JPH031053B2 - - Google Patents

Info

Publication number
JPH031053B2
JPH031053B2 JP57226643A JP22664382A JPH031053B2 JP H031053 B2 JPH031053 B2 JP H031053B2 JP 57226643 A JP57226643 A JP 57226643A JP 22664382 A JP22664382 A JP 22664382A JP H031053 B2 JPH031053 B2 JP H031053B2
Authority
JP
Japan
Prior art keywords
air
exhaust gas
denitrification
duct
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57226643A
Other languages
Japanese (ja)
Other versions
JPS59120229A (en
Inventor
Shigeo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57226643A priority Critical patent/JPS59120229A/en
Publication of JPS59120229A publication Critical patent/JPS59120229A/en
Publication of JPH031053B2 publication Critical patent/JPH031053B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 本発明は脱硝反応器内の脱硝媒体を乾燥させる
脱硝装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a denitrification device for drying a denitrification medium in a denitrification reactor.

例えばボイラなどの燃焼排ガスを対象とした脱
硝装置では、脱硝触媒を内蔵した脱硝反応器に排
ガスを通し、脱硝反応器の上流側に注入した
NH3により排ガス中のNOxを無害な窒素(N2
と水分(H2O)に還元している。
For example, in a denitrification device that targets combustion exhaust gas from boilers, etc., the exhaust gas is passed through a denitrification reactor with a built-in denitrification catalyst, and then injected into the upstream side of the denitrification reactor.
NH3 converts NOx in exhaust gas into harmless nitrogen ( N2 )
and water (H 2 O).

第1図は脱硝装置が設置されたボイラの代表的
な煙風道系統を示す。
Figure 1 shows a typical flue system of a boiler equipped with a denitrification device.

空気ダクト1内の燃焼用空気は、押込通風機
(以下FDFという)2にて昇圧され、空気予熱器
(以下A/Hという)3にて排ガスダクト4の排
ガスによつて加熱した後、ウインドボツクス5よ
りボイラ6へ供給される。
The combustion air in the air duct 1 is pressurized by a forced draft fan (hereinafter referred to as FDF) 2, heated by the exhaust gas from the exhaust gas duct 4 in an air preheater (hereinafter referred to as A/H) 3, and then heated by the exhaust gas from the exhaust gas duct 4. It is supplied from box 5 to boiler 6.

一方、ボイラ6内で燃焼した排ガスは、排ガス
ダクト4より、脱硝反応器7の脱硝触媒8で脱硝
された後、A/H3でその排熱が回収される。
On the other hand, the exhaust gas combusted in the boiler 6 is denitrated by the denitration catalyst 8 of the denitration reactor 7 through the exhaust gas duct 4, and then the exhaust heat is recovered by the A/H 3.

その後排ガスは電気集塵器9、誘引通風機(以
下IDFという)10で昇圧され煙突11より大気
へ放出される。
Thereafter, the exhaust gas is pressurized by an electric precipitator 9 and an induced draft fan (hereinafter referred to as IDF) 10, and is released into the atmosphere from a chimney 11.

ところが、脱硝反応器7内の脱硝触媒8は、運
転時間とともに劣化するものであり、脱硝触媒8
の劣化原因は、排ガス中の硫黄酸化物(以下SOx
という)によるものと、ダクト中のナトリウム
(Na)、カリウム(K)等のアルカリ金属による
ものに大別される。
However, the denitrification catalyst 8 in the denitrification reactor 7 deteriorates over time, and
The cause of deterioration is sulfur oxides (SOx) in the exhaust gas.
) and those caused by alkali metals such as sodium (Na) and potassium (K) in the duct.

例えばSOxによる被毒は、排ガス温度が約250
℃以下の低温部で発生し、脱硝触媒8の表面上で
排ガス中のSO3およびH2Oと添加されたNH3とが
反応して酸性硫安(NH4SO4)、硫安
〔(NH42SO4〕、亜硫安〔(NH42SO3〕などの硫
安アンモニウム塩系生成物の溶融塩を生成し、そ
れが脱硝触媒8の触媒細孔に吸着されて毛管凝縮
を起したり、あるいは脱硝触媒8の表面を被つて
触媒活性を低下させる。
For example, poisoning by SOx occurs when the exhaust gas temperature is approximately 250
It occurs in a low temperature section below ℃, and SO 3 and H 2 O in the exhaust gas react with the added NH 3 on the surface of the denitrification catalyst 8 to form acidic ammonium sulfate (NH 4 SO 4 ) and ammonium sulfate [(NH 4 ) 2 SO 4 ], ammonium sulfite [(NH 4 ) 2 SO 3 ], and other ammonium sulfate ammonium salt products are generated, which are adsorbed into the catalyst pores of the denitrification catalyst 8 and cause capillary condensation. or cover the surface of the denitrification catalyst 8 to reduce catalytic activity.

