JPH03105076A - Generation of wind power energy and device therefor, wind power type power generation and device therefor, and manufacture of fresh water and device therefor - Google Patents
Generation of wind power energy and device therefor, wind power type power generation and device therefor, and manufacture of fresh water and device thereforInfo
- Publication number
- JPH03105076A JPH03105076A JP24084689A JP24084689A JPH03105076A JP H03105076 A JPH03105076 A JP H03105076A JP 24084689 A JP24084689 A JP 24084689A JP 24084689 A JP24084689 A JP 24084689A JP H03105076 A JPH03105076 A JP H03105076A
- Authority
- JP
- Japan
- Prior art keywords
- air mass
- wind
- pipe
- energy
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 20
- 239000013505 freshwater Substances 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000013535 sea water Substances 0.000 claims abstract description 6
- 239000002918 waste heat Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000005855 radiation Effects 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 4
- 238000005338 heat storage Methods 0.000 claims description 4
- 238000005086 pumping Methods 0.000 claims description 3
- 239000003562 lightweight material Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 1
- 235000011089 carbon dioxide Nutrition 0.000 claims 1
- 230000005494 condensation Effects 0.000 claims 1
- 238000009833 condensation Methods 0.000 claims 1
- 239000004744 fabric Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 11
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 238000009826 distribution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- 241000287882 Pavo Species 0.000 description 1
- 241001122315 Polites Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 206010015915 eye discharge Diseases 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Landscapes
- Wind Motors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は風力エネルギーの発生方法及び装置,と.これ
により発生した風力エネルギーを利用した発電方法及び
装置.と淡水I!!遣方法及び装置に関する.
[従来の技術]
従来発電や揚水,あるいは工作lR械の動力源として.
自然に発生する風のエネルギーを風車などにより利用し
てきた.風力エネルギーは基本的に化石エネルギーの消
費を必要としないため,環境に潰しい,クリーンなエネ
ルギー源として注目されている5
しかj,ながら自然発生する風力は.その方向,及び風
速は激しく変動し,一定のレベ小には無く,安定したエ
ネルギーを供給することは困難である,さらにその風遭
も十分ではなく,利用可能な総エネルギー量ら十分では
なく.また池のエネルギー源,例えば太陽電池と比較し
ても経済性.効率の点で優位なレベルには無い.
[発明が解決しようとする課題]
本発明は上記に鑑み成されたもので.太陽エネルギーな
どにより加熱,または加湿.若しくは加熱丘つ加湿され
.周囲の気塊に対し,低帯度となった気塊の浮力を利用
し.人丁的に風.即ち風力エネルギーを発生させる従来
にない全く新規なエネルギー発生方法及び装置である.
さらにこの風力エネルギーを用いた発電方法及び装置.
と淡水製遣方法及び装置を提供し,化石燃料に替わるク
リーンエネルギー.ならびに砂漠緑化を推進するための
淡水を提供するものである.mち本発明が解決しようと
するH題は5地球的規模の環境破壊に対する有効な歯止
めとなりうる新規な方法及び装置を提供するものである
1課題を解決するための手R1
本発明にかかる風力エネルギー発生方法.及び装置は.
従来動力として収り出すことが困難であった室温よりも
数10℃高いだけの微高温熱源からの熱エネルギーを,
地表と上空の気温差を利用し,高効率で風力エネルギー
に変換するもので,風力発電方法及び装置は,この風力
により発電を行うもので.淡水製造方法及び装沢は.こ
の風力にまり亨気を@熱膨張させ,この巾に含まれる水
分を凝結させ,淡水をanするものである第一の風力エ
ネルギー発生方法及び装置は.空気を加熟または加湿,
あるいは加熱しかつ加湿するための熱交換手段により.
周囲の大気に対し,低密度となりた気塊を.導入するた
めの気塊導入口を下部に有し.上部に気塊排出口を有す
る管に導入することを特徴としている.
第二の発明は第一の発明において,風車等の風力エネル
ギー変換装置を.気塊導入口に設置し.かつ管内部の圧
力が周囲の大気圧に対し,低気圧となることに耐えられ
る横造を有する管を有している.
第三の発明は第一の発明において.風車などの風力エネ
ルギー変換装置を気塊排出口に設置し,かつ管内部の圧
力が周囲の大気圧に対し,高気圧となることに耐えられ
る構造を有する管を有している.
第4の発明は第一の発明において.!内部を渦状の気塊
のJ!I!IIを発生させ.(例えば管の内周部にスパ
イラル状の清を作ることなどにより.)管内部の圧力を
外周部に対し,低気圧としたことを特徴としている.
第5の発明は.第1.第3または第4の発明において.
管を軽量の素材で構成し.低密度の気塊が与える浮力に
よりこの管を高高度に保持するものである,
第6の発明は.第1.第2,第3,第4また1よ第5の
発明において.気塊排出口を水平面内で可動とし.時事
刻々変化するE空の強風の向きに合わせ.気塊排出目の
向きを変化させ得るものである.
第7の発明は第1.第2,m3.第4.第5または第6
の発明における熱交損手段を,太陽輻射を吸収または選
択吸収あるいは透過または選択透過するカバーを地表ま
たは海面上部に設置し.この間に挟まれた空気を加熱ま
たは加湿,あるいは加熟しかつ加湿することとを特徴と
するもので楕成したものである.
第8の発明は第l,第2,第3.第4,第5.第6また
は第7の発明において,浅い海面や溶融塩類やサーマル
ポンド等の蓄熱手段に太陽エネルギーを貯え,この蓄熱
手段に貯えられた然エネルギーを利用し.夜間など.エ
ネルギー源が欠乏する場合においても連続的に風力エネ
ルギーを発生させ得ることを特徴としている.
第9の発明においては第1.第2.第3,第4第5,第
6,第7または第8の発明において,海水を低熱源とす
るヒートポンプにより気塊を加熱することを特徴として
いる.これは,風力エネルギーの発生効率が高効率の場
合に成立するもので,ある.
第10の発明は,第l.第2.第3.第4.第5.第6
.第7,第8または第9の発明において断P1%膨張し
,冷却される気塊が過冷却気体となることを防出し.水
蒸気が凝結するさいに放出される潜熱が上昇中の気塊を
さらに加熟することを促進し.風力発生効率を高効率化
するものである第11の発明は.第1または第10の発
明において,気塊中に含まれる水蒸気を凝結させ,淡水
をIl造するものである.
第12の発明は,第1または第10の発明おいて,気塊
排出口に設置された水滴補aaにより気塊中に含まれる
水滴を補集擦るものである.第13の発明は,第l.第
2.第3,第4,第5.第6.第7.第8,第9または
第10の発明により発生した風力により発電を行うもの
であるにおいて.管の外形を流線形とし,空気抵杭を減
少させたものである.
第l7の発明は.第1,第2,第3,第4,第5.第6
.第7,第8,第9または第10の発明において.管を
高高度に保持するため9気球等の与える浮力を利用し.
