JPH03105283A - Supplying equipment of pellet acceleration gas - Google Patents
Supplying equipment of pellet acceleration gasInfo
- Publication number
- JPH03105283A JPH03105283A JP1242056A JP24205689A JPH03105283A JP H03105283 A JPH03105283 A JP H03105283A JP 1242056 A JP1242056 A JP 1242056A JP 24205689 A JP24205689 A JP 24205689A JP H03105283 A JPH03105283 A JP H03105283A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- pellet
- plunger
- filling chamber
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008188 pellet Substances 0.000 title claims abstract description 80
- 230000001133 acceleration Effects 0.000 title abstract description 18
- 230000006835 compression Effects 0.000 claims abstract description 23
- 238000007906 compression Methods 0.000 claims abstract description 23
- 230000001141 propulsive effect Effects 0.000 claims description 4
- 239000003721 gunpowder Substances 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 239000003380 propellant Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 92
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 7
- 230000004927 fusion Effects 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は核融合装置のペレット入射装置に係り、特に、
ペレットの繰返し高速度射出に好適なペレット加速ガス
の供給装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pellet injection device for a nuclear fusion device, and in particular,
The present invention relates to a pellet accelerating gas supply device suitable for repeated high-speed injection of pellets.
核融合装置のペレット入射装置は、核融合装置の水素同
位体燃料を冷却固化してペレットを作り、さらに、数k
m/sの速度に加速して核融合装置に繰返し入射し、プ
ラズマの密度を制御する装置である。The pellet injection device of the fusion device cools and solidifies the hydrogen isotope fuel of the fusion device to create pellets, and then
This is a device that controls the density of plasma by accelerating it to a speed of m/s and repeatedly injecting it into a nuclear fusion device.
従来のペレット入射装置については、アイ・二一・イー
・二一,テクニカル コミテイー ミーティング オン
ペレット インジエクションアンド トロイダル コ
ンファインメント(西ドイツ,1988年)のミローラ
他の報告(Miloraet al.,IAEA
Technical Committee Mee
ting onPellet Injection
and Toroidal Confinem
ent(FRG,1988))で論じられている。第2
図は上記文献で示されているペレット入射装置の模式図
で、(a)はペレット生成時,(b)はペレット射出時
を示す。装置はペレット生成部22,加速ガス供給弁2
6および銃身23から或る。ペレット生或部22を熱交
換器25で水素の固化温度以下に冷却し、固体水素ペレ
ット24を作る。Regarding conventional pellet injection devices, see Milora et al., IAEA, Technical Committee Meeting on Pellet Injection and Toroidal Confinement (West Germany, 1988).
Technical Committee Mee
ting on Pellet Injection
and Toroidal Confinem
ent (FRG, 1988)). Second
The figure is a schematic diagram of the pellet injection device shown in the above-mentioned document, in which (a) shows the time of pellet generation and (b) shows the time of pellet injection. The device includes a pellet generation section 22, an acceleration gas supply valve 2
6 and barrel 23. The pellet production section 22 is cooled to below the solidification temperature of hydrogen by a heat exchanger 25 to produce solid hydrogen pellets 24.
次に、弁26の加速ガス入口6から圧力10MPa程度
のペレット加速ガスを入れて、充填室11を満たす。ペ
レットを加速する前は(a)で示すように弁26のプラ
ンジャ9を加速ガス出口7に押しつけて加速ガスを充填
室11に閉じこめておく。Next, pellet accelerating gas at a pressure of about 10 MPa is introduced from the accelerating gas inlet 6 of the valve 26 to fill the filling chamber 11. Before accelerating the pellets, the plunger 9 of the valve 26 is pressed against the accelerating gas outlet 7 to confine the accelerating gas in the filling chamber 11, as shown in (a).
ペレットを加速する時は、プランジャ9を駆動するコイ
ル17を励磁して(b)で示すようにプランジャを加速
ガス出口7から離す。充填室11内の加速ガスの推進力
でペレット24は加速され、銃身23内で速度を増しな
がら射出する。When accelerating the pellet, the coil 17 that drives the plunger 9 is energized to move the plunger away from the accelerating gas outlet 7 as shown in (b). The pellets 24 are accelerated by the propulsive force of the accelerating gas in the filling chamber 11, and are ejected within the gun barrel 23 while increasing their speed.