しかしながら、このSOxによる脱硝触媒の被毒
は、ボイラ6の排ガス温度に基因するものであ
り、ボイラ6出口の排ガス温度が、全負荷時360
℃であるが、1/2負荷時は310℃、1/4負荷時は270
℃位に、負荷に応じて低下するためである。
However, this poisoning of the denitrification catalyst by SOx is caused by the temperature of the exhaust gas from the boiler 6, and the temperature of the exhaust gas at the outlet of the boiler 6 is 360°C at full load.
℃, 310℃ at 1/2 load and 270℃ at 1/4 load
This is because the temperature decreases depending on the load.

このように負荷変動による脱硝反応器7への排
ガス温度を上昇させる一手段として、排ガスをボ
イラ6の節炭器(図示していない)をバイパスさ
せる、いわゆる節炭器バイパスによる排ガス温度
を上昇させて、脱硝触媒8のSOxによる被毒は防
止されている。
As a means of increasing the temperature of the exhaust gas flowing into the denitrification reactor 7 due to load fluctuations, the temperature of the exhaust gas is increased by causing the exhaust gas to bypass the economizer (not shown) of the boiler 6, which is a so-called economizer bypass. Therefore, poisoning of the denitrification catalyst 8 by SOx is prevented.

一方、アルカリ金属による脱硝触媒8の劣化
は、ボイラ6の通常運転時にはゆるやかに劣化
し、特に問題とはならない。
On the other hand, the denitrification catalyst 8 deteriorates due to alkali metals, which deteriorates slowly during normal operation of the boiler 6 and does not pose a particular problem.

ところが、ボイラ6のチユーブ破損事故を起し
た場合には、ボイラ6を緊急停止し、ボイラ6自
体はFDF2により空気ダクト1からの燃焼用空
気によつて一方的に強制冷却されるので、ボイラ
6のチユーブから漏れた蒸気、水はボイラ6から
排出される排ガスに同伴されて高湿潤ガスとな
り、約100℃以下では水を同伴するために、その
後流に配置された脱硝反応器7内の脱硝触媒8
が、ミストで濡れ急激な性能低下が生ずる。
However, if a tube breakage accident occurs in the boiler 6, the boiler 6 will be stopped immediately, and the boiler 6 itself will be unilaterally forcibly cooled by the combustion air from the air duct 1 using the FDF 2. The steam and water leaking from the tube are entrained in the exhaust gas discharged from the boiler 6 and become highly humid gas. At temperatures below about 100°C, water is entrained in the denitrification reactor 7 placed downstream. catalyst 8
However, the mist causes a sudden drop in performance.

これはチユーブ破損事故により脱硝触媒8の表
面にミスト(又は水)が付着すると、予め脱硝触
媒8の表面に付着していたダスト中のNa、Kが
ミストを媒体として脱硝触媒8の細孔内へ入り込
むためである。
This is because when mist (or water) adheres to the surface of the denitrification catalyst 8 due to a tube breakage accident, Na and K in the dust that had previously adhered to the surface of the denitrification catalyst 8 enter the pores of the denitrification catalyst 8 using the mist as a medium. This is to get into.

そこで、このようなボイラ6のチユーブ破損事
故による脱硝触媒8の性能が劣化した場合には、
第2図に示す如く、脱硝触媒8を水洗処理してい
た。
Therefore, if the performance of the denitrification catalyst 8 deteriorates due to such a tube breakage accident of the boiler 6,
As shown in FIG. 2, the denitrification catalyst 8 was washed with water.

第2図において12は水洗ラインである。 In FIG. 2, 12 is a water washing line.

