信無しの時間を比較して溶接線に対する
前記超音波送受信手段の溶接線のずれ方向を判断する手
順と、を備えることにより達成される。
However, in the above conventional technology, in order to find the weld line, it is necessary to scan the optical distance meter to include at least one flat part of the workpiece and detect distance data.
As the groove angle increases, the scanning width of the optical rangefinder also increases, resulting in a problem that the detection device becomes bulky. In addition, the target workpieces are limited to those with flat parts and grooves, and there is a problem that it cannot be applied to fillet joints. The present invention has been made in view of the above points, and its purpose is to accurately detect a welding line without scanning a flat area using a small and simple device, and to move a welding torch to the welding line. The purpose is to imitate the following. [Means for Solving the Problem] The above problem is solved by a welding line tracing control method in which a welding torch automatically follows a welding line on a workpiece using a sensor attached to the welding torch. is placed in front of the welding torch in the traveling direction, and while the ultrasonic transmitting/receiving means is reciprocated at a predetermined frequency in a direction substantially perpendicular to the welding line, the workpiece is rotated to intersect with the welding line and the reciprocating direction. A procedure for transmitting ultrasonic waves at a substantially right angle to The output procedure includes detecting the power spectrum of the predetermined frequency component from the waveform of the received pulse signal, and when the power spectrum is greater than a predetermined value, the center position of the reciprocating motion of the ultrasonic transmitting/receiving means is located at the welding line. The ultrasonic transmitting/receiving means relative to the welding line is determined by comparing the procedure for determining that the ultrasonic transmitting/receiving means deviates from the This is achieved by providing a procedure for determining the direction of deviation of the weld line.

上記の課題は、また、受信した反射波に基づいて超音波
送受信手段とワークの距離を算出する手順と、算出され
た前記距離を超音波送受信手段の一往復の中の反射波が
受信されている時間の間平均して平均距離データを求め
る手順と、求められた前記平均距離データと、予め定め
られた基準値を比較して溶接トーチの高さ方向のずれを
判断する手順と、を備えた請求項lに記載の溶接線倣い
制御方法によっても達成される.. 上記の課題は、さらに、溶接トーチの進行方向前方に配
置され、溶接線を含み該溶接線を構成するワークの面に
対して略均一な角度をなす平面に略垂直に超音波を発信
し、受信した反射波を電気信号に変換,出力する超音波
送受信手段と、前記超音波送受信手段を前記溶接線と略
直角にかつ前記平面と略並行に所定の周波数で往復動走
査させる走査手段と、前記超音波送受信手段に接続され
該超音波送受信手段が出力する前記電気信号を受信パル
ス信号及び距離データ信号に変換する超音波制御手段と
、該超音波制御手段に接続され前記受信パルス信号及び
距離データ信号を記憶格納する記憶手段と,該記憶手段
及び前記超音波制御手段に接続され該記憶手段に記憶さ
れた受信パルス信号波形から走査周波数或分のパワース
ペクトルを抽出し、所定値と比較して前記往復動の中心
位置の溶接線からのずれの有無を判定する溶接線検出手
段と、該溶接線検出手段に接続され前記超音波送受信手
段の往復動両端部分での反射波が受信されない時間を記
録するタイマ手段と、を備え、前記溶接線検出手段は、
前記往復動両端部分での反射波が受信されない時間を比
較して往復動の中心位置の溶接線からのずれの方向と大
きさを算出して溶接トーチを溶接線に倣わすものである
溶接線倣い制御装置によっても達成される.上記の課題
は,また,溶接線検出手段が,記憶手段に記憶された距
離データ信号の一走査での反射波受信期間における平均
値と予め定められた基準値とから、超音波送受信手段の
ワークに対する高さ方向の距離のずれを求め、このずれ
の値に基づいて溶接トーチとワークの高さ方向の距離を
制御するものである請求項3に記載の溶接線倣い制御装
置によっても達威される. 〔作用〕 ワーク1が,第3図に示されるように、組み立てられて
溶接線2が形威され,この溶接線2に溶接トーチを倣わ
せる場合について説明する。
The above problem also requires a procedure for calculating the distance between the ultrasonic transmitting/receiving means and the workpiece based on the received reflected waves, and a procedure for calculating the distance between the ultrasonic transmitting/receiving means and the workpiece. and a step of comparing the obtained average distance data with a predetermined reference value to determine a deviation in the height direction of the welding torch. This can also be achieved by the weld line tracing control method according to claim 1. .. The above problem is further solved by: transmitting ultrasonic waves substantially perpendicular to a plane that is disposed in front of the welding torch in the traveling direction and that includes the welding line and makes a substantially uniform angle with respect to the surface of the workpiece that constitutes the welding line; an ultrasonic transmitting/receiving means for converting and outputting the received reflected wave into an electric signal; a scanning means for reciprocating the ultrasonic transmitting/receiving means at a predetermined frequency substantially perpendicular to the welding line and substantially parallel to the plane; an ultrasonic control means connected to the ultrasonic transmitting/receiving means and converting the electrical signal outputted by the ultrasonic transmitting/receiving means into a received pulse signal and a distance data signal; A storage means for storing a data signal, and a power spectrum connected to the storage means and the ultrasonic control means to extract a power spectrum at a certain scanning frequency from the received pulse signal waveform stored in the storage means and compare it with a predetermined value. a welding line detection means for determining the presence or absence of deviation of the center position of the reciprocating movement from the welding line; and a time period during which reflected waves are not received at both ends of the reciprocating movement of the ultrasonic transmitting and receiving means connected to the welding line detecting means. and a timer means for recording the weld line detection means,
A welding line that compares the time during which reflected waves are not received at both ends of the reciprocating motion, calculates the direction and magnitude of deviation of the center position of the reciprocating motion from the welding line, and causes the welding torch to follow the welding line. This can also be achieved by a tracing control device. The above problem also occurs when the welding line detection means detects the workpiece of the ultrasonic transmitting and receiving means based on the average value during the reflected wave reception period in one scan of the distance data signal stored in the storage means and a predetermined reference value. This can also be achieved by the welding line tracing control device according to claim 3, wherein the distance in the height direction between the welding torch and the workpiece is controlled based on the value of the deviation. Ru. [Function] As shown in FIG. 3, a case will be described in which the workpiece 1 is assembled and a welding line 2 is formed, and the welding torch is made to follow this welding line 2.