加速ガスによるペレット24の運動方程式は、フ月
・・・(1)
で表わせる。ここでMp e Up ,Apはおのおの
ペレットの質量,速度,断面積である。また、P,Co
,−δはおのおの加速ガスの圧力,音速,比熱比である
。加速ガスの圧力波形は第3図に示す様な形となる.波
形は弁26の形状や開閉時間などが原因で有限の立上り
時間τをもつ。τ2は速い装置でlms程度、遅い装置
で20ms程度で、0<1<τの間の圧力P(t)は、
P(t)=ct ・・・(2)
のように、直線で近似できる。ここでCは圧力上昇率で
ある。(2)式を(1)式に代入してペレット速度を求
めると、
・・・(3)
となる。The equation of motion of the pellet 24 due to the accelerating gas can be expressed as follows (1). Here, Mpe Up and Ap are the mass, velocity, and cross-sectional area of each pellet. Also, P, Co
, -δ are the pressure, sound velocity, and specific heat ratio of the respective accelerating gases. The pressure waveform of the accelerating gas is as shown in Figure 3. The waveform has a finite rise time τ due to the shape of the valve 26, the opening/closing time, etc. τ2 is about lms for a fast device and about 20ms for a slow device, and the pressure P(t) between 0<1<τ is P(t)=ct...(2)
It can be approximated by a straight line, as in Here, C is the pressure increase rate. When the pellet speed is determined by substituting equation (2) into equation (1), the following is obtained: (3).
(3)式から、ペレット24の加速性能を上げるには、
(i)銃身23を長くして加速時間を長くすること、(
ii)加速ガスの圧力上昇率Cを上げること,(m)加
速ガスを加熱して音速Goを上げることが有効である。From equation (3), to increase the acceleration performance of the pellet 24,
(i) Lengthening the gun barrel 23 to lengthen the acceleration time; (
It is effective to ii) increase the pressure increase rate C of the accelerating gas, and (m) increase the speed of sound Go by heating the accelerating gas.
銃身については、長くしすぎても今度はペレット24と
銃身23との摩擦力が大きくなり、速度の大幅な上昇が
望めないので、従来数km/sのペレット速度を得るに
は50−too国が選ばれている.第2図に示すように
、弁26は圧力波の立上り時間τを短くして圧力上昇率
Cを上げる為に、ペレット生成部22に直結(通常数国
のごく近く取付ける)して加速ガスを溜めこんでいる。Regarding the gun barrel, if it is made too long, the frictional force between the pellet 24 and the gun barrel 23 will increase, and a significant increase in speed cannot be expected. is selected. As shown in FIG. 2, the valve 26 is directly connected to the pellet generating section 22 (usually installed very close to it in several countries) to supply accelerating gas in order to shorten the rise time τ of the pressure wave and increase the pressure rise rate C. I'm hoarding it.
従って、ガスの音速Goを上げるために弁26を加熱し
すぎると、ペレット生成部22への熱侵入が大きくなり
、熱交換器25の冷却能力を越えてペレット24が加熱
して溶けてしまう。Therefore, if the valve 26 is heated too much in order to increase the sonic velocity Go of the gas, the amount of heat entering the pellet generating section 22 will increase, and the pellets 24 will be heated beyond the cooling capacity of the heat exchanger 25 and melted.
従来、第2図で示す様な装置では、加速ガスの温度は最
高400℃程度で、ペレットの速度は2k+s/S程度
である。Conventionally, in the apparatus shown in FIG. 2, the maximum temperature of the accelerating gas is about 400° C., and the velocity of the pellet is about 2 k+s/s.
第4図に、2km/s以上の高速度射出を目的とする上
記文献で報告されている他のペレット入射装置を示す。FIG. 4 shows another pellet injection device reported in the above-mentioned literature, which aims at high-speed injection of 2 km/s or more.