つまり、ボイラ6の運転停止後、脱硝触媒8に
水洗ライン12からの水をスプレーして、脱硝触
媒8の細孔内にまで入つた被毒成分を充分水洗に
よつて洗い流し、その後軽油等のダクト成分の少
ない燃料によつてボイラ6を立ち上げ、その排ガ
スを脱硝反応器7の脱硝触媒8へ通すことにより
脱硝触媒8を乾燥させ、脱硝触媒8を乾燥させた
後にボイラ6を通常運転に戻す方法がとられてい
た。
That is, after the operation of the boiler 6 is stopped, the denitrification catalyst 8 is sprayed with water from the water washing line 12 to thoroughly wash away the poisonous components that have entered the pores of the denitrification catalyst 8, and then the denitrification catalyst 8 is thoroughly washed away with water. The boiler 6 is started up using fuel with few duct components, and the exhaust gas is passed through the denitration catalyst 8 of the denitration reactor 7 to dry the denitration catalyst 8. After drying the denitration catalyst 8, the boiler 6 is returned to normal operation. A method was taken to bring it back.

ところが、従来の軽油等のダクト成分の少ない
燃料によつて乾燥させる方法は、ボイラ6の運転
停止後の排ガスダクト4をそのまま利用して乾燥
させるために、脱硝反応器7の上流側排ガスダク
ト4内に堆積したダストが乾燥時の排ガスに同伴
されて脱硝触媒8に再び付着し、折角水洗して被
毒成分を水洗したにも拘らず、その乾燥工程で堆
積したダストが再付着し、再被毒されることとな
り、乾燥工程のための軽油燃料費用も嵩む欠点が
ある。
However, in the conventional drying method using a fuel with low duct components such as light oil, the upstream exhaust gas duct 4 of the denitrification reactor 7 is used for drying by directly using the exhaust gas duct 4 after the boiler 6 has stopped operating. The dust that had accumulated inside the denitrification catalyst 8 was accompanied by the exhaust gas during drying and reattached to the denitrification catalyst 8, and even though the poisonous components were washed with water, the dust that had accumulated during the drying process reattached and reattached to the denitrification catalyst 8. This has the disadvantage that it is poisoned and the cost of light oil fuel for the drying process increases.

本発明はかかる従来の欠点を解消しようとする
もので、その目的とするところは、水洗処理した
脱硝触媒を加熱空気によつて乾燥させ、脱硝触媒
を乾燥させるための燃料費用を節約しようとする
ものである。
The present invention attempts to eliminate such conventional drawbacks, and its purpose is to dry the denitrification catalyst that has been washed with water using heated air, thereby saving the fuel cost for drying the denitrification catalyst. It is something.

本発明は前述の目的を達成するために、第1排
ガスダクトのガス流れ方向にそつて、触媒を内蔵
した第1脱硝反応器と第1空気予熱器を設け、こ
の第1空気予熱器の被加熱部側に第1空気ダクト
を接続して、 第2排ガスダクトのガス流れ方向にそつて、触
媒を内蔵した第2脱硝反応器と第2空気予熱器を
設け、この第2空気予熱器の被加熱部側に第2空
気ダクトを接続し、 前記第1脱硝反応器ならびに第2脱硝反応器
に、当該反応器内の触媒を水洗する水洗ラインを
それぞれ接続した脱硝装置を対象とするものであ
る。
In order to achieve the above-mentioned object, the present invention provides a first denitrification reactor with a built-in catalyst and a first air preheater along the gas flow direction of the first exhaust gas duct, and a first air preheater is covered with the first air preheater. A first air duct is connected to the heating section side, and a second denitration reactor with a built-in catalyst and a second air preheater are installed along the gas flow direction of the second exhaust gas duct. The object is a denitrification device in which a second air duct is connected to the heated part side, and a water washing line for washing the catalyst in the reactor with water is connected to the first denitrification reactor and the second denitrification reactor, respectively. be.