超音波送受信手段4は,溶接線2とほぼ直角に交叉する
方向(図の矢印Cで示す方向)に往復動(走査)しつつ
、前記溶接線2とほぼ直角方向かつ前記矢印C方向とほ
ぼ直角の方向に、ワーク1に対して超音波を発信する。
The ultrasonic transmitting/receiving means 4 reciprocates (scans) in a direction substantially perpendicular to the welding line 2 (direction indicated by arrow C in the figure), and moves in a direction substantially perpendicular to the welding line 2 and substantially in the direction of the arrow C. Ultrasonic waves are transmitted to the workpiece 1 in a perpendicular direction.

超音波送受信手段4が実線位置にあるときに発信された
超音波Aは、実線で示すように、ワーク1で反射されて
超音波送受信手段4に反射波が受信される. 超音波送受信手段4が破線の位置に移動した状態で発信
された超音波Bは破線で示すように反射され、超音波送
受信手段4に反射波が受信されない。超音波送受信手段
4から発信された超音波の反射波が超音波送受信手段4
に受信されないような超音波送受信手段4の位置は,該
超音波送受信手段4の超音波送受信部の大きさを一定と
すれば、超音波送受信手段4の中心と溶接線2の横方向
(超音波送受信手段4の往復動方向)のずれの大きさで
決まる. 超音波送受信手段4の走査の幅が、充分大きくされるか
ら、走査の中心位置が,溶接線2の位置からずれても、
走査の両端位置では、必ず反射波が受信されない期間が
できる.送信した超音波の反射波が受信されたときと受
信されなかったときにそれぞれ異なる大きさの受信パル
ス信号が超音波制御手段から出力され、このパルス信号
は周波数分析されて,超音波送受信手段4の走査中心位
置と溶接線2の、溶接線に直角方向の位置関係が求めら
れる.すなわち,走査中心位置が溶接線上にあると、走
査両端付近における受信不能期間が左右同じとなり、前
記受信パルス信号波形の中で、走査周波数(往復動の周
波数)成分のパワースペクトルが微少となり,走査周波
数の2倍成分のパワースペクトルが増大する。一方,逆
に走査中心位置が溶接線2からずれてくると、走査両端
付近における受信不能期間の長さが左右で異なり、その
結果、受信パルス信号波形の中の走査周波数戒分のパワ
ースペクトルが増加するようになる.溶接線検出手段に
より、この受信パルス信号の波形から、走査周波数成分
のパワースペクトルが油出され、溶接線からの、走査中
心すなわち溶接トーチのずれの有無が判断される. ずれ方向は、走査両端付近における受信不能な期間を比
較して大きい側がずれ側であり、溶接線検出手段により
、受信不能期間が測定,比較されて容易に求められる.
また、超音波送受信手段(即ち溶接トーチ)の高さ方向
の偏差は,超音波制御手段が出力する距離データが記憶
手段に記憶され,溶接線検出手段により,前記記憶され
ている距離データに基づいて、一走査中の反射波が受信
されている期間中の平均距離データが算出され,これが
あらかじめ設定されている基準と比較されて求められる
. 溶接線検出手段は、求めた溶接線と走査中心の横方向(
走査方向)のずれ及び高さ方向のずれに基づいて溶接ト
ーチ及び該溶接トーチに装着された超音波送受信手段の
位置を制御する.〔実施例〕 以下,本発明の実施例を図面に従って説明する.第1図
は、本発明の一実施例の溶接線倣い#御装置を備えた溶
接装置の概略構成を示す.1対のワーク1は,相互に組
み立てられて、すみ肉溶接継手である溶接線2を形成し
、溶接トーチ3は、該溶接線2を溶接する位置に配置さ
れている。前記溶接トーチ3後部(溶接線に近接した側
を先端部という)には、保持部材5が装着され、該保持
部材5は回転部6を介して接続治具7に保持されている
.該接続治具7は、ロボット本体10に固定され、該ロ
ボット本体10は、ロボット制御装置12に接続されて
いる。
The ultrasonic wave A emitted when the ultrasonic transmitting/receiving means 4 is at the solid line position is reflected by the workpiece 1 and the reflected wave is received by the ultrasonic transmitting/receiving means 4, as shown by the solid line. The ultrasonic wave B transmitted while the ultrasonic transmitting/receiving means 4 is moved to the position indicated by the broken line is reflected as shown by the broken line, and the reflected wave is not received by the ultrasonic transmitting/receiving means 4. The reflected waves of the ultrasonic waves transmitted from the ultrasonic transmitting/receiving means 4 are transmitted to the ultrasonic transmitting/receiving means 4.
If the size of the ultrasonic transmitting and receiving part of the ultrasonic transmitting and receiving means 4 is constant, the position of the ultrasonic transmitting and receiving means 4 where the ultrasonic wave is not received is between the center of the ultrasonic transmitting and receiving means 4 and the lateral direction of the welding line 2 (ultrasonic It is determined by the amount of deviation in the reciprocating direction of the sound wave transmitting/receiving means 4). Since the scanning width of the ultrasonic transmitting/receiving means 4 is made sufficiently large, even if the scanning center position deviates from the position of the welding line 2,
At both ends of the scan, there is always a period in which no reflected waves are received. Receiving pulse signals of different magnitudes are output from the ultrasonic control means when the reflected waves of the transmitted ultrasonic waves are received and when they are not received, and the pulse signals are frequency-analyzed and transmitted to the ultrasonic transmitting/receiving means 4. The positional relationship between the scanning center position of and welding line 2 in the direction perpendicular to the welding line is determined. In other words, when the scanning center position is on the welding line, the unreceivable periods near both ends of the scan are the same on the left and right sides, and the power spectrum of the scanning frequency (reciprocating frequency) component of the received pulse signal waveform becomes very small. The power spectrum of twice the frequency component increases. On the other hand, when the scanning center position shifts from welding line 2, the length of the unreceivable period near both scanning ends differs between the left and right sides, and as a result, the power spectrum of the scanning frequency distribution in the received pulse signal waveform changes. It will start to increase. The welding line detection means extracts the power spectrum of the scanning frequency component from the waveform of this received pulse signal, and determines whether there is a deviation of the scanning center, that is, the welding torch, from the welding line. The direction of deviation is determined by comparing the unreceivable periods near both ends of the scan, with the larger side being the deviation side, and the unreceivable periods are measured and compared using the welding line detection means and easily determined.
Further, the deviation in the height direction of the ultrasonic transmitting/receiving means (i.e., the welding torch) is determined based on the distance data outputted by the ultrasonic control means in the storage means, and the welding line detection means based on the stored distance data. Then, the average distance data during the period in which the reflected waves are received during one scan is calculated, and this is compared with a preset standard. The welding line detection means detects the welding line and the horizontal direction (
The position of the welding torch and the ultrasonic transmitting/receiving means attached to the welding torch is controlled based on the deviation in the scanning direction) and the deviation in the height direction. [Examples] Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of a welding device equipped with a welding line tracing control device according to an embodiment of the present invention. A pair of workpieces 1 are assembled together to form a weld line 2 that is a fillet weld joint, and a welding torch 3 is placed at a position to weld the weld line 2. A holding member 5 is attached to the rear part of the welding torch 3 (the side close to the welding line is referred to as the tip), and the holding member 5 is held by a connecting jig 7 via a rotating part 6. The connection jig 7 is fixed to a robot body 10, and the robot body 10 is connected to a robot control device 12.