管の姿勢をIIIIIL,管を保持するものである.
第14の発明は第1.第2.第3,第4.第5.第6.
第7.第8.第9または第10の発明により発生した風
力エネルギーにより揚水する設備と.水力発電装置とを
具備し.風力により発電するものである6
第15の発明は.第5の発明において,気塊の与える浮
力により,発電機を高高度に保持し,上空の強風を利用
し,風力発電を行うものである.第16の発明は,第1
.第2,第3,第4,第5,第6,第7.第8.第9ま
たは第10の発明[発明の作用]
対fiLlilは太陽輻射により暖められた気塊が−E
昇し.対流運動を行うマクロな場である,この無尽蔵と
も言える対流運動のエネルギーを利用すること.並びに
大気中の対流運動を人工的に発生させ,風力発電,人工
降雨等に利用することは、化石燃料燃焼を必要としない
文明を創造しまた.人間活動に起因する地球の砂漠化を
抑止するための淡水供給を実現することは重要である,
まず.簡単の為、静力学平衡下にある大気の気温減率が
乾燥断熱減率r (g/Cp)に等しい大気中に存在す
る単位質量の乾燥気塊の運動を考察する,ここで.gは
地表での重力の加速度.Cpは定圧比熱(乾燥空気につ
いては約1 kJ(K −’ kg −’ )であ
る.乾燥断熱減率「の値は0.00976K/m であ
る.
大気の温度.気圧の高度分布は
dZ RT(z)
T(z) =To − 『z
(2)但し. P(z) (Pa
)は気体の圧力を, z(m)は高度を.T(k)は絶
対温度を. R (J K−1kg−1)=R (m
″,−1k−1) は気体定数を表す.1kgの乾燥
空気に対する気体定数の値は287,f k−1 kg
−1である.なお.物理化学で用いられる気体定数R’
(Jk−Imo l−’)と上記Rとの関係は,
R=R’ / n [ n (k g/mo 1)
は1モルの気体の質量]で与えられる..(1).(2
)から,
To−rz
P(z)=Po( )h個『
T.
T6
上式で表される温度,圧力の高度分布に近い値もつ大気
は,微小な下降気流が存在する場合,例えば高気圧中の
大気において観測される.この大気中に存在する気塊を
加熱.冷却する熱機関を考える.mち
1.z = O に存在する単位質量の気塊を(
定圧)加熱し.その温度を T0からT0 + ΔT
に加熱する
(T, =T0+ΔT).
2 この気塊の浮力によりこの気塊を 高度z=h
まで断熱的に上昇させる.
3,この気塊を高度 y. = h で,周囲の大気
の温度まで冷却する.
4,この気塊を高度 z= O まで断熱的に下降さ
せる,
ただし.この気塊は周囲の大気とは混合しないものとす
る
上昇中の気塊の温度の高度分布T’(z)を求める こ
の気塊は静力学平衡下には無いため.(2)式から直接
求めることはできないが.断熱!!191する気塊の温
度T’(z)は.(゜は気塊に対する 変数を,゜の無
い変数は大気に対する変数を表し.添字,は高度hを.
添字。は高度0を表すものとする )
P0
P0
ここで,γ−Cp/Cv (Cv:定積比熱:Cρ−
Cv=R)である,
温度T (z)の大気中に存在する温度T゜(z)の単
位質量の気塊が受ける浮力f (z)はで与えられる,
z=h まで上昇させた場合,気塊の成す仕事ΔW
は.
ΔW:ΔTgh/To
(6)サイクル4で気塊を下降させる際には気塊の
温度は周囲の大気温度と等しいため.気塊は仕事をしな
い.この熱機関の熱効率は,気塊を加熱するためのエネ
ルギーがΔQ=CpΔTであることから
Am/AQ=rh/To=(To−T+ 1/To
(7)例えば
気温300Kの海面上に存在する気塊を高度5kmまで
上昇させた場合,*効率は16%高度10kmまで上昇
させた場合.32%の熱効率となる.
次に上方に伸びた耐圧性の管の内部に周囲よりも温暖な
気塊を導入した場合について考察する.この場合,以下
のa,bに述べる2通りの気塊導入方法が考えられる.
a.管の最上部の圧力を周囲の大気の圧力と等しくした
場合,管の内部の気魂の温度は周囲の大気よりも高温で
あり,低密度である.従って管の下方では管内部の圧力
は大気の圧力に対し.低圧となる.ここで.以下の風力
エネルギーを取り出す熱機関を考える.
周囲の大気の温度,気圧の高度分布は式《1).(21
.(3)で与えられるとする,1.z=oに存在する乾
燥気塊を加熱し,その温度をT、=T.十 ΔTとする
.この気塊を管内部に導入する.
2.管内部では気塊を静力学平衡下に置く.下部からの
連続的気塊導入によりこの気塊を断熱的に徐々に上昇さ
せる.
3.管上i!! ( 7. = h )の圧力は周囲の
大気圧と等しくする.
この管内部の気塊の温度,圧力,単位質量あだりの気塊
の体積をそれぞれ.T,P,Vと表す.゜は管内部の気
塊を表し.添字.を2=0を.添字,をz=hを表すと
する.この熱機関から単位質量の気塊導入あたりの取り
出し得る仕事ΔWはAW=(Pa−1’+’)V*゜(
p=paD I P’dV’p1[Vs’(p=pa’
)−ve”(p=P*)]=PaVo’ (P=P6)
−P@’Vll’ (P=P1)” l P ’dV’
=n(va+▲T)−RTa゜+CV[(To+AT)
−T、l=Cp(Ta+▲T−T、)
=Cp [τ。+^T−(T+’+rh)]=Cp(T
.+▲T− (T.+▲T)(P+/Pa)’−”’−
rh)=CpAT(To−T+ 1/T.
(8)となり.熟効率は前記の気塊の浮
力による場合と同一となる.
b 管下部の圧力を周囲の大気圧とした場合は.管の上
部の圧力は周囲よりも高くなるが.その場合の仕事ΔW
は同様に
▲w=(P,’−P+ )’/+ ’ (P’P+ ’
D S P’dV’P,[V,’(P=P,’)−
Vl’(P=P,’)]=Cp▲丁(T.−T.>/T
a
(9)となる,
この管により,発生する風力エネルギーは,管の断面積
をlkm”とし.気温300K,圧力1気圧の地上の大
気を330Kに加熱し,高さ5kmの高度に達する管に
おいて,管下部の流速を10 m / sとして動作さ
せた場合.約4000万kWの風力エネルギーが得られ
る.風力エネルギーは高効率で電気エネルギーに変換さ
れる.また管上部の圧力と周囲の大気圧との差圧は,例
えば下部の大気の気温30℃.気圧1気圧,ΔT=30
K.管の高度5kmとして,約0.03気圧となり,l
km”の断面槓を有する管の場合,約30万tの重量物
を上部に保持できる.