(a)はペレット射出前,(b)は射出後である.(a
)で,加速ガスは充填室11に溜めているが、ペレット
24は銃身23中を走らない(ペレット24の止まって
いる位置は,溝等をほどこして、摩擦を大きくしている
)。充填室11は高圧ガスだめ30とラプチャーディス
ク31を境に接しており、更に、充填室側には加速ガス
を圧縮する為のピストン2がある。高圧力スだめ30の
圧力を急激に増加させ、(b)に示す様に,ラプチャー
ディスクが破裂すると、ピストン2は右側へ進み、充填
室11内の加速ガスを断熱圧縮する。圧縮された加速ガ
スの圧力がある値を越えると、ペレット24は銃身23
との摩擦力に打ち勝って射出するが、その時のガスの圧
力Pど温度Tは、
となる。ここでVo ,Pa ,Toはおのおの圧縮前
の充填室の容積,ガス圧,ガス温度、またV,P,Tは
おのおの圧縮後の上記諸量,δはガスの比熱比である。(a) is before pellet injection, (b) is after pellet injection. (a
), the accelerating gas is stored in the filling chamber 11, but the pellet 24 does not run through the barrel 23 (the position where the pellet 24 is stopped is provided with grooves or the like to increase friction). The filling chamber 11 is bordered by a high-pressure gas reservoir 30 and a rupture disk 31, and further has a piston 2 on the filling chamber side for compressing accelerating gas. When the pressure in the high-pressure reservoir 30 is rapidly increased and the rupture disk ruptures as shown in FIG. 3(b), the piston 2 moves to the right and adiabatically compresses the accelerating gas in the filling chamber 11. When the pressure of the compressed accelerating gas exceeds a certain value, the pellet 24 is pushed into the gun barrel 23.
The gas is injected by overcoming the frictional force with the gas, but the pressure P and temperature T of the gas at that time are as follows. Here, Vo, Pa, and To are the volume of the filling chamber before compression, gas pressure, and gas temperature, V, P, and T are the above-mentioned quantities after compression, and δ is the specific heat ratio of the gas.
上記(4)式および(5)式の結果,充填室t1の充填
室11内に閉じこめた低温ガスを周辺装置を加熱させる
ことなしに加熱でき、しかも高圧にできる。従って,第
4図の装置は、第2図の装置と比べてペレット生戒部へ
の熱侵入が少なく、しかも加速性能が向上している。As a result of the above equations (4) and (5), the low-temperature gas confined in the filling chamber 11 of the filling chamber t1 can be heated without heating the peripheral devices, and can be made to have a high pressure. Therefore, compared to the device shown in FIG. 2, the device shown in FIG. 4 has less heat intrusion into the pellet feeding section and has improved acceleration performance.
第4図で示した上記従来技術において、下記問題点があ
る。The above conventional technique shown in FIG. 4 has the following problems.
加速ガスを断熱圧縮している間、ペレット24は静止し
ており、かつ、圧縮が終わると同時に急激に走りださな
くてはならない。しかし、実際はあるガス圧を越えると
ペレット24はゆっくりと加速をはじめてしまう。ガス
の圧力をそれ以上あげることはできず、従来の装置では
上記圧力のもとでペレットの速度の上限が定まっていた
。これは,ペレット24を加速ガス充填室1lの境界と
して使用していることが原因であり、従来技術では解決
できない。While the accelerating gas is being adiabatically compressed, the pellet 24 must remain stationary and immediately start running as soon as the compression ends. However, in reality, once a certain gas pressure is exceeded, the pellet 24 begins to accelerate slowly. It is not possible to increase the gas pressure any further, and in conventional equipment, the upper limit of the pellet speed was determined at the above pressure. This problem is caused by using the pellet 24 as the boundary of the accelerating gas filling chamber 1l, and cannot be solved by conventional techniques.
また、ペレット24が走りだす前にガスの断熱圧縮動作
を進ませるには、ピストン2の推進力を上げる必要があ
る.そのため、従来、ラプチャーディスク3l等でガス
だめ30のガスを瞬時に送りこんでいたが,この方式で
は射出ごとにディスクを付け加える必要がある。ペレッ
トは核融合装置に数Hzの頻度で入れる必要があるが、
従来技術では繰返し射出は不可能である。Further, in order to advance the adiabatic compression operation of the gas before the pellet 24 starts running, it is necessary to increase the propulsive force of the piston 2. For this reason, conventionally, the gas in the gas reservoir 30 has been sent instantaneously using a rupture disk 3l, etc., but with this method, it is necessary to add a disk for each injection. Pellets need to be fed into the fusion device at a frequency of several Hz,
Repeated injection is not possible with the prior art.
