JPH03105855A - Manufacture of pole plate for lead-acid battery - Google Patents

Manufacture of pole plate for lead-acid battery

Info

Publication number
JPH03105855A
JPH03105855A JP1242693A JP24269389A JPH03105855A JP H03105855 A JPH03105855 A JP H03105855A JP 1242693 A JP1242693 A JP 1242693A JP 24269389 A JP24269389 A JP 24269389A JP H03105855 A JPH03105855 A JP H03105855A
Authority
JP
Japan
Prior art keywords
copper
grating
lead
resin
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1242693A
Other languages
Japanese (ja)
Inventor
Tomonori Mukasa
武笠 朝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1242693A priority Critical patent/JPH03105855A/en
Publication of JPH03105855A publication Critical patent/JPH03105855A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To continuously process the cut face of an expanded metal grating so as to prevent elution of copper or copper alloy therefrom by forming a band portion prior to filling of paste, and then filling the band portion with paste, and cutting the band portion and then melting a thermoplastic resin to cover the cut face of the expanded metal grating with resin. CONSTITUTION:A rolled sheet of copper is developped to fabricate an expanded metal grating, and then an ear portion 5 and a leg portion 6 are both formed in that portion of the grating which is not expanded. The surface of the grating is plated with a thin film to fabricate a continuous grating body 1, and, ABS resin 3, which is one kind of thermoplastic resin, is applied to that portion 2 of the grating body 1 which is to be cut. After the continuous grating body 1 is filled with paste using a filling machine, the grating body 1 is cut into predetermined size and its resin-applied portion is pressed by a press and its copper grating portion which is exposed when cutting the expanded metal grating is completey covered with resin. Thus the cut face of copper or copper alloy is completely covered with thermoplastic resin so that elution of copper and self-discharge are avoided when the expanded metal grating is immersed in a dilute sulfuric acid.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池用極板の製遣方法に間するもので、特
に銅あるいは飼合金製の薄板をエキスパンド加工して連
続的に鉛蓄電池用極板を製造する方法の改良に関するも
のである. 従来の技術とその課題 鉛蓄電池は動力用、移動用、据置用などの電源として広
く用いられており、低価格で高率放電に優れていること
から自動車の起動用に広く採用されている.現在白動車
起動用の鉛蓄電池には、その使用条件などから長寿命化
、耐高温特性の改咎なといくつかの要求があるが、その
1つに高出力化の要求がある。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for producing electrode plates for lead-acid batteries, and in particular, to continuously produce electrodes for lead-acid batteries by expanding thin plates made of copper or feed alloy. This paper concerns improvements in the method of manufacturing plates. Conventional technology and its challenges Lead-acid batteries are widely used as power sources for power, transportation, and stationary use, and are widely used for starting automobiles due to their low cost and excellent high-rate discharge. Currently, there are several demands on lead-acid batteries for starting motor vehicles, such as longer lifespan and improved high-temperature resistance due to their usage conditions, and one of these is a demand for higher output.