次に一般の温度分布を持つ大気の場合を考察する.
dP(z) P(z)g
〈10)
dz RT(z)
T(z)=T.−r’(z)z
(It)dz
P(zCexp(−g/RS )T(z)
(12)
この大気中で2=0での温度T0゜= (Te +ΔT
〉の気塊を断燕上昇させた場合の気塊の温度T’ (z
)は
T’(z)=Ts’(
JR/C*
Pa
P,
To−1”(z)z
気球の浮力による仕事は
T(z)
T(z)
g
dz
従って
P0
cp To−r’(z)z
=gl
dz−gh
T.−r’(z)z
(P6)”cp
To4 (z)z
Pa Cp To
−r’(z)zgh
(14)一方前述の管において,下
部の圧力を周囲の大気圧と同一にした場合に得られる仕
事は
Δl’l:cp(To◆▲T−T、)
:Cp[To+▲7−(7, ’+rh)]=Cp(T
ll+ムT−「h)−CpT+ ’=Cp(To+ΔT
)−gh−CpT+’ <15)
TI゛二(T.+▲T)(PI/t’s)””P.
R T.−r’(z)zP.
丁.−r’(z)zΔW−Cp(To+八
T)
Pa Cp Ta−1”(z)zと
なり、やはり前述の気球の場合と同一である.下部の圧
力を周囲の大気圧と同一にした場合にはΔW−Cp[T
+ ’ (P=P+ ’ )−T+゜(P−P+)]”
CI)l(To+ムT−rh)−T+゜(P=Pl)]
:CpiT,+▲T−TI’(P=PI)]−gh
(183となり.上部を大気圧と等しくし
た場合と同一である,
「゛が定数の場合には
T0
で与えられる.
管内部の圧力は上部の圧力を大気圧と同一にした堝合に
は
T● 11′
で与えられ.下部の圧力を大気圧と同一にした場合には
T.−rz
P’ (Z)・P.( ) ””
(21)T1
で与え八れる
表1に国am準大気において運転した場合のこの熱I!
!閏の熱効率と.管の導入部の断面積をIkm’ とし
,管の導入部での気塊の流速を10m/sとした場合に
発生ずる風力エネルギーと,上部の圧力を大気圧と同一
とした場合の管下部における大気圧との差正を,管の鉛
直高さ.導入時の気塊の温度をパラメータとして示す.
さらに気塊が水蒸気を含み,露点以下に冷却され.気塊
中の水分が凝結する場合には.気塊の温度はIW潤a熱
減率に従うため.乾燥気塊の場合よりも高温となるため
.単位質藍の気塊導入に対する仕事ΔWは増加する.
さらに気塊の温度を上昇させる方法以外に,気塊を加湿
する方法,即ち気塊の潜然を増加させる方法においても
.気温減率が湿潤断熱減率より大きい場合には,風力エ
ネルギーを同様に発生させることができる.
この熱機関の効率は,管下部の気温及び管上部の気温.
管の鉛直方向の高さ、気温の減率r゛および加熱温度に
依存するが,表1に示すように.従来利用することが困
難であった室温より数十度C高いだけの微高温気体を用
い高効率に風力エネルギーに変換できる.+!IIち太
陽エネルギーの大規模利用に最適で.数億kWにいたる
大規模な風力を得ることができる.この風力エネルギー
は高効率で電気エネルギーに変換することができる.又
,am気層付近の高湿度の気塊を管内部に導入すれば.
WRf’A冷却された気塊中の水蒸気を凝結させ.淡水
を得ることができる,さらに管下部の圧力を大気圧と同
一にした場合,管の上部の圧力は周囲の大気圧に対し,
高気圧となる,管を山岳地形や人工の横′a物を利用し
て保持する方法以外に,これにより生じる差圧を利用し
,気球のように重量物を管上部に保持することもできる
.この場合E空に強風が存在する場合,管に舅を付加し
.揚力を利用してもよい.また,管に気球を接続し。そ
の浮力を利用して管を上空に保持してもよい又.管内部
のL昇気流を満状に形戒し.中心の気圧を管周辺部の気
圧に対し.低気圧としてもよい.
尚.気温減率が乾燥断P.減率「より,大きい場合,R
ち絶対不安定大気中では地表の気塊を上昇させるだけで
.周囲の大気に対し,高温となるので,見かけの熱効率
は100%を越える場合もある.地表の気塊が大量の水
蒸気をあらかじめ含み気温減率が湿潤断熱減率より大き
な場合,即ち条件的不安定大気中においても同様である
.管は山岳地帯の斜面に沿って設置しても良くあるいは
人工の横m物により設置してもよい.さらに気塊の浮力
を利用.あるいは気球,あるいは管に付加した翼のあた
える浮力を利用し,高高度に延びる管を保持してもよい
.
[実施例]
まず鉛直方向または鉛直方向に勾配を持つ管1があり,
この管1の下部に気塊導入口3と.上記管1の上部に気
塊排出口5とを有する管1に,太陽エネルギーや温暖な
海水や廃熱等を熱源とする熱交換手段6により地上の空
気を加熱または加湿,若しくは加熱しかつ加湿すること
により,周囲の大気に対し.低密度の状態となることに
より浮力をもった気塊2を管1の下方に設置された気塊
導入口3から導入することにより,上記管1内を上方に
運動する上昇気流を発生させ,この上昇気流による風力
エネルギーを発生させることを特徴とした風力発生方法
がある.
以上において,上記管1の外形を!線形としたり,翼.
あるいは気球を接続し,上空に存在する風が翼に与える
揚力や気球の浮力を利用し,上記管の姿勢を制御する風
力エネルギー発生方法及び装置.風力発電方法および装
置,淡水製造方法及び装置も考えられる5
モして處カエネルギー変換手段7で発電する.管lは斜
面4に沿って設置してもよく.また,上記管1には支柱
8を入れて補強してもよい.なお.風力変換手段7とし
て.風車を選択した場合風車が管1に与えるトルクを緩
和するため.互いに逆方法に回転する風車を組み合わせ
,変換手段7としても良い
[発明の効果]
本発明にかかる風力エネルギー発生方法及び装πと風力
発電方法及び装置と淡水製造方法及び装置は.以上のご
とき横成になしたゆえに,下記のごとき効果が生じた.
すなわち.加熱等を行い,周囲の大気にたいし低密度と
なった気塊を,管または耐圧性の管に導入し..ヒ昇気
流を発生させ,風力エネルギーを発生できる,この風力
エネルギーにより.風力発電,淡水製造を行うことがで
きようにした.さらに管を正圧に耐えうる軽量の構造と
し、管士Mつ圧力を周囲の大気に対し.制圧とすること
により.高高度にいたる浮力を持った自浮管を実現でき
るようにした.さらにまた.この管に気球惰 ト C
や翼を付加し.浮力を増加できるようにした[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method and apparatus for generating wind energy. A power generation method and device that utilizes the wind energy generated by this. and Tamsui I! ! Concerning the method and equipment. [Conventional technology] As a power source for conventional power generation, pumping water, or machine tools.