本発明の目的は、加速ガスの断熱圧縮が完全に終了する
までペレット24を静止させ、ペレット24の加速性能
を上げることである。また、本発明の他の目的は、ペレ
ットを繰返し射出することにある.
〔課題を解決するための手段〕
上記目的は、加速ガス充填室11の境界にペレット24
の代りに高速で開閉する弁などを設けることで達威され
る。An object of the present invention is to improve the acceleration performance of the pellet 24 by keeping the pellet 24 stationary until the adiabatic compression of the accelerating gas is completely completed. Another object of the present invention is to repeatedly inject pellets. [Means for solving the problem] The above purpose is to provide pellets 24 at the boundary of the accelerating gas filling chamber 11.
This can be achieved by installing a valve that opens and closes at high speed instead.
また、他の目的は、上記弁などを設けたうえで、ラプチ
ャーディスクの代りに開閉弁を設けることで達或される
。Further, another object can be achieved by providing the above-mentioned valves and the like and then providing an on-off valve in place of the rupture disk.
〔作用〕
第5図にペレット加速ガスを断熱圧縮して、ペレットを
繰返し射出できるガス供給装置を示す。[Function] Fig. 5 shows a gas supply device capable of adiabatically compressing pellet accelerating gas and repeatedly injecting pellets.
加速ガス充填室l1には加速ガスの入口6と出口7が設
けてあり,出口7の上には上・下運動可能なプランジャ
9がある。プランジャ9とボデイ8のすきまは殆んどな
く、充填室11と充填室12は空間的にはつながってい
るが、コンダクタンスは極めて小さい。ピストン2が動
く前の状態では充填室11と充填室12は同じ圧力で,
プランジャ9は充填室12の圧力(高圧)と出口7(通
常真空)との差圧で出口7に押しつけられ、出口7を閉
じている。この状態で弁29を開けて充填室10に高圧
ガス5を送りこむと,ピストン2が働いて充填室11内
の加速ガスが断熱圧縮しはじめる。ピストン2の速度を
十分早めることによって、充填室11のガスのみを断熱
圧縮する。(充填室12は、充填室11との間のコンダ
クタンスが小さいので殆んど断熱圧縮しない)ピストン
2がストツパ3に当たって圧縮を終了したら弁13を開
いて充填室12のガスを逃がす。プランジャ9は圧縮し
た充填室工1内の高圧ガスによって急激に持ち上げられ
,充填室ll内のガスは出口7を通ってペレットのある
場所へと流出する6本発明では,加速ガスの断熱圧縮中
にペレットが走りだすことはない。従って、ピストン2
の推進力を与える高圧ガス5の供給弁としては通常の弁
29で十分であり、この一連の動作が繰返し可能となる
。The accelerating gas filling chamber l1 is provided with an inlet 6 and an outlet 7 for the accelerating gas, and above the outlet 7 is a plunger 9 that can move up and down. Although there is almost no clearance between the plunger 9 and the body 8, and the filling chambers 11 and 12 are spatially connected, the conductance is extremely small. Before the piston 2 moves, the pressure in the filling chamber 11 and the filling chamber 12 is the same.
The plunger 9 is pressed against the outlet 7 by the differential pressure between the pressure of the filling chamber 12 (high pressure) and the outlet 7 (normally vacuum), and closes the outlet 7. When the valve 29 is opened in this state and the high pressure gas 5 is sent into the filling chamber 10, the piston 2 works and the accelerating gas in the filling chamber 11 begins to be adiabatically compressed. By sufficiently increasing the speed of the piston 2, only the gas in the filling chamber 11 is adiabatically compressed. (Since the conductance between the filling chamber 12 and the filling chamber 11 is small, there is almost no adiabatic compression.) When the piston 2 hits the stopper 3 and compression is completed, the valve 13 is opened and the gas in the filling chamber 12 is released. The plunger 9 is suddenly lifted by the compressed high-pressure gas in the filling chamber 1, and the gas in the filling chamber 11 flows out through the outlet 7 to the location where the pellets are located.6 In the present invention, during adiabatic compression of the accelerating gas The pellets never start running. Therefore, piston 2
A normal valve 29 is sufficient as the supply valve for the high pressure gas 5 that provides the propulsive force, and this series of operations can be repeated.