そして、前記第1空気ダクトの第1空気予熱器
出口側から第2排ガスダクトの第2脱硝反応器入
口側に延びる第1乾燥用空気配管を接続して、 前記第2空気ダクトの第2空気予熱器出口側か
ら第1排ガスダクトの第1脱硝反応器入口側に延
びる第2乾燥用空気配管を接続し、 前記空気ダクトのうち運転中の空気ダクトから
運転停止中の排ガスダクトへ触媒を乾燥するため
の高温空気を前記乾燥用空気配管を通して供給す
るように構成されていることを特徴とするもので
ある。
A first drying air pipe extending from the first air preheater outlet side of the first air duct to the second denitrification reactor inlet side of the second exhaust gas duct is connected to the second air pipe of the second air duct. A second drying air pipe extending from the preheater outlet side to the first denitrification reactor inlet side of the first exhaust gas duct is connected, and the catalyst is dried from the operating air duct of the air ducts to the stopped exhaust gas duct. The apparatus is characterized in that it is configured to supply high-temperature air for drying through the drying air piping.

以下本発明の実施例を第3図を用いて説明す
る。
Embodiments of the present invention will be described below with reference to FIG.

第3図はボイラ6に空気系統、排ガス系統が共
に二系統ある場合を示し、符号1〜12までは従
来のものと同一のものを示す。そして、脱硝装置
7は交互に水洗するものであり、運転中のものに
は符号の後にAを、運転を停止して水洗中のもの
には符号の後にBをつけて区別する。
FIG. 3 shows a case where the boiler 6 has two air systems and two exhaust gas systems, and numerals 1 to 12 are the same as those in the conventional system. The denitrification device 7 is one that is alternately washed with water, and those that are in operation are distinguished by an A after the code, and those that have stopped operating and are being washed with water are distinguished by a B after the code.

13は排ガスダクト4A,4Bを連絡する排ガ
スバイパスダクト、14A,14Bは空気ダクト
4Aから脱硝装置8Bへ、空気ダクト1Bから脱
硝装置7Aへそれぞれ脱硝触媒8A,8Bの乾燥
用高温空気を供給する乾燥用空気配管、15A,
15B,16A,16Bは脱硝装置7A,7Bの
入口ダンパおよび出口、17A,17Bは乾燥用
空気配管14A,14Bの空気ダンパ、18は排
ガスバイパスダクト13の排ガスダンパ、19
A,19B,20A,20Bは水洗ライン12
A,12Bの入口バルブおよび出口バルブであ
る。
13 is an exhaust gas bypass duct that connects the exhaust gas ducts 4A and 4B, and 14A and 14B are drying units that supply high-temperature air for drying the denitrification catalysts 8A and 8B from the air duct 4A to the denitrification device 8B and from the air duct 1B to the denitrification device 7A, respectively. air piping, 15A,
15B, 16A, 16B are inlet dampers and outlets of the denitrification devices 7A, 7B, 17A, 17B are air dampers of the drying air pipes 14A, 14B, 18 are exhaust gas dampers of the exhaust gas bypass duct 13, 19
A, 19B, 20A, 20B are water washing lines 12
A, 12B inlet and outlet valves.

この様な構造において、ボイラ6の通常運転時
においては、水洗ライン12A,12Bの入口バ
ルブ19A,19B、出口バルブ20A,20
B、排ガスバイパスダクト13の排ガスダンパ1
8および乾燥用空気配管14A,14Bの空気ダ
ンパ17A,17Bは閉じられ、他のダンパ15
A,15B,16A,16Bは開いて、ボイラ6
の排ガスを排ガスダクト4A,4Bへ流す。
In such a structure, during normal operation of the boiler 6, the inlet valves 19A, 19B and the outlet valves 20A, 20 of the water washing lines 12A, 12B are closed.
B. Exhaust gas damper 1 of exhaust gas bypass duct 13
8 and the air dampers 17A, 17B of the drying air pipes 14A, 14B are closed, and the other dampers 15
A, 15B, 16A, 16B are open and boiler 6
The exhaust gas flows into the exhaust gas ducts 4A and 4B.

次に第3図の符号の後にAを付した上半分は運
転し、符号の後にBを付した下半分は運転を停止
して脱硝触媒8Bを水洗、乾燥する場合を例に説
明する。
Next, a case will be described using as an example a case in which the upper half with A after the symbol in FIG. 3 is in operation, and the lower half with B after the symbol is stopped to wash and dry the denitrification catalyst 8B.