The energy of naturally occurring wind has been used by windmills. Wind energy basically does not require the consumption of fossil energy, so it is attracting attention as an environmentally friendly and clean energy source5.However, naturally occurring wind energy... The direction and speed of the wind fluctuate wildly and are not at a constant level, making it difficult to supply stable energy.Furthermore, the wind exposure is not sufficient, and the total amount of energy available is not sufficient. It is also more economical compared to pond energy sources, such as solar cells. There is no superior level in terms of efficiency. [Problem to be solved by the invention] The present invention has been made in view of the above. Heating or humidification using solar energy, etc. Or heated and humidified. It takes advantage of the buoyancy of the air mass, which has a low degree of zonation relative to the surrounding air mass. Very polite. In other words, this is a completely new energy generation method and device that generates wind energy.
Furthermore, a power generation method and device using this wind energy.
We provide freshwater production methods and equipment, and provide clean energy as an alternative to fossil fuels. It also provides fresh water to promote desert greening. H problems to be solved by the present invention are 5. To provide a new method and device that can effectively prevent environmental destruction on a global scale. 1. Measures for solving the problem R1. Energy generation method. and equipment.
Thermal energy from a slightly high-temperature heat source that is only a few tens of degrees higher than room temperature, which has traditionally been difficult to generate as power, can be
It utilizes the temperature difference between the surface of the earth and the sky and converts it into wind energy with high efficiency.The wind power generation method and device generate electricity using this wind power. Freshwater production method and dressing. The first method and device for generating wind energy is to thermally expand the air caught in this wind force, condense the water contained in this width, and turn fresh water into an atom. Soften or humidify the air,
or by heat exchange means for heating and humidifying.
An air mass whose density is lower than that of the surrounding atmosphere. It has an air mass inlet at the bottom for introduction. It is characterized by being introduced into a tube that has an air mass outlet at the top. The second invention is a wind energy conversion device such as a wind turbine in the first invention. Installed at the air mass inlet. In addition, the pipe has a horizontal structure that can withstand the pressure inside the pipe being lower than the surrounding atmospheric pressure. The third invention is the first invention. A wind energy conversion device such as a wind turbine is installed at the air mass outlet, and the pipe has a structure that can withstand the pressure inside the pipe being higher than the surrounding atmospheric pressure. The fourth invention is the first invention. ! J with a swirling air mass inside! I! Generate II. (For example, by creating a spiral-shaped flow around the inner circumference of the tube.) The feature is that the pressure inside the tube is lower than that of the outer circumference. The fifth invention is. 1st. In the third or fourth invention.
The tube is made of lightweight material. The sixth invention is to maintain this tube at a high altitude by the buoyancy provided by the low-density air mass. 1st. In the second, third, fourth and first to fifth inventions. The air mass outlet is movable in a horizontal plane. Adjusted to the direction of strong winds in the E sky, which change from moment to moment. It is possible to change the direction of the air mass discharge eye. The seventh invention is the first invention. 2nd, m3. 4th. fifth or sixth
The heat exchange means in the invention is provided by installing a cover on the ground surface or above the sea surface that absorbs or selectively absorbs solar radiation, or transmits or selectively transmits solar radiation. It is an elliptical device that is characterized by heating or humidifying the air sandwiched between the two, or by maturing and humidifying the air. The eighth invention is the first, second and third invention. 4th, 5th. In the sixth or seventh invention, solar energy is stored in a heat storage means such as a shallow sea surface, molten salt, or a thermal pond, and the natural energy stored in this heat storage means is utilized. Nighttime, etc. It is characterized by the ability to continuously generate wind energy even when energy sources are scarce. In the ninth invention, the first invention. Second. The third, fourth, fifth, sixth, seventh, or eighth invention is characterized in that the air mass is heated by a heat pump that uses seawater as a low heat source. This holds true when the wind energy generation efficiency is high. The tenth invention is the first invention. Second. Third. 4th. Fifth. 6th
.. In the seventh, eighth, or ninth invention, the air mass expanded by P1% and cooled is prevented from becoming supercooled gas. The latent heat released as water vapor condenses helps further ripen the rising air mass. The eleventh invention is one that increases the efficiency of wind power generation. In the first or tenth invention, water vapor contained in the air mass is condensed to produce fresh water. A twelfth invention, in the first or tenth invention, collects and rubs water droplets contained in the air mass by a water droplet collector aa installed at the air mass outlet. The thirteenth invention is the thirteenth invention. Second. 3rd, 4th, 5th. 6th. 7th. In the eighth, ninth or tenth invention, which generates electricity using generated wind power. The outer shape of the pipe is streamlined and the number of air resistance piles is reduced. The 17th invention is. 1st, 2nd, 3rd, 4th, 5th. 6th
.. In the seventh, eighth, ninth or tenth invention. In order to hold the tube at a high altitude, the buoyancy provided by balloons, etc. is used.
This is to hold the tube in the third position. The fourteenth invention is the first invention. Second. 3rd, 4th. Fifth. 6th.
7th. 8th. Equipment for pumping water using wind energy generated according to the ninth or tenth invention. Equipped with a hydroelectric power generation device. 6 The fifteenth invention is one that generates electricity using wind power. In the fifth invention, the generator is held at a high altitude by the buoyancy provided by the air mass, and the strong winds in the upper atmosphere are used to generate wind power. The 16th invention is the 1st invention.
.. 2nd, 3rd, 4th, 5th, 6th, 7th. 8th. Ninth or Tenth Invention [Action of the Invention] FiLlil is an air mass warmed by solar radiation that -E
Rise. Utilizing the energy of this seemingly inexhaustible convective motion, which is a macro field for convective motion. In addition, artificially generating convective movement in the atmosphere and using it for wind power generation, artificial rain, etc. will create a civilization that does not require fossil fuel combustion. First, it is important to realize a freshwater supply to prevent global desertification caused by human activities. For simplicity, let us consider the motion of a dry air mass of unit mass existing in the atmosphere under static equilibrium, where the temperature lapse rate is equal to the dry adiabatic lapse rate r (g/Cp). g is the acceleration of gravity at the earth's surface. Cp is the specific heat at constant pressure (approximately 1 kJ (K −' kg −' ) for dry air. The value of the dry adiabatic lapse rate is 0.00976 K/m. The temperature of the atmosphere. The altitude distribution of atmospheric pressure is dZ RT (z) T(z) =To − 『z
(2) However. P(z) (Pa
) is the pressure of the gas, and z (m) is the altitude. T(k) is the absolute temperature. R (J K-1kg-1)=R (m
″, −1k−1) represents the gas constant.The value of the gas constant for 1 kg of dry air is 287, f k−1 kg
-1. In addition. Gas constant R' used in physical chemistry
The relationship between (Jk-Imol-') and the above R is
R=R'/n [n (kg/mo 1)
is given by the mass of 1 mole of gas]. .. (1). (2
), To-rz P(z)=Po( )h pieces ``T. T6 An atmosphere with values close to the altitude distribution of temperature and pressure expressed by the above equation is observed when a minute downdraft exists, for example in an atmosphere in an anticyclone. This heats the air masses present in the atmosphere. Consider a cooling heat engine. mchi1. The air mass of unit mass existing at z = O is (
constant pressure) and heat. The temperature is T0 to T0 + ΔT
(T, =T0+ΔT). 2 Due to the buoyancy of this air mass, the altitude z=h
Adiabatically rise to . 3. The altitude of this air mass y. = h to cool down to the temperature of the surrounding atmosphere. 4. Let this air mass descend adiabatically to altitude z=O, however. Assuming that this air mass does not mix with the surrounding atmosphere, find the altitude distribution T'(z) of the temperature of the rising air mass. This air mass is not in static equilibrium. Although it cannot be determined directly from equation (2). Insulation! ! 191, the temperature T'(z) of the air mass is . (゜ represents a variable for the air mass, and variables without ゜ represent variables for the atmosphere. The subscript represents the altitude h.