以下、本発明の一実施例を第1図により説明する.第1
図は本発明のペレットガスを供給するガス動作弁である
。弁はボデイ8にペレット加速ガスの入口6・出口7お
よび充填室11があり、内部に出口7を開閉するプラン
ジャ9がある。出口7はペレット生戒部へとつながって
いる。プランジャ9の上部にはプランジャ9を加圧する
ガスを充填する空間12があり,プランジャ9の動作空
間をかねている。加速ガスの充填室11とプランジャ加
圧ガスの充填室12はプランジャ9とボデイ8とのすき
間でつながっており、すき間のコンダクタンスは非常に
小さくしている。ボデイ8の左側には加速ガスの充填室
11を断熱圧縮するシリンダ1とピストン2を設ける。An embodiment of the present invention will be explained below with reference to FIG. 1st
The figure shows a gas operated valve for supplying pellet gas according to the present invention. The valve has a body 8 having an inlet 6 and an outlet 7 for pellet accelerating gas, and a filling chamber 11, and has a plunger 9 inside for opening and closing the outlet 7. Exit 7 leads to the pellet feeding department. There is a space 12 in the upper part of the plunger 9 filled with gas for pressurizing the plunger 9, which also serves as an operating space for the plunger 9. The accelerating gas filling chamber 11 and the plunger pressurizing gas filling chamber 12 are connected through a gap between the plunger 9 and the body 8, and the conductance in the gap is made very small. A cylinder 1 and a piston 2 are provided on the left side of the body 8 for adiabatically compressing an accelerating gas filling chamber 11.
以下、動作を説明する。The operation will be explained below.
加速ガスを充填する前に、まず、バルブ13のガス抜き
14を閉じた状態でボンベエ5のガスを充填室12に送
り,プランジャ9をガス出口7に押しつける。次に、弁
4を開いて加速ガスを送り、充填室11(容積Vo)を
圧力Po ,温度Toの加速ガスで満たす。この充填動
作で、シリンダ1内のプランジャ2は加速ガスの圧力に
よって左側にスライドして,ストツパ28の位置で止ま
る。加速ガス充填後、バルブ4を閉じ、断熱圧縮するガ
スを閉じこめる。次に、パルブ29のガス抜き27を閉
じた状態で,ボンベ5の高圧ガスを充填室10に送り、
プランジャ2を加速する。プランジャ2が右側に急速に
スライドすることにより、加速ガス充填室11は(4)
式と(5)式に従って断熱圧縮する。プランジャ2は充
填室10の圧力と充填室11の圧力が等しくなるまで加
速しながら右へ進み、それ以後も慣性力を持っているの
で、減速しながら、更に、充填室11を圧縮する。この
結果,プランジャ2がストツパ3に当たって止まる時点
では、充填室11を充填室10の圧力以上の高圧、しか
も,高温のガスにすることができる。ペレット加速ガス
の断熱圧縮が終了したら、弁13のガス抜き工4を開け
、プランジャ9の押えっけをやめる。プランジャ9は圧
縮した加速ガスの圧力で上方向に押され、その結果、出
口7が開いて加速ガスが出口7を通じてペレット生成部
22へと流れ込む。これにより、加速ガスの圧縮比(V
o/V)を調節することによって、(4)式および(5
)式に従って高圧,高温ガスによるペレット加速ができ
る。また、プランジャ9を開く動作において,弁14の
開閉時間を変えると充填室12のガスの流出量が変わり
、その結果,プランジャ9の開いている時間(充填室1
工の圧力が充填室12の圧力に等しくなるまでの時間)
を調節でき、ペレット生或部22へのガス流入量を調節
できる。また、一連の動作を繰り返すことによってガス
の繰返し供給が可能であり、ペレット24を繰返し射出
できる。Before filling with accelerating gas, gas from the cylinder 5 is first sent to the filling chamber 12 with the gas vent 14 of the valve 13 closed, and the plunger 9 is pressed against the gas outlet 7. Next, the valve 4 is opened to send the accelerating gas, and the filling chamber 11 (volume Vo) is filled with the accelerating gas at the pressure Po and the temperature To. During this filling operation, the plunger 2 in the cylinder 1 slides to the left due to the pressure of the accelerating gas and stops at the stopper 28 position. After filling the accelerating gas, the valve 4 is closed to confine the gas to be adiabatically compressed. Next, with the gas vent 27 of the valve 29 closed, the high pressure gas in the cylinder 5 is sent to the filling chamber 10,
Accelerate plunger 2. By rapidly sliding the plunger 2 to the right, the accelerating gas filling chamber 11 is moved to (4).