まず脱硝触媒8Bの水洗にあたつては、脱硝反
応器7Bの入口ダンパ15Bを閉じて排ガスダク
ト4Bへの排ガス流を遮断し、排ガスは排ガスダ
ンパ18を開いて、排ガスバイパスダクト13よ
り排ガスダクト4Aへのみ排ガスを流す。そして
FDF2Bの運転も停止する。
First, when washing the denitrification catalyst 8B with water, the inlet damper 15B of the denitrification reactor 7B is closed to block the flow of exhaust gas to the exhaust gas duct 4B, and the exhaust gas is passed from the exhaust gas bypass duct 13 to the exhaust gas duct by opening the exhaust gas damper 18. Flow exhaust gas only to 4A. and
The operation of FDF2B also stops.

この様に入口ダンパ15Bを閉じ、FDF2B
を止めることによつて、第3図の下半分の排ガス
ダクト4B、空気ダクト1Bは排ガスダクト4
A、空気ダクト1Aから完全に切り離された状態
になる。
In this way, close the inlet damper 15B and
By stopping the exhaust gas duct 4B and air duct 1B in the lower half of FIG.
A: It is completely disconnected from the air duct 1A.

そして、水洗ライン12Bの入口バルブ19
B、出口バルブ20Bを開いて、水洗ライン12
Bからの水によつて脱硝触媒8B上のアルカリ金
属は水洗されて除去される。
And the inlet valve 19 of the flush line 12B
B. Open the outlet valve 20B and flush the water line 12.
The alkali metal on the denitrification catalyst 8B is washed with water from B and removed.

次に水洗された脱硝触媒8Bは水洗ライン12
Bの入口バルブ19B、出口バルブ20Bは閉じ
られて乾燥するが、本発明はこの水洗した脱硝触
媒8Bを乾燥用空気配管14Aからの高温空気に
よつて乾燥するようにしたものである。
Next, the denitrification catalyst 8B that has been washed with water is transferred to the water washing line 12.
The inlet valve 19B and outlet valve 20B of B are closed for drying, but in the present invention, this water-washed denitrification catalyst 8B is dried by high-temperature air from the drying air pipe 14A.

つまり、乾燥用空気配管14Aの空気ダンパ1
7Aを開き、A/H3Aによつて250〜350℃に加
熱された燃焼用空気の一部を空気ダクト1Aから
乾燥用空気配管14Aへ分流させ、脱硝反応器7
Bへ供給して水洗した脱硝触媒8Bを乾燥させる
のである。
In other words, the air damper 1 of the drying air pipe 14A
7A is opened, a part of the combustion air heated to 250 to 350°C by A/H3A is diverted from the air duct 1A to the drying air pipe 14A, and the denitrification reactor 7
The denitrification catalyst 8B supplied to B and washed with water is dried.

そして、脱硝触媒8Bの乾燥が完了すれば、空
気ダンパ17Aを閉じ、入口ダンパ15Bを開
き、FDF2Bを運転して通常運転へと復帰させ
るのである。
When the drying of the denitrification catalyst 8B is completed, the air damper 17A is closed, the inlet damper 15B is opened, and the FDF 2B is operated to return to normal operation.

このように、水洗した脱硝触媒8Bを定常運転
を行なつている他系統のA/H3Aからの乾燥用
空気によつて乾燥させることができるので、乾燥
時に水洗した脱硝触媒8Bへダストが再付着する
ことがなく、脱硝触媒8Bの乾燥のための燃料
(軽油)費用を低減することができる。
In this way, the water-washed denitrification catalyst 8B can be dried with the drying air from the other system A/H3A that is in steady operation, so that dust does not re-adhere to the water-washed denitration catalyst 8B during drying. Therefore, the cost of fuel (light oil) for drying the denitrification catalyst 8B can be reduced.

第4図のものは第3図の他の実施例を示すもの
で、第3図のものは空気ダクト1A,1Bおよび
排ガスダクト4A,4Bが互に二系統あり、空気
ダクト1A、排ガスダクト4A側が通常運転を行
ない、空気ダクト1B、排ガスダクト4B側は脱
硝触媒8Bの水洗、乾燥工程を行なう場合の説明
であつたが、第4図のものはボイラ6の事故で空
気ダクト1A,1B共に停止された場合の実施例
を示すものである。
The one in FIG. 4 shows another embodiment of FIG. 3, and the one in FIG. 3 has two systems of air ducts 1A, 1B and exhaust gas ducts 4A, 4B. The explanation was based on the case where the side is in normal operation and the air duct 1B and exhaust gas duct 4B are rinsing and drying the denitrification catalyst 8B, but in the case shown in Figure 4, both air ducts 1A and 1B were damaged due to an accident in boiler 6. This is an example of a case where the program is stopped.