前記保持部材5には、溶接トーチ3の進行方向前方と.
なる位置に、超音波送受信手段である、送受信一体型の
超音波距離計4が溶接線2と略直角に交叉する方向(矢
印C方向)に往復動可能に,かつ超音波の発信方向を溶
接線2に垂直な平面内で、ワーク1がなす角を2等分す
る方向にして装着されている.前記保持部材5には超音
波距離計4を矢印C方向に往復動させる走査手段である
,走査駆動用モータ8および走査位置を検出する走査位
置検出器9が配設されている.前記超音波距離計4及び
走査位置検出器9に接続して倣い制御部l1が設けられ
、該倣い制御部11の出力側は前記ロボット制御装置1
2に接続されている.本発明の実施例である溶接線倣い
制御装置は,上述の超音波距離計4,走査位置検出器9
,走査駆動用モータ8及び倣い制御部11とを備えてい
る。
The holding member 5 has a front side in the direction of movement of the welding torch 3, and a front side in the direction of movement of the welding torch 3.
The ultrasonic distance meter 4, which is an ultrasonic transmitting/receiving means, can be reciprocated in a direction substantially perpendicular to the welding line 2 (in the direction of arrow C), and the ultrasonic transmission direction is welded at a position where It is mounted in a direction that bisects the angle formed by workpiece 1 in a plane perpendicular to line 2. The holding member 5 is provided with a scanning drive motor 8, which serves as scanning means for reciprocating the ultrasonic distance meter 4 in the direction of arrow C, and a scanning position detector 9, which detects the scanning position. A scanning control section l1 is provided connected to the ultrasonic distance meter 4 and the scanning position detector 9, and the output side of the scanning control section 11 is connected to the robot control device 1.
It is connected to 2. The welding line tracing control device according to the embodiment of the present invention includes the above-mentioned ultrasonic distance meter 4, scanning position detector 9,
, a scanning drive motor 8, and a copying control section 11.

ロボット本体10は、ロボット制御装W112によって
制御されるが、該ロボット制御装置は、超音波距離計4
及び走査位置検出器9からの信号に基づき溶接線の倣い
制御を行う倣い制御部l1からの指令を受けてロボット
の位置決めを行う.次に本発明の溶接線倣い制御装置の
動作を第2図〜第10図を用いて説明する.倣い制御部
11は,超音波距離計4に接続され受信パルス信号Sj
と距離データ信号Saを出力する超音波制御手段である
超音波制御回路13と,超音波制御回路13に接続され
前記受信パルス信号Sjと距離データ信号Saを一走査
毎に記憶する記憶手段であるデータ記憶部14と、前記
超音波制御回路13,走査位置検出器9及びデータ記憶
部14に接続された溶接線検出手段である溶接線検出回
路16と、該溶接線検出回路16に接続され前記超音波
距離計4で反射波が受信されない時間を記録するタイマ
手段であるタイマ発生回路15と,該溶接線検出回路1
6に入力側を接続され出力側を走査駆動用モータ8に接
続された走査馳動用モータ8の關動回路17と、前記溶
接線検出回路16に溶接された制御起動入力部18とを
備えている。
The robot main body 10 is controlled by a robot control device W112, which includes an ultrasonic distance meter 4
The positioning of the robot is performed in response to commands from the tracing control section l1, which performs tracing control of the welding line based on signals from the scanning position detector 9. Next, the operation of the weld line tracing control device of the present invention will be explained using FIGS. 2 to 10. The scanning control unit 11 is connected to the ultrasonic distance meter 4 and receives a received pulse signal Sj.
and a storage means connected to the ultrasound control circuit 13 and storing the received pulse signal Sj and the distance data signal Sa for each scan. a data storage section 14; a welding line detection circuit 16 which is a welding line detection means connected to the ultrasonic control circuit 13, scanning position detector 9 and data storage section 14; a timer generation circuit 15 which is a timer means for recording the time during which no reflected waves are received by the ultrasonic distance meter 4; and the welding line detection circuit 1.
6 and an output side connected to the scan drive motor 8; and a control start input section 18 welded to the welding line detection circuit 16. There is.