Subscript. represents altitude 0) P0 P0 Here, γ-Cp/Cv (Cv: Specific heat at constant volume: Cρ-
Cv=R), the buoyant force f(z) exerted on a unit mass of air mass of temperature T゜(z) existing in the atmosphere of temperature T(z) is given by, when raised to z=h , work done by the air mass ΔW
teeth. ΔW: ΔTgh/To
(6) When the air mass is lowered in cycle 4, the temperature of the air mass is equal to the surrounding atmospheric temperature. Air masses do no work. The thermal efficiency of this heat engine is Am/AQ=rh/To=(To-T+ 1/To
(7) For example, if an air mass existing on the sea surface with a temperature of 300 K is raised to an altitude of 5 km, *efficiency is 16% when raised to an altitude of 10 km. Thermal efficiency is 32%. Next, we will consider the case where an air mass that is warmer than the surrounding area is introduced into the interior of a pressure-resistant pipe that extends upward. In this case, two methods of air mass introduction described in a and b below are possible. a. If the pressure at the top of the tube is equal to the pressure of the surrounding atmosphere, the temperature of the spirit inside the tube is higher and less dense than the surrounding atmosphere. Therefore, at the bottom of the tube, the pressure inside the tube is relative to the atmospheric pressure. The pressure becomes low. here. Consider the following heat engine that extracts wind energy. The altitude distribution of the temperature and pressure of the surrounding atmosphere is expressed by the formula (1). (21
.. Suppose that it is given by (3), 1. The dry air mass present at z=o is heated and its temperature is set to T, =T. 10 Let ΔT be. This air mass is introduced into the tube. 2. Inside the tube, the air mass is kept in static equilibrium. By continuously introducing air from the bottom, this air mass is gradually raised adiabatically. 3. Kanjo i! ! The pressure at (7. = h) is equal to the surrounding atmospheric pressure. The temperature and pressure of the air mass inside this tube, and the volume of the air mass per unit mass, respectively. Represented as T, P, and V.゜ represents the air mass inside the tube. Subscript. 2=0. Let the subscript , represent z=h. The work ΔW that can be extracted from this heat engine per unit mass of air mass introduced is AW=(Pa-1'+')V*゜(
p=paD I P'dV'p1[Vs'(p=pa'
)−ve”(p=P*)]=PaVo' (P=P6)
-P@'Vll'(P=P1)" l P 'dV'
=n(va+▲T)-RTa゜+CV[(To+AT)
−T, l=Cp(Ta+▲T−T,)=Cp [τ. +^T-(T+'+rh)]=Cp(T
.. +▲T- (T.+▲T) (P+/Pa)'-”'-
rh)=CpAT(To-T+ 1/T.
(8). The ripening efficiency is the same as the case due to the buoyancy of the air mass described above. b If the pressure at the bottom of the pipe is the surrounding atmospheric pressure. The pressure at the top of the tube is higher than the surrounding area. Work ΔW in that case
Similarly, ▲w=(P,'-P+)'/+'(P'P+'
D S P'dV'P,[V,'(P=P,')-
Vl'(P=P,')]=Cp▲ding(T.-T.>/T
a
(9) The wind energy generated by this tube heats the ground atmosphere with a temperature of 300 K and a pressure of 1 atm to 330 K, and reaches an altitude of 5 km. When operating with a flow velocity of 10 m/s at the bottom of the pipe, approximately 40 million kW of wind energy can be obtained.Wind energy is converted into electrical energy with high efficiency.In addition, the pressure at the top of the pipe and the surrounding atmospheric pressure The pressure difference between
K. Assuming that the altitude of the pipe is 5 km, it will be about 0.03 atm, and l
In the case of a pipe with a cross-section of 1.2 km", a heavy object of about 300,000 tons can be held in the upper part. Next, consider the case of an atmosphere with a general temperature distribution. dP (z) P (z) g 〈10 ) dz RT(z) T(z)=T.-r'(z)z
(It)dz P(zCexp(-g/RS)T(z) (12) Temperature T0゜= (Te +ΔT
〉 temperature T' (z
) is T'(z)=Ts'( JR/C* Pa P, To-1"(z)z The work due to the buoyancy of the balloon is T(z) T(z) g dz Therefore, P0 cp To-r'( z)z =gl dz-gh T.-r'(z)z (P6)"cp To4 (z)z Pa Cp To
-r'(z)zgh
(14) On the other hand, in the above-mentioned tube, the work obtained when the pressure at the bottom is made equal to the surrounding atmospheric pressure is Δl'l:cp(To◆▲T-T,) :Cp[To+▲7-(7 , '+rh)]=Cp(T
ll+MuT-'h)-CpT+'=Cp(To+ΔT
)-gh-CpT+'<15)
TI゛2(T.+▲T)(PI/t's)""P.
RT. -r'(z)zP.
Ding. -r'(z)zΔW-Cp(To+8T) Pa Cp Ta-1"(z)z, which is the same as in the case of the balloon described above. When the pressure at the bottom is made the same as the surrounding atmospheric pressure is ΔW−Cp[T
+ '(P=P+')-T+゜(P-P+)]"
CI)l(To+muT-rh)-T+゜(P=Pl)]
:CpiT,+▲T-TI'(P=PI)]-gh
(It becomes 183. This is the same as when the upper part is made equal to the atmospheric pressure. If ゛ is a constant, it is given by T0. The pressure inside the pipe is given by T0 in the case where the upper pressure is made equal to the atmospheric pressure. ● Given by 11'.If the pressure at the bottom is made equal to atmospheric pressure, T.-rz P' (Z)・P.( ) ””
(21) This heat I when operating in a semi-atmosphere is shown in Table 1 given by T1!
! The thermal efficiency of the leapfrog. The wind energy generated when the cross-sectional area of the pipe introduction part is Ikm' and the flow velocity of the air mass at the pipe introduction part is 10 m/s, and the wind energy generated when the pressure at the top part is the same as atmospheric pressure. The vertical height of the pipe is the difference between the atmospheric pressure and the atmospheric pressure at . The temperature of the air mass at the time of introduction is shown as a parameter.