Adiabatic compression is performed according to formula and formula (5). The plunger 2 advances to the right while accelerating until the pressure in the filling chamber 10 and the pressure in the filling chamber 11 become equal, and since it continues to have inertia after that, it decelerates and further compresses the filling chamber 11. As a result, when the plunger 2 hits the stopper 3 and stops, the filling chamber 11 can be filled with gas at a high pressure higher than the pressure in the filling chamber 10 and at a high temperature. When the adiabatic compression of the pellet accelerating gas is completed, the gas vent 4 of the valve 13 is opened and the plunger 9 is stopped. The plunger 9 is pushed upward by the pressure of the compressed accelerating gas, and as a result, the outlet 7 opens and the accelerating gas flows through the outlet 7 into the pellet generating section 22 . As a result, the compression ratio of the accelerating gas (V
o/V), formulas (4) and (5
) According to the equation, pellets can be accelerated by high-pressure, high-temperature gas. In addition, in the operation of opening the plunger 9, if the opening/closing time of the valve 14 is changed, the amount of gas flowing out of the filling chamber 12 changes, and as a result, the amount of time that the plunger 9 is open (the filling chamber 1
time until the pressure in the filling chamber 12 becomes equal to the pressure in the filling chamber 12)
can be adjusted, and the amount of gas flowing into the pellet production section 22 can be adjusted. Further, by repeating a series of operations, gas can be repeatedly supplied, and pellets 24 can be repeatedly injected.
また、本発明による他の実施例を第6図から第10図に
示す。第6図は充填室12と充填室11をプランジャ9
で分離しているが、充填室l2にはバルブを取付けてい
ない。ピストン2の圧縮動作で充填室1lの圧力が上が
ってゆき、充填室11のガスがプランジャ9を押上げる
力が充填室l2のガスがプランジャ9を押しつける力を
越えた時に開き、それ以外では閉じている。第7図は第
6図にスプリング18を追加して、プランジャが開く時
の圧力を上げると同時に開閉時間を短くした実施例であ
る.いずれも、プランジャ9の開閉動作は、充填室11
の圧力変化により自動的に行なわれる6第8図は第6図
に電磁コイルl7を加え、プランジャ9を磁性体にした
場合である。Further, other embodiments according to the present invention are shown in FIGS. 6 to 10. FIG. 6 shows the filling chamber 12 and the filling chamber 11 with the plunger 9.
However, no valve is attached to the filling chamber l2. The pressure in the filling chamber 1l rises due to the compression action of the piston 2, and when the force of the gas in the filling chamber 11 pushing up the plunger 9 exceeds the force pushing the plunger 9 with the gas in the filling chamber 12, the valve opens, and otherwise it closes. ing. Fig. 7 shows an embodiment in which a spring 18 is added to Fig. 6 to increase the pressure when the plunger opens and at the same time shorten the opening/closing time. In both cases, the opening/closing operation of the plunger 9 is performed by the filling chamber 11.
FIG. 8 shows a case where an electromagnetic coil 17 is added to the structure shown in FIG. 6 and the plunger 9 is made of a magnetic material.
ガス圧縮終了後、コイル17を通電してプランジャ9を
引き上げる力を充填室11のガス圧に加えて、高速開閉
動作が可能である。After the gas compression is completed, the coil 17 is energized to apply a force to pull up the plunger 9 to the gas pressure in the filling chamber 11, thereby enabling high-speed opening and closing operations.
第9図と第10図はピストン2の加速方法の実施例であ
る。第9図において、ボンベ5は、例えば、酸素や水素
等の可燃ガスで、両ガスを充填室で混合し、点火装置2
0で爆発させ、ピストン2を推進させる。また、第10
図は火薬21を爆発させてピストンを推進させる場合で
ある。9 and 10 show an embodiment of the method of accelerating the piston 2. FIG. In FIG. 9, the cylinder 5 is filled with a combustible gas such as oxygen or hydrogen, and both gases are mixed in a filling chamber, and the ignition device 2
It explodes at 0 and propels piston 2. Also, the 10th
The figure shows a case where the piston is propelled by exploding the gunpowder 21.