超音波制御回路13は,超音波距離計4が送信した超音
波の反射波を受信したときに「低」、受信しなかったと
きにr高』となる受信パルス信号Sjを発生するよう調
整されたパルス信号発生回路と、検出距離に応じてそれ
に比例した電気信号(距離データ信号)を発生する距離
データ発生回路を備えている. 溶接線検出回路16は、受信パルス信号Sjと、データ
記憶部14に記憶された距離データ信号Sa′と、走査
位置検出器9より出力される走査位置信号Ssとに基づ
いてタイマ発生回路15を駆動し、溶接線2と走査中心
位置との関係を算出する. 第3図は超音波距離計4を溶接線2に対し、矢印Cのよ
うにほぼ直角に走査したときの超音波送受{a状態を説
明した図で,走査位置に応じて送信された超音波の反射
波が受信されない場合と、受信される場合があるのを示
してしる. 第4図は、超音波距離計4が検出する検出距離Ls(超
音波通過距離の1/2)と、それに対応して超音波制御
回路13で出力される距離データ信号Saとの関係を示
す。Lkは不感領域で送受信切替時間に相当する距離で
あり、一般には使用不可能な検出距離と言われる.超音
波の指向性が鋭く、1本の線で表現できるとすれば、第
3図A,Bに示すような伝播軌跡として表わせるが、一
般には超音波は、 θ=0.704Xλ/D (θ;音圧半減角,λ;波長,D;超音波距離計の振動
子の直径)で表現されている半減角θをもって拡がる.
従って,走査位置が溶接12から横方向(矢印C方向)
に遠ざかるほど、前記検出距離Lsとして得られる値が
増加することが,実験結果から明らかになっている.し
かし、この増加幅は微少であり,これを用いて溶接Ii
A2からの横方向のずれを検出するには、検出精度の信
頼性が低いことも、実験で明らかになっている. 第5図は超音波制御回路13で出力される受信パルス信
号Sjと、走査位置X(L;走査左端,C;走査中心,
R;走査右端)との関係を説明した図であり、High
は受信しない時の出力電圧、Lowは受信した時の出力
電圧をそれぞれ示す。
The ultrasonic control circuit 13 is adjusted to generate a reception pulse signal Sj that is "low" when the reflected wave of the ultrasound transmitted by the ultrasonic distance meter 4 is received, and "r high" when it is not received. It is equipped with a pulse signal generation circuit and a distance data generation circuit that generates an electrical signal (distance data signal) proportional to the detected distance. The welding line detection circuit 16 operates the timer generation circuit 15 based on the received pulse signal Sj, the distance data signal Sa' stored in the data storage section 14, and the scanning position signal Ss output from the scanning position detector 9. and calculates the relationship between weld line 2 and the scanning center position. Figure 3 is a diagram illustrating the ultrasonic transmission/reception {a state when the ultrasonic distance meter 4 is scanned almost perpendicularly to the welding line 2 as shown by arrow C. This shows that there are cases where the reflected wave is not received and cases where it is received. FIG. 4 shows the relationship between the detection distance Ls (1/2 of the ultrasonic wave passing distance) detected by the ultrasonic distance meter 4 and the corresponding distance data signal Sa output by the ultrasonic control circuit 13. . Lk is a distance corresponding to the transmission/reception switching time in the dead area, and is generally said to be an unusable detection distance. If the directivity of ultrasonic waves is sharp and can be expressed by a single line, it can be expressed as a propagation trajectory as shown in Figure 3 A and B, but in general, ultrasonic waves have the following equation: θ=0.704Xλ/D ( It spreads with a half-reduction angle θ, which is expressed as θ: half-reduction angle of sound pressure, λ: wavelength, D: diameter of ultrasonic rangefinder transducer.
Therefore, the scanning position is in the lateral direction from the weld 12 (in the direction of arrow C).
It has become clear from experimental results that the value obtained as the detection distance Ls increases as the distance increases. However, this increase is small, and using this, welding Ii
Experiments have also shown that the reliability of detection accuracy for detecting lateral deviations from A2 is low. FIG. 5 shows the received pulse signal Sj output by the ultrasonic control circuit 13 and the scanning position X (L: left edge of scanning, C: center of scanning,
R: right edge of scanning);
indicates the output voltage when not receiving data, and Low indicates the output voltage when receiving data.

第6図は受信パルス信号Sjの時間変化を説明した図で
あり、Tnは反射波の受信期間,Tfは受信されない期
間をそれぞれ示す。
FIG. 6 is a diagram illustrating the temporal change of the received pulse signal Sj, where Tn indicates a receiving period of reflected waves, and Tf indicates a period during which no reflected waves are received.

第7図はワーク1の溶接線2の上方を図の矢印で示すよ
うに超音波距離計を走査した時の受信バル入信号Sjの
波形を、溶接m2に対する走査中心位置Cのずれ(lb
,lc,ld.leがずれ量)に対応して比較を行った
説明図である.第7図においてT f Rは右側におけ
る受信不能期間,T f Lは左側における受信不能期
間をぞれぞれ示す。
FIG. 7 shows the waveform of the received valve input signal Sj when the ultrasonic distance meter is scanned above the welding line 2 of the workpiece 1 as indicated by the arrow in the figure, and the deviation (lb
, lc, ld. FIG. 2 is an explanatory diagram illustrating a comparison according to the amount of deviation (le is the amount of deviation). In FIG. 7, T f R indicates the unreceivable period on the right side, and T f L indicates the unreceivable period on the left side.

第7図において、(a)は走査中心位置Cが溶接線2と
一致している場合であり、走査位置信号Ssに対し受信
パルス信号Sjは(a)′に示す通りとなる.すなわち
受信不能期間T f R = T f Lである。次に
(b)〜(e)に示すように走査中心位置Cが溶接線2
に対し右側あるいは左側にずれてくると、走査左右の受
信不能期間に差が生じT f R≠T f Lとなる.
このように溶接線2に対する走査中心位置Cの関係を走
査左右端の受信不能期間Tfu,TfLの比較のみによ
って求めることも可能であるが、走査運動の不安定さ等
が外乱となって誤検出の可能性があり信頼性が低下する
In FIG. 7, (a) shows the case where the scanning center position C coincides with the welding line 2, and the received pulse signal Sj with respect to the scanning position signal Ss is as shown in (a)'. That is, the unreceivable period T f R = T f L. Next, as shown in (b) to (e), the scanning center position C is located at the welding line 2.
On the other hand, if the signal shifts to the right or left, a difference occurs between the unreceivable periods on the left and right sides of the scan, and T f R≠T f L.
In this way, it is possible to determine the relationship between the scanning center position C and the welding line 2 by only comparing the unreceivable periods Tfu and TfL at the left and right ends of the scan, but instability of the scanning movement may cause disturbances and cause false detection. There is a possibility that reliability will decrease.