一般に6セルモノブロックの構造である自動車起動用の
鉛蓄電池の高出力化の方法としては、セル間接続方法を
改善してセル間接続部分の抵抗を小さくすること、極板
間隔を小さ《して極間抵抗を小さくすること,電解液で
ある希硫酸の濃度を高くすることが考えられる.しかし
これらについては既に限界に近いところまで改悴が進め
られている.もう1つの方法ヒしては電圧特性の優れた
格子体を用いることであり、斜め棧の入・った格f体や
放射線状の棧の入った格子体など形状を最適化すること
、電気伝導性のよい材料を用いることなどが考えられる
。電気伝導性のよい材料としてはコスト面からも考え合
わせると銅および銅合金が最適である. 銅あるいは銅合金を格子体に用いる場合、その表面が露
出していると、即ち、銅あるいは銅合金の表面が直接電
解液である希硫酸と接触していると、正極に用いた場合
は銅が溶出して負極板に析出し、負極に用いた場合はそ
の露出部分において鉛蓄電池の充放電反応以外の反応が
起こってしまう.即ち、充電中においては水素ガスの発
生反応が起こり負極活物質の充電が不十分になり、放置
中には負極活物質である金属鉛と局部電池を構成して自
己放電を大きくしてしまう.そのため銅あるいは銅合金
製の格子体の表面に電気メッキや溶湯に浸漬するなどし
て鉛あるいは鉛合金の被族を形戒して使用しなければな
らない. 銅および銅合金製の格子体については既に大型、例えば
潜水艦用の鉛蓄電池等で使用されているが、その製造工
程は非常に複雑で、そのままでは大量に生産され低価格
を特徴とする自動車起動用の鉛蓄電池にはとうてい適用
できない.そこで、自動車起動用の鉛蓄電池に適用でき
る製造方法として銅あるいは銅合金製の薄板をエキスパ
ンド加工し、エキスパンド加工を施していない部分に耳
部や足部を形成した後、その表面に鉛あるいは!9合金
の被覆層を形成し、これにペーストを充填し所定の寸法
に切断して極板を得る連続的な鉛蓄電池用極板の製造方
法を検討してきた. しかし、この製造方法においては、ペーストを充填して
所定の寸法に切断する際に新たな銅あるいは銅合金の露
出面が現れるという問題点があった。
In general, methods for increasing the output of lead-acid batteries for starting automobiles, which have a 6-cell monoblock structure, include improving the inter-cell connection method to reduce the resistance at the inter-cell connections, and reducing the spacing between the electrode plates. Possible options include reducing the interelectrode resistance and increasing the concentration of dilute sulfuric acid as the electrolyte. However, these improvements have already reached their limits. Another method is to use a lattice body with excellent voltage characteristics, and by optimizing the shape, such as a case f body with diagonal lattice or a lattice body with radial lattice, One possibility is to use a material with good conductivity. Considering the cost, copper and copper alloys are the most suitable materials with good electrical conductivity. When copper or copper alloy is used for the grid, if its surface is exposed, that is, if the surface of the copper or copper alloy is in direct contact with dilute sulfuric acid, which is the electrolyte, copper will be removed when used for the positive electrode. is eluted and deposited on the negative electrode plate, and when used as a negative electrode, reactions other than the charging and discharging reactions of lead-acid batteries occur in the exposed part. That is, during charging, a hydrogen gas generation reaction occurs, resulting in insufficient charging of the negative electrode active material, and when left unused, the negative electrode active material forms a local battery with metal lead, increasing self-discharge. Therefore, it is necessary to use lead or lead alloy coatings on the surface of copper or copper alloy grids by electroplating or immersing them in molten metal. Grids made of copper and copper alloys are already used in large-scale batteries, such as lead-acid batteries for submarines, but the manufacturing process is extremely complex, and as is, they are used in large quantities to produce low-cost automobiles. This method cannot be applied to lead-acid batteries for commercial use. Therefore, as a manufacturing method that can be applied to lead-acid batteries for starting automobiles, a thin plate made of copper or copper alloy is expanded, ears and feet are formed on the unexpanded parts, and then the surface is covered with lead or! We have been studying a continuous method for producing electrode plates for lead-acid batteries by forming a coating layer of 9 alloy, filling it with paste, and cutting it into predetermined dimensions to obtain electrode plates. However, this manufacturing method has a problem in that new exposed surfaces of copper or copper alloy appear when the paste is filled and cut into predetermined dimensions.