第4図においては説明の都合上、第3図のA系
統のみを示した。
In FIG. 4, only the A system of FIG. 3 is shown for convenience of explanation.

第4図において、21Aは脱硝バイパスガスダ
クト、22Aは脱硝バイパスガスダクト21Aの
ダンパである。
In FIG. 4, 21A is a denitrification bypass gas duct, and 22A is a damper of the denitrification bypass gas duct 21A.

例えばボイラ6のチユーブ破損事故が発生した
場合は、脱硝触媒8Aの劣化を防止するために、
脱硝反応7Aの入口ダンパ15Aは閉じ、ダンパ
22Aを開いて排ガスを排ガスダクト4A、脱硝
バイパスガスダクト21A、排ガスダクト4Aへ
流す。
For example, if a tube breakage accident occurs in the boiler 6, in order to prevent the denitration catalyst 8A from deteriorating,
The inlet damper 15A of the denitrification reaction 7A is closed, and the damper 22A is opened to allow the exhaust gas to flow to the exhaust gas duct 4A, the denitration bypass gas duct 21A, and the exhaust gas duct 4A.

そして、乾燥用空気配管14Bへは所内ボイ
ラ、あるいは隣接する他のプラントからの高温空
気が供給され、水洗した脱硝触媒8Aを他のプラ
ントからの高温空気によつて乾燥させるものであ
り、他の説明は第3図のものと同一である。
High-temperature air from the in-house boiler or another adjacent plant is supplied to the drying air pipe 14B, and the water-washed denitrification catalyst 8A is dried by the high-temperature air from the other plant. The explanation is the same as that in FIG.

本発明は空気ダクトのうち運転中の空気ダクト
から運転停止中の排ガスダクトへ触媒を乾燥する
乾燥用空気配管を設けたので、この乾燥用空気に
よつて水洗した触媒を乾燥させることができ、ダ
ストの再付着による再被毒は防止され、脱硝触媒
を乾燥させるための燃料費用が軽減できる。
In the present invention, a drying air pipe for drying the catalyst is provided from the air duct in operation to the exhaust gas duct in the stopped operation, so that the catalyst washed with water can be dried by this drying air. Re-poisoning due to re-deposition of dust is prevented, and fuel costs for drying the denitrification catalyst can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はボイラの煙風道系統を示した系統図、
第2図は従来の脱硝触媒の水洗、乾燥工程を示し
た系統図、第3図は本発明の水洗、乾燥工程を示
した系統図、である。第4図は第3図の他の実施
例を示した系統図である。 1A,1B……空気ダクト、3A,3B……
A/H、4A,4B……排ガスダクト、7A,7
B……脱硝反応器、8A,8B……脱硝触媒、1
2A,12B……水洗ライン、17A,17B…
…乾燥用空気配管。
Figure 1 is a system diagram showing the boiler smoke duct system.
FIG. 2 is a system diagram showing the water washing and drying steps of a conventional denitrification catalyst, and FIG. 3 is a system diagram showing the water washing and drying steps of the present invention. FIG. 4 is a system diagram showing another embodiment of FIG. 3. 1A, 1B...Air duct, 3A, 3B...
A/H, 4A, 4B...Exhaust gas duct, 7A, 7
B...Denitration reactor, 8A, 8B...Denitrification catalyst, 1
2A, 12B...Washing line, 17A, 17B...
...Air piping for drying.

Claims (1)