Furthermore, the air mass contains water vapor and is cooled below the dew point. When moisture in an air mass condenses. Because the temperature of the air mass follows the IW athermal lapse rate. This is because the temperature is higher than that of a dry air mass. The work ΔW for the introduction of air mass into the unit quality indigo increases. Furthermore, in addition to the method of increasing the temperature of the air mass, there is also a method of humidifying the air mass, that is, a method of increasing the latency of the air mass. Wind energy can be generated similarly if the temperature lapse rate is greater than the wet adiabatic lapse rate. The efficiency of this heat engine is determined by the temperature at the bottom of the tube and the temperature at the top of the tube.
It depends on the vertical height of the pipe, the lapse rate r of the air temperature, and the heating temperature, but as shown in Table 1. Using slightly hot gas, which is only a few tens of degrees Celsius higher than room temperature, which was previously difficult to use, it is possible to convert it into wind energy with high efficiency. +! II.Ideal for large-scale use of solar energy. Large-scale wind power up to hundreds of millions of kW can be obtained. This wind energy can be converted into electrical energy with high efficiency. Also, if a high-humidity air mass near the AM layer is introduced into the tube.
WRf'A Condenses water vapor in the cooled air mass. If fresh water can be obtained and the pressure at the bottom of the tube is the same as atmospheric pressure, the pressure at the top of the tube will be relative to the surrounding atmospheric pressure.
In addition to the method of holding tubes using mountainous terrain or artificial horizontal objects, which create high pressure, the differential pressure created by this can also be used to hold heavy objects, such as balloons, at the top of the tube. In this case, if there is strong wind in the sky E, add a tail to the pipe. You can also use lift. Also, connect a balloon to the tube. It is also possible to use the buoyancy to hold the tube in the air. The L ascending airflow inside the tube is fully formed. The pressure at the center is compared to the pressure around the tube. It can also be a low pressure. still. Temperature lapse rate is dry P. Reduction rate ``If greater than, R
In an absolutely unstable atmosphere, it simply causes the air mass on the surface to rise. Because the temperature is higher than that of the surrounding atmosphere, the apparent thermal efficiency may exceed 100%. The same is true when the surface air mass contains a large amount of water vapor and the temperature lapse rate is greater than the humid adiabatic lapse rate, that is, in a conditionally unstable atmosphere. The pipes may be installed along slopes in mountainous areas or by artificial horizontal structures. Furthermore, it takes advantage of the buoyancy of the air mass. Alternatively, the buoyancy of a balloon or wings attached to the tube may be used to hold the tube at a high altitude. [Example] First, there is a pipe 1 that is vertical or has a gradient in the vertical direction.
At the bottom of this tube 1 is an air mass introduction port 3. The air on the ground is heated or humidified, or heated and humidified by a heat exchange means 6 using solar energy, warm seawater, waste heat, etc. as a heat source in the tube 1 having an air mass outlet 5 at the upper part of the tube 1. By doing so, the surrounding atmosphere. By introducing the air mass 2, which has become buoyant due to its low density state, through the air mass introduction port 3 installed below the tube 1, an upward airflow that moves upward within the tube 1 is generated, There is a wind generation method that is characterized by generating wind energy from this updraft. In the above, the outer shape of the above tube 1! Linear or wing.
Alternatively, a wind energy generation method and device that connects a balloon and uses the lift force exerted on the wings by the wind in the sky and the buoyancy of the balloon to control the attitude of the tube. Wind power generation methods and devices, fresh water production methods and devices are also considered. The pipe l may be installed along the slope 4. Further, the tube 1 may be reinforced by inserting a strut 8 therein. In addition. As wind power conversion means 7. If a windmill is selected, this is done to alleviate the torque that the windmill applies to pipe 1. A combination of windmills that rotate in opposite directions may be used as the conversion means 7. [Effects of the Invention] The wind energy generation method and system, the wind power generation method and device, and the freshwater production method and device according to the present invention are as follows. As a result of the above-mentioned efforts, the following effects arose. In other words. The air mass, which has been heated to have a lower density than the surrounding atmosphere, is introduced into a tube or pressure-resistant tube. .. This wind energy can generate updrafts and generate wind energy. It is now possible to generate wind power and produce fresh water. Furthermore, the tube is made to have a lightweight structure that can withstand positive pressure, and the pipe is designed to be able to withstand positive pressure by applying a pressure of M to the surrounding atmosphere. By suppressing it. We have made it possible to create a self-floating tube with buoyancy that can reach high altitudes. Yet again. Add a balloon and wings to this tube. Added the ability to increase buoyancy.
第1図は.本発明の風力エネルギー発生装置の一実施例
の説明図である.
第2図は.本発明の風力発電装置の一実施例の説明図で
ある
第3図は本発明のその別の実施例である.】・・・管
2・・・気塊3・・・気塊導入口
4・・・斜面5・・気塊排出口 6・・
・た交換手段7・・・風カエネルギー変換手段
8・・・支柱Figure 1 is. FIG. 1 is an explanatory diagram of an embodiment of the wind energy generation device of the present invention. Figure 2 is. FIG. 3, which is an explanatory diagram of one embodiment of the wind power generation device of the present invention, is another embodiment of the present invention. 】···tube
2...Air mass 3...Air mass introduction port
4...Slope 5...Air mass outlet 6...