本発明では受信パルス信号Sjの周波数戒分に着目して
外乱の影響を削減するものである.第8A図〜第8C図
は受信パルス信号Sjの周波数分析結果を説明した図で
、第8A図は走査中心位置Cが溶接線2と一致している
場合、第8B図は溶接線2からずれている場合をそれぞ
れ示す。
The present invention focuses on the frequency distribution of the received pulse signal Sj to reduce the influence of disturbance. Figures 8A to 8C are diagrams explaining the frequency analysis results of the received pulse signal Sj. Figure 8A shows when the scanning center position C coincides with welding line 2, and Figure 8B shows that it deviates from welding line 2. Indicates each case.

fOは超音波距離計4の走査周波数(第7図中SSで示
す曲線の振動周波数)であり、Psjは周波数パワース
ペクトルである。走査中心位11Cが溶接線2と一致し
ている場合は、第7図のSsの曲線及び(a)′から明
らかように、受信パルス信号Sjの周波数はSsの周波
数foの正確に2倍であり、2foのパワースペクトル
が第8A図に示すように大きい.第8B図に示すように
走査中心位置Cが溶接線2とずれている場合には走査周
波数戒分(fo)のパワースペクトルが大きくなり、こ
の大きさ、Psj (fo)は第8C図に示すように溶
接線2からのずれ量lに伴い比例的に増大することが実
験で明らかとなっている。第2図における溶接線検出回
路l6は受信パルス信号Sjの波形から走査周波数成分
のパワースペクトルPsj(fo)を抽出し、その大き
さに基づいて溶接線からのずれの有無及びずれ量を求め
るものである. 次に本発明の溶接線倣い制御の動作手順について、第2
図及び第9図、第10図を用いて説明する。
fO is the scanning frequency of the ultrasonic distance meter 4 (the vibration frequency of the curve indicated by SS in FIG. 7), and Psj is the frequency power spectrum. When the scanning center position 11C coincides with the welding line 2, as is clear from the curve Ss of FIG. 7 and (a)', the frequency of the received pulse signal Sj is exactly twice the frequency fo of Ss. The power spectrum of 2fo is large as shown in Figure 8A. As shown in Fig. 8B, when the scanning center position C is shifted from the welding line 2, the power spectrum of the scanning frequency division (fo) becomes large, and this magnitude, Psj (fo), is shown in Fig. 8C. Experiments have shown that the deviation increases proportionally with the amount of deviation l from the weld line 2. The welding line detection circuit l6 in FIG. 2 extracts the power spectrum Psj(fo) of the scanning frequency component from the waveform of the received pulse signal Sj, and determines the presence or absence of deviation from the welding line and the amount of deviation based on its magnitude. It is. Next, regarding the operation procedure of the welding line tracing control of the present invention, the second
This will be explained using FIGS. 9 and 10.

第9図及び第10図は、本発明の一実施例の倣い制御動
作手順を示す動作フロー図である。
FIGS. 9 and 10 are operation flowcharts showing a copying control operation procedure according to an embodiment of the present invention.

第2図の制御起動入力部18から溶接線検出回路16に
制御起動信号Skが出力されると,溶接線検出回路16
は、第9図steplにおいて各種カウンタ、メモリ等
のイニシャライズを行い、超音波制御回路13及び走査
闘動回路17を駆動して超音波距離計4(以下センサと
略)を走査位置に移動する.次にstep2において右
方向指示フラグRをSIDEフラグにセットし、センサ
を右側に駆動しながら、所定のサンプリング間隔で距離
データ信号Sa及び受信パルス信号Sjをデータ記憶部
l4に取り込む.次にstap3で走査位置検出器9か
らの走査位置信号Ssを取り込みセンサが右端に到達し
たかどうかチェックを行い、到達していなければ再度セ
ンサを右側に岨動し距離データSa及び受信パルス信号
Sjの取り込みを続行する。走査の幅は,走査の左右両
端では必ずら反射波が受信されなくなるようにあらかじ
め設定される. センサが走査右端の位置に到達するとstep4でタイ
マ回路15を起動するためのタイマスタート信号Stを
出力してタイマをスタートさせ、右側のカウンタをイン
クリメントしてセンサが超音波を受信していない期間を
カウントする。
When the control start signal Sk is output from the control start input section 18 in FIG. 2 to the weld line detection circuit 16, the weld line detection circuit 16
In step 1 of FIG. 9, various counters, memories, etc. are initialized, and the ultrasonic control circuit 13 and scanning movement circuit 17 are driven to move the ultrasonic distance meter 4 (hereinafter abbreviated as sensor) to the scanning position. Next, in step 2, the right direction flag R is set to the SIDE flag, and while driving the sensor to the right, the distance data signal Sa and the received pulse signal Sj are taken into the data storage section l4 at predetermined sampling intervals. Next, at step 3, the scanning position signal Ss from the scanning position detector 9 is taken in, and it is checked whether the sensor has reached the right end. If it has not reached the right end, the sensor is moved to the right again and the distance data Sa and the received pulse signal Sj are Continue importing. The width of the scan is set in advance so that reflected waves are not received at both the left and right ends of the scan. When the sensor reaches the right end position of scanning, in step 4, a timer start signal St is output to start the timer circuit 15 to start the timer, and the counter on the right side is incremented to determine the period during which the sensor is not receiving ultrasonic waves. Count.