【特許請求の範囲】 1 第1排ガスダクトのガス流れ方向にそつて、
触媒を内蔵した第1脱硝反応器と第1空気予熱器
を設け、この第1空気予熱器の被加熱部側に第1
空気ダクトを接続して、 第2排ガスダクトのガス流れ方向にそつて、触
媒を内蔵した第2脱硝反応器と第2空気予熱器を
設け、この第2空気予熱器の被加熱部側に第2空
気ダクトを接続し、 前記第1脱硝反応器ならびに第2脱硝反応器
に、当該反応器内の触媒を水洗する水洗ラインを
それぞれ接続した脱硝装置において、 前記第1空気ダクトの第1空気予熱器出口側か
ら第2排ガスダクトの第2脱硝反応器入口側に延
びる第1乾燥用空気配管を接続して、 前記第2空気ダクトの第2空気予熱器出口側か
ら第1排ガスダクトの第1脱硝反応器入口側に延
びる第2乾燥用空気配管を接続し、 前記空気ダクトのうち運転中の空気ダクトから
運転停止中の排ガスダクトへ触媒を乾燥するため
の高温空気を前記乾燥用空気配管を通して供給す
るように構成されていることを特徴とする脱硝装
置。
[Claims] 1. Along the gas flow direction of the first exhaust gas duct,
A first denitrification reactor containing a catalyst and a first air preheater are provided, and a first air preheater is provided on the side to be heated of the first air preheater.
The air duct is connected, and a second denitrification reactor with a built-in catalyst and a second air preheater are installed along the gas flow direction of the second exhaust gas duct. In the denitrification device, two air ducts are connected, and a water washing line for washing the catalyst in the reactor is connected to the first denitrification reactor and the second denitrification reactor, respectively, the first air preheating of the first air duct. A first drying air pipe extending from the outlet side of the denitrification reactor to the inlet side of the second denitrification reactor of the second exhaust gas duct is connected to the first drying air pipe extending from the outlet side of the second air preheater of the second air duct to the A second drying air pipe extending to the inlet side of the denitrification reactor is connected, and high-temperature air for drying the catalyst is passed from the operating air duct of the air ducts to the stopped exhaust gas duct through the drying air pipe. A denitrification device configured to supply
JP57226643A 1982-12-27 1982-12-27 Denitrification apparatus Granted JPS59120229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57226643A JPS59120229A (en) 1982-12-27 1982-12-27 Denitrification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57226643A JPS59120229A (en) 1982-12-27 1982-12-27 Denitrification apparatus

Publications (2)

Publication Number Publication Date
JPS59120229A JPS59120229A (en) 1984-07-11
JPH031053B2 true JPH031053B2 (en) 1991-01-09

Family

ID=16848392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57226643A Granted JPS59120229A (en) 1982-12-27 1982-12-27 Denitrification apparatus

Country Status (1)

Country Link
JP (1) JPS59120229A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881545B2 (en) * 2012-06-29 2016-03-09 三菱日立パワーシステムズ株式会社 Denitration equipment used in coal-fired boilers

Also Published As

Publication number Publication date
JPS59120229A (en) 1984-07-11

Similar Documents

Publication Publication Date Title
US4160009A (en) Boiler apparatus containing denitrator
JP7207810B2 (en) Method and system for improving boiler efficiency
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US4353206A (en) Apparatus for removing NOx and for providing better plant efficiency in combined cycle plants
CN207591613U (en) A kind of regenerated SCR system of low-temperature SCR catalyst
US5775266A (en) Steam generator
US6257155B1 (en) Curved blade by-pass damper with flow control
US5555849A (en) Gas temperature control system for catalytic reduction of nitrogen oxide emissions
JP7420941B2 (en) Arrangement and method for operating a steam boiler system
CN205627628U (en) Low temperature coke oven smoke SOx/NOx control integrated device
CN206535421U (en) A kind of waste incinerator two-part flue gas purification system
JPH031053B2 (en)
CN112495160B (en) Device and method for tail gas nitrogen oxide removal process of sulfur recovery device
JPH1114034A (en) Exhaust gas treating apparatus and operation method thereof
CN207805390U (en) A kind of station boiler denitrating system
KR19980032281A (en) Exhaust gas treatment system by rotary regenerative heat exchanger
CN109210955B (en) Industrial furnace low temperature flue gas waste heat utilization and SOx/NOx removal white smoke integrated system
JPS6227209Y2 (en)
JP3747299B2 (en) Cleaning method of gas gas heater
JP3544432B2 (en) Exhaust gas treatment equipment and its operation method
JP2001129353A (en) Gas flow path switching method for exhaust gas treatment apparatus
US3791103A (en) Method of treating waste gas arising from industrial facility
JP2892141B2 (en) Double pressure type waste heat recovery boiler
RU1813190C (en) Plant for cleansing smoke gases of oxides of sulfur and nitrogen
JPS5854186Y2 (en) catalytic reactor