・Exchange means 7...Wind energy conversion means 8...Strut
Claims (1)
の下部に気塊導入口と、上記管の上部に気塊排出口とを
有する管に、太陽エネルギーや温暖な海水や廃熱等を熱
源とする熱交換手段により地上の空気を加熱または加湿
、若しくは加熱しかつ加湿することにより、周囲の大気
に対し、低密度の状態となることにより浮力を持つた気
塊を、管の下方に設置された気塊導入口から導入するこ
とにより、上記管内を上方に運動する上昇気流を発生さ
せ、この上昇気流による風力エネルギーを発生させるこ
とを特徴とした風力エネルギー発生方法。 2 請求の範囲1において、上記管を負圧に耐える構造
とし、かつ上記気塊導入口に、風車等の風力エネルギー
を機械的エネルギーに変換するための変換手段を設置し
、上記変換手段作動時の上記管内部の圧力を周囲の大気
圧に対し低気圧としたことを特徴とする風力エネルギー
発生方法。 3 請求の範囲1において上記管を正圧に耐える構造と
し、かつ上記気塊排出口に、風車等の風力エネルギー変
換手段を設置し、上記変換手段作動時の上記管内部の圧
力を周囲の大気圧に対し高気圧としたことを特徴とする
風力エネルギー発生方法。 4 請求の範囲1において、上記気塊の上昇運動を渦状
に形成し、渦内部の気圧を外気に対し、低圧としたこと
を特徴とする風力エネルギー発生方法。 5 請求の範囲1、3または4において、上記管を軽量
の素材で形成し、上記気塊の与える浮力を利用し、上記
管を保持することを特徴とした風力エネルギー発生方法
。 6 請求の範囲1、2、3、4または5において、時事
刻々変化する上空の強風に適合させ、気塊を上記気塊排
出口から排出させるため、上記気塊排出口を水平面内で
可動とするための手段を設置したことを特徴とする風力
エネルギー発生方法。 7 請求の範囲1、2、3、4、5または6において、
太陽輻射を吸収または透過、あるいは選択吸収、または
選択透過するカバーを地表または海面上部に設置し、前
記地表または海面上部と前記カバーとの間に挟まれ、太
陽輻射により加熱または加湿、あるいは加熱、かつ加湿
された気塊を上記管に導入することを特徴とした風力エ
ネルギー発生方法。 8 請求の範囲1、2、3、4、5、6または7におい
て、浅い海面または溶融塩類などの蓄熱手段に太陽エネ
ルギーを貯え、このエネルギーにより、上記蓄熱手段上
部に存在する気塊を加熱または加湿、あるいは加熱且つ
加湿し、この気塊を上記管に導入することを特徴とした
風力エネルギー発生方法。 9 請求の範囲1、2、3、4、5、6、7または8に
おいて、海水を低熱源とするヒートポンプにより上記気
塊を加熱することを特徴とした風力発生方法。 10 請求の範囲1、2、3、4、5、6、7、8また
は9において、AgIやドライアイスや水滴等の凝結核
を上記管内部に導入することを特徴とした風力エネルギ
ー発生方法。 11 請求の範囲1または10により発生した風力エネ
ルギーを利用し、湿った気塊を断熱膨張させることによ
り上記気塊中の水分を凝結させることにより淡水を製造
することを特徴とした淡水製造方法。 12 請求の範囲11において、上記気塊排出口に、メ
ッシュ、あるいは通気性の布等からなる水滴捕集器を設
置することにより、上記気塊中に含まれる水滴を補集す
ることを特徴とした淡水製造方法。 13 請求の1、2、3、4、5、6、7 、8、9または10により発生した風力エネルギーを利
用した風力発電方法。 14 請求の範囲1、2、3、4、5、6、7、8、9
または10により発生した風力エネルギーを利用した揚
水設備を使用したこと を特徴とする風力発電方法。 15 請求の範囲5において、上記気塊の与える浮力を
利用し、上空に発電機を保持し、上記風力エネルギー、
もしくは上空に存在する地■風やジェット気流の風力を
利用し、発電することを特徴とした風力発電方法。 16 請求の範囲1、2、3、4、5、6、7、8、9
または10において、上記管の外形を流線形としたこと
を特徴とする風力エネルギー発生方法。 17 請求の範囲1、2、3、4、5、6、7、8、9
、10または16において、上記管に気球、あるいは翼
を接続し、気球の浮力や上空に存在する風が上記翼に与
える揚力を利用し、上記管の姿勢を制御することを特徴
とした風力エネルギー発生方法。 18 請求の範囲13、14または15において、上記
管の外形を流線形としたことを特徴とする風力発電方法
。 19 請求の範囲13、14、15または1812にお
いて、上記管に気球、あるいは翼を接続し、気球の浮力
や上空に存在する風が上記翼に与える揚力を利用し、上
記管の姿勢を制御することを特徴とした風力発電方法。 20 請求の範囲11または12において、上記管の外
形を流線形としたことを特徴とする淡水製造方法。 21 請求の範囲11、12または20において、上記
管に気球、あるいは翼を接続し、気球の浮力や上空に存
在する風が上記翼に与える揚力を利用し、上記管の姿勢
を制御することを特徴とした淡水製造方法。 22 鉛直方向または鉛直方向に勾配をもつ風圧管、該
風圧管の下部に設けられた気塊導入口、上記風圧管の上
部に設けられた気塊排出口、太陽エネルギーを熱源とす
る熱交換手段、より成ることを特徴とした風力エネルギ
ー発生装置。 23 鉛直方向または鉛直方向に勾配を持つ風圧管、該
風圧管の下部に設けられた気塊導入口、上記風圧管の上
部に設けられた気塊排出口、太陽エネルギーを熱源とす
る熱交換手段、上記の風圧管、気塊導入口または気塊排
出口に設けられた発電手段、より成ることを特徴とした
風力発電装置。 24 鉛直方向または鉛直方向に勾配をもつ風圧管、該
風圧管の下部に設けられた気塊導入口、上記風圧管の上
部に設けられた気塊排出口、太陽エネルギーによる温暖
な海水を熱源とする熱交換手段、より成ることを特徴と
した淡水製造装置。[Scope of Claims] 1. A pipe having a vertical direction or a slope in the vertical direction, an air mass inlet at the lower part of the pipe, and an air mass outlet at the upper part of the pipe, is provided with solar energy or warm air. An air mass that becomes buoyant by heating or humidifying the air on the ground, or by heating and humidifying it using heat exchange means that use seawater, waste heat, etc. as a heat source, resulting in a state of low density relative to the surrounding atmosphere. is introduced from an air mass inlet installed at the bottom of the pipe, thereby generating an upward airflow moving upward in the pipe, and generating wind energy by this upward airflow. . 2. In claim 1, the pipe has a structure that can withstand negative pressure, and the air mass inlet is provided with a conversion means for converting wind energy into mechanical energy such as a wind turbine, and when the conversion means is activated, A method for generating wind energy, characterized in that the pressure inside the pipe is lower than the surrounding atmospheric pressure. 3. In claim 1, the pipe has a structure that can withstand positive pressure, and a wind energy conversion means such as a wind turbine is installed at the air mass discharge port, and the pressure inside the pipe when the conversion means is activated is reduced to the surrounding pressure. A wind energy generation method characterized by high pressure compared to atmospheric pressure. 4. The method for generating wind energy according to claim 1, characterized in that the upward motion of the air mass is formed into a vortex, and the pressure inside the vortex is lower than that of the outside air. 5. The method for generating wind energy according to claim 1, 3 or 4, characterized in that the tube is formed of a lightweight material and the tube is held using buoyancy provided by the air mass. 6. In Claims 1, 2, 3, 4, or 5, the air mass outlet is movable in a horizontal plane in order to discharge the air mass from the air mass outlet in order to adapt to strong winds in the sky that change from time to time. A wind energy generation method characterized by installing a means for generating wind energy. 7 In claims 1, 2, 3, 4, 5 or 6,
A cover that absorbs, transmits, selectively absorbs, or selectively transmits solar radiation is installed on the ground surface or above the sea surface, and is sandwiched between the ground surface or above the sea surface and the cover, and is heated or humidified by solar radiation. A method for generating wind energy, characterized in that the humidified air mass is introduced into the pipe. 8 In Claims 1, 2, 3, 4, 5, 6, or 7, solar energy is stored in a heat storage means such as a shallow sea surface or molten salt, and this energy is used to heat or heat the air mass present above the heat storage means. A wind energy generation method characterized by humidifying, or heating and humidifying, and introducing this air mass into the pipe. 9. The wind power generation method according to claim 1, 2, 3, 4, 5, 6, 7 or 8, characterized in that the air mass is heated by a heat pump using seawater as a low heat source. 10. The method for generating wind energy according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9, characterized in that condensation nuclei such as AgI, dry ice, or water droplets are introduced into the pipe. 11. A method for producing fresh water, characterized in that fresh water is produced by adiabatically expanding a moist air mass using the wind energy generated according to claim 1 or 10 and condensing water in the air mass. 12. Claim 11 is characterized in that water droplets contained in the air mass are collected by installing a water droplet collector made of mesh, breathable cloth, etc. at the air mass outlet. freshwater production method. 13. A wind power generation method using the wind energy generated according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. 14 Claims 1, 2, 3, 4, 5, 6, 7, 8, 9