step5でセンサが受信期間に入ったことを検出する
とstep6で右側のカウンタ(受信していない期間)
をメモリにセーブし、再びカウンタをリセットして今度
は左方向指示フラグをSIDEフラグにセットし,st
ep7において1走査(以下1ウィービングと略)が終
了するまで右側と同様に距離データSa及び受信パルス
信号Sjを取り込み、データ記憶部14に記憶するとと
もに左端から右方向移動の際に受信していない期間を左
側のカウンタに取り込みメモリにセーブする.step
7で1ウィービングが終了すると、記号Rで示す修正処
理を行ってstepl4に進み、制御終了でなければ再
び記号Qに復帰して同様な動作手順を繰り返す. 第10図は第9図の記号R、すなわち第2図,データ記
憶部14に記憶された距離データ信号Sa、受信パルス
信号Sj及び第9図、step6で記憶された左右それ
ぞれのカウント値(カウンタL,カウンタR)に基づい
て溶接トーチ位置の修正処理を行う手順の詳細動作フロ
ー図である.初めに、step8においてデータ記憶部
14に記憶された受信パルス信号Sjからウィービング
周波数成分のパワースペクトルPsj(fo)を求める
.次にstep9でPsj(fo)>0のチェックを行
い.Psj (fo)>Oの場合はウィービング中心位
置が溶接線からずれているものと判断しsteploに
進む* staplQでは、第9図のstep6で求め
たカウンタの値の差を求め,stepllでこの差に応
じ横方向の修正信号Spを第2図のロボット制御装置1
2に出力する. 一方,ずれがない場合にはstep9からstepl2
に進み、step8においてデータ記憶部14に記憶さ
れた距離データSaから1ウィービングあたりに受信さ
れた距離データの反射波受信期間の平均値Savを求め
、stepl3においてこの値と基準値Ssvとの比較
を行い、この値に基づいて高さ方向の修正信号をロボッ
ト制御装置12に出力する。尚、以上の制御動作を本実
施例ではマイクロコンピュータのソフトウェアで実行す
る動作手順を例に説明しているが、ハードウェアによっ
て実行されてもよい。
When the sensor detects that it has entered the reception period in step 5, the counter on the right side (period of no reception) is set in step 6.
is saved in memory, the counter is reset again, this time the left direction flag is set to the SIDE flag, and the st
In ep7, until one scan (hereinafter abbreviated as one weaving) is completed, distance data Sa and received pulse signal Sj are captured in the same way as on the right side and stored in the data storage unit 14, and are not received when moving from the left end to the right. Load the period into the counter on the left and save it to memory. step
When one weaving is completed at step 7, the correction process indicated by symbol R is performed and the process proceeds to step 4. If the control is not completed, the process returns to symbol Q and repeats the same operation procedure. 10 shows the symbol R in FIG. 9, that is, the distance data signal Sa and received pulse signal Sj stored in the data storage section 14 in FIG. FIG. 3 is a detailed operational flowchart of the procedure for correcting the welding torch position based on the welding torch position (L, counter R). First, in step 8, the power spectrum Psj(fo) of the weaving frequency component is determined from the received pulse signal Sj stored in the data storage section 14. Next, in step 9, check that Psj(fo)>0. If Psj (fo) > O, it is determined that the weaving center position is deviated from the welding line, and the process proceeds to step. The robot control device 1 in FIG.
Output to 2. On the other hand, if there is no deviation, step 9 to step 2
In step 8, the average value Sav of the reflected wave reception period of the distance data received per weaving is calculated from the distance data Sa stored in the data storage unit 14, and in step 3, this value is compared with the reference value Ssv. Based on this value, a correction signal in the height direction is output to the robot control device 12. In this embodiment, the above-mentioned control operation is explained using an example of an operation procedure executed by software of a microcomputer, but it may also be executed by hardware.

ずれの有無を判断する他の方法として例えば受信可能な
領域での走査両端の距離データ同士を比較する方法、あ
るいは検出された距離データをそれぞれ走査各端での基
準距離データと比較する方法等が考えられる。しかしこ
れらの方法は、走査動作の安定性や超音波の特性に影響
されやすく,これらの外乱に弱いので検出精度が低下す
る。このような外乱を鑑み、本発明では距離データの代
わりに前記受信パルス信号を用い.周波数成分のパワー
スペクトルによって溶接線からのずれの有無をチェック
しているため、外乱による部分はカットされ、信頼性の
高い溶接線倣いを実現できる.〔発明の効果〕 以上述べたように、本発明によれば、超音波送受信手段
を溶接線と略直角方向に走査させ、ワークの傾斜面によ
り反射される超音波の反射波が前記超音波送受信手段の
走査位置により、受信されない場合があることを利用し
、特に,受信される場合と、受信されない場合での出力
を変えた受信パルス信号の周波数分析によって溶接線に
対する溶接トーチの位置ずれが検出され、この位置ずれ
を修正するようにトーチ位置が制御されるので、平坦部
のないすみ肉溶接継手に対しても外乱に影響されること
なく、小型の装置で、精度のよい溶接線倣い制御が行わ
れる.
Other methods for determining the presence or absence of a deviation include, for example, a method of comparing distance data at both ends of a scan in a receivable area, or a method of comparing detected distance data with reference distance data at each end of a scan. Conceivable. However, these methods are easily affected by the stability of the scanning operation and the characteristics of ultrasonic waves, and are vulnerable to these disturbances, resulting in a decrease in detection accuracy. In view of such disturbances, the present invention uses the received pulse signal instead of distance data. Since the presence or absence of deviation from the weld line is checked using the power spectrum of the frequency component, the part caused by disturbance is cut out, making it possible to achieve highly reliable weld line tracing. [Effects of the Invention] As described above, according to the present invention, the ultrasonic transmitting/receiving means is scanned in a direction substantially perpendicular to the welding line, and the reflected waves of the ultrasonic waves reflected by the inclined surface of the workpiece are transmitted to the ultrasonic transmitting/receiving means. The positional deviation of the welding torch relative to the welding line is detected by frequency analysis of the received pulse signal, which changes the output when it is received and when it is not received, by taking advantage of the fact that it may not be received depending on the scanning position of the means. Since the torch position is controlled to correct this positional deviation, accurate weld line tracing control is possible with a small device without being affected by external disturbances, even for fillet welded joints without flat parts. will be held.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の溶接線倣い制御装置を備え
た溶接装置をワークに適用した例を示す斜視図、第2図
は本発明の溶接線倣い制御装置の回路構成例を示すブロ
ック図,第3図は超音波送受信状況を示す断面図、第4
図は検出距離と距離データ信号との関係を示した概念図
、第5図は受信パルス信号と走査位置との関係を説明し
た概念図、第6図は受信パルス信号の時間変化を説明し
た概念図、第7図は走査中心位置のずれと受信パルス信
号波形の関係を説明した概念図、第8A図〜第8C図は
受信パルス信号の周波数分析結果を説明する概念図、第
9図及び第10図は本発明の一実施例の倣い制御動作手
順を示す動作フロー図である. 4・・・超音波距離計,8・・・走査鹿動用モータ,9
・・・走査位置検出器、13・・・超音波制御回路、1
4・・・データ記憶部、15・・・タイマ回路、16・
・・溶接線検出回路。
Fig. 1 is a perspective view showing an example in which a welding device equipped with a welding line tracing control device according to an embodiment of the present invention is applied to a workpiece, and Fig. 2 shows an example of a circuit configuration of the welding line tracing controlling device of the present invention. Block diagram, Figure 3 is a sectional view showing the ultrasonic transmission/reception situation, Figure 4
The figure is a conceptual diagram showing the relationship between the detection distance and the distance data signal, Figure 5 is a conceptual diagram explaining the relationship between the received pulse signal and the scanning position, and Figure 6 is a conceptual diagram explaining the time change of the received pulse signal. 7 are conceptual diagrams explaining the relationship between the shift in the scanning center position and the received pulse signal waveform, FIGS. 8A to 8C are conceptual diagrams explaining the frequency analysis results of the received pulse signal, and FIGS. FIG. 10 is an operation flow diagram showing the scanning control operation procedure according to an embodiment of the present invention. 4... Ultrasonic distance meter, 8... Scanning deer motor, 9
...Scanning position detector, 13...Ultrasonic control circuit, 1
4...Data storage section, 15...Timer circuit, 16.
...Welding line detection circuit.