課題を解決するための手段 本発明は、まず、銅あるいは銅合金製の薄板をエキスパ
ンド加工し、ついでエキスパンド加工を施していない部
分に耳部あるいは耳部と足部を成形し、さらにその表面
に鉛あるいは鉛合金からなる被覆層を形成する.その後
、後工程で切断する部分に、耐酸性のある熱可塑性樹脂
、例えば^BS樹脂を塗布する等の手段によりこれらの
樹脂からなる帯状部を形成する.続いて通常の方法でペ
ーストを充填し、その後、熟可塑性樹脂の帯状部のほぼ
中央付近の所定位置で切断し、熱可塑性樹脂が完全に溶
融するまで温度を上げたプレス機で熟プレスする等の手
段により両端の熱可塑性樹脂部を溶融して、エキスパン
ド格子の切断面を樹脂で被覆する.この方法により、銅
あるいは飼合金の切断面は完全に熟可塑性樹脂で覆われ
、fb硫酸中に浸漬しても銅の溶出や自己放電がなくな
る.実施例 以下、本発明を実施例に基づいて説明する.第1図は連
続したエキスパンド格子の切断位置近傍に熱可塑性樹脂
からなる帯状部を形成した状態を示した図である。
Means for Solving the Problems The present invention first expands a thin plate made of copper or copper alloy, then forms ears or ears and feet on the unexpanded portions, and then molds the ears and feet on the surface. Forms a coating layer made of lead or lead alloy. Thereafter, a band-shaped portion made of acid-resistant thermoplastic resin, such as BS resin, is formed on the part to be cut in a subsequent process by means of applying such resin. Next, the paste is filled in the usual manner, and then the strip of mature plastic resin is cut at a predetermined position approximately in the center, and the thermoplastic resin is pressed in a press machine heated to a high temperature until it is completely melted. The thermoplastic resin portions at both ends are melted using the method described above, and the cut surfaces of the expanded lattice are coated with the resin. With this method, the cut surface of copper or feed alloy is completely covered with a mature plastic resin, and there is no copper elution or self-discharge even when immersed in fb sulfuric acid. EXAMPLES The present invention will be explained below based on examples. FIG. 1 is a diagram showing a state in which a band made of thermoplastic resin is formed near the cutting position of a continuous expanded grid.

まず、厚み0. 2mmの銅の圧延シートを展開してエ
キスパンド格子を作製した.エキスパンド加工を施して
いない部分に耳部5および足部6を形成した.ついで、
格子表面に聞−シ合金よりなる薄層をメッキして連続的
な格子体1を作製した.続いて、格子の切断する部分2
に、幅約3問の耐酸性を有する熱可塑性樹脂の一つであ
るABS @脂3を塗布した.4はエキスパンド部、7
は下部額縁、8は上部額縁である.この連続的な格子体
にペーストを機械充填した後、所定の大きさに切断した
First, the thickness is 0. An expanded lattice was made by rolling out a 2 mm rolled copper sheet. Ear portions 5 and foot portions 6 were formed on the portions that were not expanded. Then,
A continuous lattice body 1 was fabricated by plating a thin layer of a metal alloy on the lattice surface. Next, cut part 2 of the grid.
ABS @ Resin 3, which is a thermoplastic resin with acid resistance, was applied to the width of about 3 mm. 4 is the expansion part, 7
is the lower frame, and 8 is the upper frame. After this continuous grid was mechanically filled with paste, it was cut into a predetermined size.