本発明によれば、加速ガスの断熱圧縮が完全に終了した
後にペレットを加速するので、従来の不完全な断熱圧縮
の場合と比べてペレットの加速性能が向上する。According to the present invention, the pellets are accelerated after the adiabatic compression of the accelerating gas is completely completed, so that the acceleration performance of the pellets is improved compared to the conventional case of incomplete adiabatic compression.
また、断熱圧縮の為には,従来ピストンの推進に必要だ
ったラプチャディスク等の使い捨て弁は不要となる。そ
の結果、ラプチャディスク等の代りに繰返し開閉弁を使
用でき、ペレットの繰返し射出動作ができる。Additionally, adiabatic compression eliminates the need for disposable valves such as rupture disks, which were conventionally required to propel the piston. As a result, a repeating on-off valve can be used instead of a rupture disk or the like, and pellets can be repeatedly injected.
第l図は本発明の一実施例の系統図、第2図は従来のペ
レット入射装置の動作説明図、第3図は加速ガス圧の時
間変化を示した特性図、第4図は従来のペレット入射装
置の動作説明図、第5図から第10図は本発明の実施例
の動作説明図である。
1・・・シリンダ、2・・・ピストン、2・・・ストツ
パ、4・・・バルブ、5・・・プランジャ推進用ガスボ
ンベ、6・・加速ガス入口、7・・・加速ガス出口、8
・・・ボデイ、9・・・プランジャ、↓0・・・推進ガ
ス充填室、11・・・加速ガス充填室、12・・・プラ
ンジャ加圧ガス充填1
図
第
3
図
0 ’Z”時 間
7一一一五力io立土′1時間
品−一加遠がスt填室n’JI力
第5111
第6図
第
4
図
(b)
第
7
図
第8図
第9図Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the operation of a conventional pellet injection device, Fig. 3 is a characteristic diagram showing the time change of accelerating gas pressure, and Fig. 4 is a diagram of the conventional pellet injection device. 5 to 10 are explanatory diagrams of the operation of the pellet injection device, and FIGS. 5 to 10 are explanatory diagrams of the operation of the embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Cylinder, 2...Piston, 2...Stopper, 4...Valve, 5...Plunger propulsion gas cylinder, 6...Acceleration gas inlet, 7...Acceleration gas outlet, 8
...Body, 9...Plunger, ↓0...Propulsion gas filling chamber, 11...Accelerating gas filling chamber, 12...Plunger pressurizing gas filling 1 Figure 3 Figure 0 'Z' time 71115 force io standing earth '1 hour product - 1 distance is st filling room n'JI force 5111 Figure 6 Figure 4 (b) Figure 7 Figure 8 Figure 9
Claims (1)
よび、充填室内のガスを断熱圧縮するためのシリンダと
ピストンよりなるペレット加速ガスの供給装置において
、 ガスの出口を開閉するプランジャ、前記プランジャの動
作を制御するプランジャ加圧ガスと、充填室およびプラ
ンジャ加圧ガスの供給弁を設けたことを特徴とするペレ
ット加速ガスの供給装置。 2、請求項1において、前記プランジャの開閉動作によ
つて前記ペレット加速ガスの圧力と温度を制御すること
を特徴とするペレット加速ガスの供給装置。 3、請求項1において、前記ペレット加速ガスの充填室
の圧力を断熱圧縮で増大させると同時に、前記プランジ
ャ加圧ガスの圧力を減少させて前記プランジャをガスの
出口から離し、前記ペレット加速ガスをガスの出口へと
送る前記ペレット加速ガスの供給装置。 4、請求項1において、前記プランジャ加圧ガスの代り
にプランジャ加圧用のスプリングを設けたことを特徴と
するペレット加速ガスの供給装置。 5、請求項1において、加速ガス充填操作によつて前記
ピストンを断熱圧縮前の位置に戻し、前記ペレット加速
ガスを繰返し断熱圧縮して供給できることを特徴とする
ペレット加速ガスの供給装置。 6、請求項1において、前記ピストンの推進ガスの充填
室に点火装置を設け、可燃ガスまたは火薬を爆発させて
上記推進力を得ることを特徴とするペレット加速ガスの
供給装置。[Claims] 1. A pellet accelerating gas supply device consisting of a pellet accelerating gas inlet and outlet, a gas filling chamber, and a cylinder and piston for adiabatically compressing the gas in the filling chamber, comprising: A pellet accelerating gas supply device comprising a plunger that opens and closes, a plunger pressurized gas that controls the operation of the plunger, a filling chamber, and a supply valve for the plunger pressurized gas. 2. The pellet accelerating gas supply device according to claim 1, wherein the pressure and temperature of the pellet accelerating gas are controlled by opening and closing operations of the plunger. 3. In claim 1, the pressure in the chamber filled with the pellet accelerating gas is increased by adiabatic compression, and at the same time, the pressure of the plunger pressurizing gas is decreased to move the plunger away from the gas outlet, and the pellet accelerating gas is A supply device for said pellet accelerating gas to be sent to a gas outlet. 