Claims (1)

【特許請求の範囲】 1、溶接トーチを該溶接トーチに装着したセンサにより
、自動的にワークの溶接線に追従させる溶接線倣い制御
方法において、センサである超音波送受信手段を前記溶
接トーチの進行方向前方に配置し、該超音波送受信手段
を前記溶接線と略直角に交差する方向に所定の周波数で
往復させつつワークに対して前記溶接線と前記往復方向
とに略直角に超音波を送信する手順と、ワークで反射さ
れた前記超音波が前記超音波送受信手段に受信された時
と受信されなかった時のそれぞれに対応して設定された
受信パルス信号を出力する手順と、該受信パルス信号の
波形の中から、前記所定の周波数成分のパワースペクト
ルを検出し、該パワースペクトルが所定値以上の時、超
音波送受信手段の往復動の中心位置が溶接線からずれて
いると判断する手順と、前記受信パルス信号に表われる
、前記超音波送受信手段の往復動の両端部分での反射波
受信無しの時間を比較して溶接線に対する前記超音波送
受信手段の溶接線のずれ方向を判断する手順と、を備え
ていることを特徴とする溶接線倣い制御方法。 2、受信した反射波に基づいて超音波送受信手段とワー
クの距離を算出する手順と、算出された前記距離を超音
波送受信手段の一往復の中の反射波が受信されている時
間の間平均して平均距離データを求める手順と、求めら
れた前記平均距離データと、予め定められた基準値を比
較して溶接トーチの高さ方向のずれを判断する手順と、
を備えた請求項1に記載の溶接線倣い制御方法。 3、溶接トーチの進行方向前方に配置され、溶接線を含
み該溶接線を構成するワークの面に対して略均一な角度
をなす平面に略垂直に超音波を発信し、受信した反射波
を電気信号に変換、出力する超音波送受信手段と、前記
超音波送受信手段を前記溶接線と略直角にかつ前記平面
と略並行に所定の周波数で往復動走査させる走査手段と
、前記超音波送受信手段に接続され該超音波送受信手段
が出力する前記電気信号を受信パルス信号及び距離デー
タ信号に変換する超音波制御手段と、該超音波制御手段
に接続され前記受信パルス信号及び距離データ信号を記
憶格納する記憶手段と、該記憶手段及び前記超音波制御
手段に接続され該記憶手段に記憶された受信パルス信号
波形から走査周波数成分のパワースペクトルを抽出し、
所定値と比較して前記往復動の中心位置の溶接線からの
ずれの有無を判定する溶接線検出手段と、該溶接線検出
手段に接続され前記超音波送受信手段の往復動両端部分
での反射波が受信されない時間を記録するタイマ手段と
、を備え、前記溶接線検出手段は、前記往復動両端部分
での反射波が受信されない時間を比較して往復動の中心
位置の溶接線からのずれの方向と大きさを算出して溶接
トーチを溶接線に倣わすものである溶接線倣い制御装置
。 4、溶接線検出手段は、記憶手段に記憶された距離デー
タ信号の一走査での反射波受信期間における平均値と予
め定められた基準値とから、超音波送受信手段のワーク
に対する高さ方向の距離のずれを求め、このずれの値に
基づいて溶接トーチとワークの高さ方向の距離を制御す
るものであることを特徴とする請求項3に記載の溶接線
倣い制御装置。
[Scope of Claims] 1. In a welding line tracing control method in which a welding torch automatically follows a welding line of a workpiece by a sensor attached to the welding torch, an ultrasonic transmitting/receiving means, which is a sensor, is used to control the progress of the welding torch. the ultrasonic transmitting/receiving means is reciprocated at a predetermined frequency in a direction substantially perpendicular to the welding line, and transmits ultrasonic waves to the workpiece substantially perpendicular to the welding line and the reciprocating direction; a procedure for outputting a received pulse signal set corresponding to when the ultrasonic wave reflected by the workpiece is received by the ultrasonic transmitting/receiving means and when not received by the ultrasonic transmitting/receiving means, and the received pulse A procedure for detecting the power spectrum of the predetermined frequency component from the signal waveform, and determining that the center position of the reciprocating motion of the ultrasonic transmitting/receiving means is deviated from the welding line when the power spectrum is equal to or greater than a predetermined value. and a time period during which no reflected waves are received at both ends of the reciprocating movement of the ultrasonic transmitting/receiving means, which appears in the received pulse signal, is compared to determine the direction of deviation of the welding line of the ultrasonic transmitting/receiving means with respect to the welding line. A welding line tracing control method comprising: 2. A procedure for calculating the distance between the ultrasonic transmitting/receiving means and the workpiece based on the received reflected waves, and averaging the calculated distance during the time during which the reflected waves are received during one round trip of the ultrasonic transmitting/receiving means. a step of determining average distance data by comparing the obtained average distance data with a predetermined reference value to determine a deviation in the height direction of the welding torch;
The welding line tracing control method according to claim 1, comprising: 3. Placed in front of the welding torch in the direction of travel, it emits ultrasonic waves approximately perpendicular to a plane that includes the welding line and forms an approximately uniform angle with respect to the surface of the work that constitutes the welding line, and emits the received reflected waves. an ultrasonic transmitting/receiving means for converting and outputting an electric signal; a scanning means for reciprocating the ultrasonic transmitting/receiving means at a predetermined frequency substantially perpendicular to the welding line and substantially parallel to the plane; and the ultrasonic transmitting/receiving means. an ultrasonic control means connected to the ultrasonic wave transmitting/receiving means for converting the electric signal outputted by the ultrasonic transmitting/receiving means into a received pulse signal and a distance data signal; and an ultrasonic control means connected to the ultrasonic control means to store and store the received pulse signal and the distance data signal. a storage means for extracting a power spectrum of a scanning frequency component from a received pulse signal waveform connected to the storage means and the ultrasonic control means and stored in the storage means;
a welding line detection means for determining whether or not the center position of the reciprocating motion deviates from the welding line by comparing it with a predetermined value; and reflection at both ends of the reciprocating motion of the ultrasonic wave transmitting/receiving means connected to the welding line detecting means. timer means for recording the time during which the wave is not received, and the welding line detecting means compares the time during which the reflected wave is not received at both end portions of the reciprocating motion to determine the deviation of the center position of the reciprocating motion from the welding line. A welding line tracing control device that calculates the direction and size of the welding line and causes the welding torch to follow the welding line. 4. The weld line detecting means detects the height direction of the ultrasonic transmitting/receiving means relative to the workpiece based on the average value during the reflected wave reception period in one scan of the distance data signal stored in the storage means and a predetermined reference value. 4. The welding line tracing control device according to claim 3, wherein the distance deviation is determined and the distance in the height direction between the welding torch and the workpiece is controlled based on the value of this deviation.
JP24163189A 1989-09-18 1989-09-18 Method and device for profile control of weld line Pending JPH03106570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24163189A JPH03106570A (en) 1989-09-18 1989-09-18 Method and device for profile control of weld line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24163189A JPH03106570A (en) 1989-09-18 1989-09-18 Method and device for profile control of weld line