この後、プレス機で樹脂を塗布した部分をプレスし、エ
キスパンド格子を切断する際に露出した銅格子部分を樹
脂で完全に被覆した.第2図は完成した極板を示した図
である.上述の方法で作製した極板を負極板とした密閉
式鉛電池Aおよび電池Aと同じ構或で切断面を樹脂で被
覆せず銅が露出したままの負極板を用いた密閉式鉛電池
B、さらに負極格子として従来の殉−α系合金鋳造格子
に電池Aに用いたと同じペーストを充填して負極板とし
た密閉式鉛電池Cを試作した. これら3種類の電池に対し、銅の溶出が最も問題となる
過放電放置試験を行った.過放電放置試験は試@電池に
10Wのランプを接続して1カ月放置し、ついで2.5
 V/セルの定電圧で充電した後5hR容量試験を行っ
た.その後、SAEに規定されている寿命試験を行った
.その結果を第1表に示す. 第1表 第1表の試験結果から、定電圧充電後の5hR容量は、
本発明による負極格子を用いた電池Aは、従来品の負極
格子を用いた電池Cまたは切断面の被覆なしの負極格子
を用いた電池Bとほとんど差がなかったが、容量試@後
に行ったSAE寿命試験では、電池Aが4 , 500
〜と、従来品のCよりも良好な寿命性能を示したのに対
して、銅のエキスパンド格子をそのまま用いて、切断面
の被覆のない電池Bは、僅か500〜で寿命となった.
′@池Bは減液量が多く、また寿命試験中の充電終期電
流が大きくなっていたから銅が溶出したものと考えられ
る.本発明の銅格子を使用した電池Aは、この様なこと
はなく、銅格子の切断面を熱可塑性樹脂で被覆した効果
が顕著なことがわかる.なお、銅の代わりに銅合金を用
いたエキスパンド格子として使用した電池でも同様な結
果が得られたので、銅のみならず銅合金にも本発明によ
る切断面を熱可塑性樹脂で被覆する方法が有効なことが
わかった. 発明の効果 以上詳述したように、本発明により銅あるいは銅合金製
の薄板をエキスパンド加工し、鉛または鉛合金で被覆し
た格子を負極板に用いる際に、切断した面を連続的かつ
安価に処理でき、さらに銅あるいは銅合金の溶出を防止
することが可能となり、その効果は極めて大きい.
After this, the area coated with resin was pressed using a press machine, and the copper lattice part exposed when cutting the expanded lattice was completely covered with resin. Figure 2 shows the completed electrode plate. Sealed lead-acid battery A, which uses the electrode plate produced by the method described above as the negative electrode plate, and Sealed lead-acid battery B, which has the same structure as battery A but uses a negative electrode plate whose cut surface is not coated with resin and the copper remains exposed. Furthermore, a sealed lead-acid battery C was prototyped by filling the same paste used in battery A into a conventional cast-alpha alloy grid as a negative electrode plate. For these three types of batteries, we conducted an overdischarge storage test in which copper elution is the most problematic issue. For the over discharge test, connect a 10W lamp to the test battery and leave it for one month, then 2.5
After charging at a constant voltage of V/cell, a 5hR capacity test was performed. After that, we conducted a life test as specified by SAE. The results are shown in Table 1. From the test results in Table 1, the 5hR capacity after constant voltage charging is:
Battery A using the negative electrode grid according to the present invention had almost no difference from Battery C using the conventional negative electrode grid or Battery B using the negative electrode grid with no coating on the cut surface, but after the capacity test @ In the SAE life test, battery A had a life expectancy of 4,500
Battery B, which used the expanded copper lattice as it was and had no coating on the cut surface, had a lifespan of only 500 °C.
'@ Pond B had a large amount of liquid loss, and the current at the end of charging during the life test was large, so it is thought that copper was eluted. Battery A, which uses the copper grid of the present invention, does not have this problem, and it can be seen that the effect of coating the cut surfaces of the copper grid with thermoplastic resin is remarkable. Note that similar results were obtained with batteries using copper alloy as an expanded grid instead of copper, so the method of coating the cut surface with thermoplastic resin according to the present invention is effective not only for copper but also for copper alloy. I found out something. Effects of the Invention As detailed above, according to the present invention, when a thin plate made of copper or copper alloy is expanded and a grid coated with lead or lead alloy is used as a negative electrode plate, the cut surface can be continuously and inexpensively processed. This makes it possible to prevent the elution of copper or copper alloys, which is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連続したエキスパンド格子の切断位置近傍に熱
可塑性樹脂からなる帯状部を形成した状態を示した図、
第2図は完成した極板を示した図である.
FIG. 1 is a diagram showing a state in which a band made of thermoplastic resin is formed near the cutting position of a continuous expanded grid;
Figure 2 shows the completed electrode plate.