or 10. A wind power generation method characterized by using pumping equipment that utilizes the wind energy generated by 10. 15 In claim 5, a generator is held in the sky by utilizing the buoyancy provided by the air mass, and the wind energy is
Alternatively, a wind power generation method that uses wind power from the earth's wind or jet stream that exists in the sky to generate electricity. 16 Claims 1, 2, 3, 4, 5, 6, 7, 8, 9
Or 10, the wind energy generation method characterized in that the outer shape of the pipe is streamlined. 17 Claims 1, 2, 3, 4, 5, 6, 7, 8, 9
, 10 or 16, the wind energy is characterized in that a balloon or a wing is connected to the tube, and the attitude of the tube is controlled by using the buoyancy of the balloon or the lifting force exerted on the wing by the wind existing in the sky. How it occurs. 18. The wind power generation method according to claim 13, 14 or 15, characterized in that the outer shape of the pipe is streamlined. 19 In claim 13, 14, 15 or 1812, a balloon or a wing is connected to the tube, and the attitude of the tube is controlled by using the buoyancy of the balloon or the lifting force exerted on the wing by the wind existing in the sky. A wind power generation method characterized by: 20. The method for producing fresh water according to claim 11 or 12, characterized in that the outer shape of the tube is streamlined. 21 In claim 11, 12 or 20, a balloon or a wing is connected to the tube, and the attitude of the tube is controlled by using the buoyancy of the balloon or the lifting force exerted on the wing by the wind existing in the sky. Featured freshwater production method. 22 A wind pressure pipe having a vertical direction or a gradient in the vertical direction, an air mass inlet provided at the bottom of the wind pressure pipe, an air mass outlet provided at the top of the wind pressure pipe, a heat exchange means using solar energy as a heat source A wind energy generator characterized by comprising: 23 A wind pressure pipe having a vertical direction or a gradient in the vertical direction, an air mass inlet provided at the bottom of the wind pressure pipe, an air mass outlet provided at the top of the wind pressure pipe, a heat exchange means using solar energy as a heat source , a wind power generation device comprising the above-mentioned wind pressure pipe, power generation means provided at the air mass inlet or the air mass outlet. 24 A wind pressure pipe with a vertical direction or a slope in the vertical direction, an air mass inlet provided at the bottom of the wind pressure pipe, an air mass outlet provided at the top of the wind pressure pipe, warm seawater generated by solar energy as a heat source. A freshwater production device characterized by comprising a heat exchange means for
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24084689A JPH03105076A (en) | 1989-09-19 | 1989-09-19 | Generation of wind power energy and device therefor, wind power type power generation and device therefor, and manufacture of fresh water and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24084689A JPH03105076A (en) | 1989-09-19 | 1989-09-19 | Generation of wind power energy and device therefor, wind power type power generation and device therefor, and manufacture of fresh water and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03105076A true JPH03105076A (en) | 1991-05-01 |
Family
ID=17065579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24084689A Pending JPH03105076A (en) | 1989-09-19 | 1989-09-19 | Generation of wind power energy and device therefor, wind power type power generation and device therefor, and manufacture of fresh water and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03105076A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104989607A (en) * | 2015-06-08 | 2015-10-21 | 青海中控太阳能发电有限公司 | Steam power generation system for solar thermal power generation and pipe warming method of system |
CN108412557A (en) * | 2018-01-23 | 2018-08-17 | 长沙理工大学 | Atmospheric density difference, which is generated, using waste heat pushes impeller generating set |
JP2021116697A (en) * | 2020-01-22 | 2021-08-10 | 株式会社大林組 | Power generation system |
-
1989
- 1989-09-19 JP JP24084689A patent/JPH03105076A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104989607A (en) * | 2015-06-08 | 2015-10-21 | 青海中控太阳能发电有限公司 | Steam power generation system for solar thermal power generation and pipe warming method of system |
CN108412557A (en) * | 2018-01-23 | 2018-08-17 | 长沙理工大学 | Atmospheric density difference, which is generated, using waste heat pushes impeller generating set |
JP2021116697A (en) * | 2020-01-22 | 2021-08-10 | 株式会社大林組 | Power generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ninic | Available energy of the air in solar chimneys and the possibility of its ground-level concentration | |
Zhou et al. | A review of solar chimney power technology | |
US4497177A (en) | Wind generating means | |
Kashiwa et al. | The solar cyclone: A solar chimney for harvesting atmospheric water | |
WO2003025395A1 (en) | Atmospheric vortex engine | |
WO2004036039A1 (en) | Solar tower | |
CN104295453A (en) | High-altitude wind energy capturing system | |
CN102003346A (en) | Comprehensive power generation device adopting atmospheric gradient temperature difference and artificial cyclone | |
Michaud | The atmospheric vortex engine | |
AU2017293758B2 (en) | Vortex station | |
JPH03105076A (en) | Generation of wind power energy and device therefor, wind power type power generation and device therefor, and manufacture of fresh water and device therefor | |
Koonsrisuk et al. | Theoretical turbine power yield in solar chimney power plants | |
CN206232423U (en) | A kind of solar power generation and sea water desalinating unit for combining wind pressure type ventilation unit | |
CN206755649U (en) | Radiation refrigeration particle and devaporation retracting device | |
Michaud | The atmospheric vortex engine | |
WO2000042320A1 (en) | Unbounded vortical chimney | |
US4211084A (en) | Conversion of energy by means of tethered whirlwinds | |
CN107191309A (en) | A kind of heat energy pumping storage generating equipment | |
KR100938538B1 (en) | Solar Vortex Chimney Power Plant boosted by Solar Chimney | |
CN202900555U (en) | Solar airflow power generation assembly | |
WO2015167281A1 (en) | Free convection power tower | |
Cao et al. | TRNSYS simulation of solar chimney power plants with a heat storage layer | |
CN101839217B (en) | Artificial typhoon high-current large generating system | |
RU92484U1 (en) | WIND POWER PLANT | |
Ayub et al. | Design and Fabrication of Solar Updraft Tower and Estimation of Power Generation; Initially Focused on Bangladesh |