Publications (1)

Publication Number Publication Date
JPH03106570A true JPH03106570A (en) 1991-05-07

Family

ID=17077191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24163189A Pending JPH03106570A (en) 1989-09-18 1989-09-18 Method and device for profile control of weld line

Country Status (1)

Country Link
JP (1) JPH03106570A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500178A (en) * 2005-07-15 2009-01-08 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Welding method and system with position determination of welding torch
CN103056509A (en) * 2011-10-19 2013-04-24 三菱重工业株式会社 Friction stirring and joining apparatus, and friction stirring and joining method
CN105598559A (en) * 2016-03-16 2016-05-25 湘潭大学 Fillet weld tracking system and method based on ultrasonic swing scanning
CN106735750A (en) * 2017-02-23 2017-05-31 湘潭大学 A kind of angle welding automatic tracking method based on ultrasound phase-control array sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500178A (en) * 2005-07-15 2009-01-08 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Welding method and system with position determination of welding torch
CN103056509A (en) * 2011-10-19 2013-04-24 三菱重工业株式会社 Friction stirring and joining apparatus, and friction stirring and joining method
US9079270B2 (en) 2011-10-19 2015-07-14 Mitsubishi Heavy Industries, Ltd. Friction stirring and joining apparatus, and friction stirring and joining method
CN105598559A (en) * 2016-03-16 2016-05-25 湘潭大学 Fillet weld tracking system and method based on ultrasonic swing scanning
CN105598559B (en) * 2016-03-16 2017-12-29 湘潭大学 Fillet weld tracking system and method based on ultrasonic swing scanning
CN106735750A (en) * 2017-02-23 2017-05-31 湘潭大学 A kind of angle welding automatic tracking method based on ultrasound phase-control array sensor
CN106735750B (en) * 2017-02-23 2019-02-01 湘潭大学 A kind of fillet weld automatic tracking method based on composite ultrasonic phased-array transducer

Similar Documents

Publication Publication Date Title
US6496754B2 (en) Mobile robot and course adjusting method thereof
EP0170363B1 (en) Laser beam vehicle guidance system
EP0454749B1 (en) Welding method and apparatus
KR890000776B1 (en) Measusement head for welding machines
CN112355440B (en) Ultrasonic tracking system for underwater welding seam
EP1012621A1 (en) Distance measuring apparatus using pulse light
GB2382251A (en) Mobile Robot
US5724123A (en) Distance measuring equipment for detecting a scanning direction
JPH02503112A (en) Method and apparatus for determining surface topography information
JPH11295419A (en) Ultrasonic distance measurement method and apparatus of transmission reception separation type reflecting system
JPH03106570A (en) Method and device for profile control of weld line
US5492012A (en) Time-of-flight method for sizing cracks through fluid-filled gaps in structures
US5079752A (en) Platform mounted ultrasonic sweep detection system
JPH0862333A (en) Obstruction detecting device
US4298785A (en) Method and device for automatically tracking systems to the center of weld gaps, weld joints and weld reinforcements
JP2007142049A (en) Ultrasonic bonding equipment, controller therefor, and ultrasonic bonding method
KR20040084309A (en) Position measuring observer device laser head for welding
US20030057365A1 (en) Folded reflecting path optical spot scanning system
JPH05264719A (en) Laser rader apparatus
JP2003004851A (en) Radar apparatus
JPH1119787A (en) Laser welding method and its device
JPH0474913A (en) Measuring sensor for surface shape
JPH049278A (en) Detector for gap between works to be welded
JPH04135071A (en) Multilayer welding method and equipment
JP3039636B2 (en) Object outline recognition device