Claims (1)

【特許請求の範囲】[Claims] 1、銅あるいは銅合金製の薄板をエキスパンド加工し、
エキスパンド加工を施していない部分に耳部あるいは耳
部および足部を形成したのち、その表面に鉛あるいは鉛
合金からなる被覆層を形成し、これにペーストを充填し
所定の寸法に切断して極板を得る連続的な鉛蓄電池用極
板の製造方法において、ペースト充填以前の工程で所定
寸法に切断する部分に予め熱可塑性樹脂からなる帯状部
を形成し、ペースト充填後、所定位置で切断した後熱プ
レスして熱可塑性樹脂を溶融してエキスパンド格子の切
断面を樹脂で被覆することを特徴とする鉛蓄電池用極板
の製造方法。
1. Expanding a thin plate made of copper or copper alloy,
After forming ears or ears and feet on the part that has not been expanded, a coating layer made of lead or lead alloy is formed on the surface, and this is filled with paste and cut to a specified size to form the electrode. In a continuous method for manufacturing electrode plates for lead-acid batteries, a strip made of thermoplastic resin is formed in advance at the part to be cut to a predetermined size in the process before filling the paste, and then cut at a predetermined position after filling the paste. A method for manufacturing an electrode plate for a lead-acid battery, which comprises the steps of heat pressing to melt a thermoplastic resin and coating the cut surfaces of the expanded lattice with the resin.
JP1242693A 1989-09-19 1989-09-19 Manufacture of pole plate for lead-acid battery Pending JPH03105855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242693A JPH03105855A (en) 1989-09-19 1989-09-19 Manufacture of pole plate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242693A JPH03105855A (en) 1989-09-19 1989-09-19 Manufacture of pole plate for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH03105855A true JPH03105855A (en) 1991-05-02

Family

ID=17092838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242693A Pending JPH03105855A (en) 1989-09-19 1989-09-19 Manufacture of pole plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH03105855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236865A (en) * 2005-02-25 2006-09-07 Furukawa Battery Co Ltd:The Manufacturing method of paste type electrode plate and alkaline storage battery using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236865A (en) * 2005-02-25 2006-09-07 Furukawa Battery Co Ltd:The Manufacturing method of paste type electrode plate and alkaline storage battery using it

Similar Documents

Publication Publication Date Title
JP2005505102A (en) Current collector structure and method for improving the performance of lead acid batteries
JP5325358B1 (en) ELECTRODE FOR BATTERY AND METHOD FOR MANUFACTURING THE SAME
CN111430671A (en) Bipolar pole piece and preparation method thereof, lithium ion battery and preparation method thereof
JPH10188996A (en) Grid body for lead-acid battery
CN112290104B (en) High-temperature negative-pressure formation method of lithium ion battery
KR101830825B1 (en) Manufacturing method of ldad-acid battery for prevent power failure
CN215988843U (en) Lithium-supplementing negative plate and lithium ion battery comprising same
JPH03105855A (en) Manufacture of pole plate for lead-acid battery
CN216563274U (en) Lithium battery pole piece and roll core
JP2002093409A (en) Control valve type lead-acid battery
US5001025A (en) Method for electrochemically treating battery plate stock and related product
JP3637603B2 (en) Lead acid battery
US3355325A (en) Battery plate manufacture
CN219610683U (en) Winding type lithium ion battery cell bipolar lug structure
JPS60253160A (en) Manufacture of negative plate for lead storage battery utilizing copper grating
JPH01302661A (en) Lead acid battery and its manufacture
KR100355501B1 (en) Lead acid bettery
KR100196277B1 (en) Expanded electrode for dry-charged battery and manufacturing method
JPH02309560A (en) Manufacture of electrode plate for lead storage battery
JPH0353457A (en) Manufacture of plate for lead-acid battery
JPS59111261A (en) Manufacture of plate for alkaline storage battery
JPS5923471A (en) Manufacture of substrate for lead-acid battery
CN113851651A (en) High-hardness lithium ion battery and preparation method thereof
JP2913482B2 (en) Lead storage battery
CN117712520A (en) Composite membrane for electrochemical pre-lithium and pre-lithium method