4. The pellet accelerating gas supply device according to claim 1, characterized in that a spring for pressurizing the plunger is provided in place of the plunger pressurizing gas. 5. The pellet accelerating gas supply device according to claim 1, wherein the piston is returned to the position before adiabatic compression by an accelerating gas filling operation, and the pellet accelerating gas can be repeatedly adiabatically compressed and supplied. 6. The pellet accelerating gas supply device according to claim 1, wherein an ignition device is provided in the propellant gas filling chamber of the piston, and the propulsive force is obtained by exploding combustible gas or gunpowder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1242056A JPH03105283A (en) | 1989-09-20 | 1989-09-20 | Supplying equipment of pellet acceleration gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1242056A JPH03105283A (en) | 1989-09-20 | 1989-09-20 | Supplying equipment of pellet acceleration gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03105283A true JPH03105283A (en) | 1991-05-02 |
Family
ID=17083624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1242056A Pending JPH03105283A (en) | 1989-09-20 | 1989-09-20 | Supplying equipment of pellet acceleration gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03105283A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102194581B1 (en) * | 2019-10-29 | 2020-12-23 | 한국원자력연구원 | Large capacity helium circulating device with high voltage motor |
-
1989
- 1989-09-20 JP JP1242056A patent/JPH03105283A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102194581B1 (en) * | 2019-10-29 | 2020-12-23 | 한국원자력연구원 | Large capacity helium circulating device with high voltage motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bruckner et al. | Operational characteristics of the thermally choked ram accelerator | |
US9271383B2 (en) | Systems and methods for plasma compression with recycling of projectiles | |
US3874207A (en) | Extrusion apparatus | |
JPH03105283A (en) | Supplying equipment of pellet acceleration gas | |
Baum | Rupture of a gas-pressurized cylindrical vessel: the velocity of a detached end-cap | |
Basko | On the scaling of the energy gain of ICF targets | |
Combs et al. | Acceleration of small, light projectiles (including hydrogen isotopes) to high speeds using a two‐stage light gas gun | |
JP2006518038A (en) | Apparatus for injecting pulsed supersonic gas flux | |
US6125834A (en) | Free-piston cutting machine | |
Bruckner et al. | Initiation of combustion in the thermally choked ram accelerator | |
Combs et al. | Development of a two‐stage light gas gun to accelerate hydrogen pellets to high speeds for plasma fueling applications | |
Combs et al. | A technique for producing large dual-layer pellets in support of disruption mitigation experiments | |
Frattolillo et al. | High‐speed repeating hydrogen pellet injector for long‐pulse magnetic confinement fusion experiments | |
Milora et al. | QUICKGUN: an algorithm for estimating the performance of two-stage light gas guns | |
Kupschus et al. | Upgrading the JET pellet injector with a two-stage light gas gun prototype and future planning | |
Sakamoto et al. | Development of advanced pellet injector systems for plasma fueling | |
RU2459103C1 (en) | Solid-propellant rocket engine | |
Maslov et al. | Short-duration wind tunnel with combined heating and stabilization of parameters | |
Sasoh et al. | Operation tests of a 25-mm-bore ram accelerator | |
Schultz et al. | Starting envelope of the subdetonative ram accelerator | |
Seiler et al. | Presentation of the rail tube version II of ISL’s RAMAC 30 | |
Gouge et al. | The ORNL plasma fueling program | |
US3300283A (en) | Controlled wave reactor employing rupturable means | |
US3612391A (en) | Shock tube bypass piston tunnel | |
Witherspoon et al. | High velocity pulsed plasma thermal spray |