JPH03104893A - Method for synthesizing polysilane - Google Patents

Method for synthesizing polysilane

Info

Publication number
JPH03104893A
JPH03104893A JP1240254A JP24025489A JPH03104893A JP H03104893 A JPH03104893 A JP H03104893A JP 1240254 A JP1240254 A JP 1240254A JP 24025489 A JP24025489 A JP 24025489A JP H03104893 A JPH03104893 A JP H03104893A
Authority
JP
Japan
Prior art keywords
pure
anode
magnesium
alloy
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1240254A
Other languages
Japanese (ja)
Other versions
JP2687020B2 (en
Inventor
Toshiisa Ishikawa
石川 敏功
Tsutomu Nonaka
勉 野中
Hiroshi Ichikawa
宏 市川
Masanobu Umezawa
梅澤 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP1240254A priority Critical patent/JP2687020B2/en
Publication of JPH03104893A publication Critical patent/JPH03104893A/en
Application granted granted Critical
Publication of JP2687020B2 publication Critical patent/JP2687020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To inexpensively and easily synthesize the polysilane having a high degree of polymerization in high yield by diaphragmless-electrolyzing an electrolyte contg. organodichloromonosilane using an anode of Al and Mg and a cathode of Al, Mg and other materials. CONSTITUTION:Organodichloromonosilane as the starting material is mixed with a supporting electrolyte or with a polar solvent contg. the supporting electrolyte to obtain an electrolyte. The electrolyte is electrolyzed in an electrolytic cell free of a diaphragm. Pure Al, an Al alloy, pure Mg and an Mg alloy are used for the anode and cathode, or Al or Mg is used for the anode and other materials for the cathode. When the former materials are used, electrolysis is carried out while reversing the polarities of both electrodes at regular time intervals. Dichlorodimethylsilane, dichloromethylphenylsilane or dichlorodiphenylsilane are preferably used as the organodichloromonosilane. The electrolysis product is separated and refined to obtain the polysilane such as polydimethylsilane and polymethylphenylsilane, and the Cl is deposited and removed as AlCl3, MgCl2, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリシランの合成方法に関し,さらに詳しくは
SiC繊維、SiC成形体等の前駆体、ボリスチレン等
の重合開始剤等として有用なポリシランの合成方法に関
する. [従来の技術コ 従来、ポリシランの合成方法としては,ジクロロオルガ
ノシラン等を出発原料とする場合にはナトリウム,ナト
リウムーカリウム合金、リチウム等のアルカリ金属によ
って還元的脱塩素および縮合反応させる方法が主に行な
われてきた。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for synthesizing polysilane, and more specifically to the synthesis of polysilane useful as a precursor for SiC fibers, SiC molded bodies, etc., and as a polymerization initiator for polystyrene, etc. Regarding the method. [Conventional technology] Conventionally, when dichloroorganosilane is used as a starting material, the main methods for synthesizing polysilane include reductive dechlorination and condensation reaction with alkali metals such as sodium, sodium-potassium alloy, and lithium. It has been carried out in

また、別のポリシランの合成方法として,主としてジク
ロロジフェニルシランを出発原料として,支持電解質で
あるn − B u 4N C Q○4を含有する電解
液中においてその出発原料を電解する方法がE.Hen
gge等により開示されている(Journal  o
f   Organometallic  Chemi
stry  vo1.212 (1981)  P.1
55〜161). [発明が解決しようとする課題] しかし、ジクロロオルガノシラン等をアルカリ金属によ
って脱塩素および縮合反応させる方法は、使用されるア
ルカリ金属が高価なので、得られるポリシランの原価が
高いものとなっていた。
Another method for synthesizing polysilane is a method in which dichlorodiphenylsilane is used as a starting material and the starting material is electrolyzed in an electrolytic solution containing n - Bu 4N C Q○4 as a supporting electrolyte, as described by E. Hen
(Journal o
f Organometallic Chemi
try vo1.212 (1981) P. 1
55-161). [Problems to be Solved by the Invention] However, in the method of dechlorinating and condensing dichloroorganosilane or the like with an alkali metal, the alkali metal used is expensive, so the cost of the resulting polysilane is high.

また、アルカリ金属自体が非常に危険であるため、合成
の際の取扱いに困難性があり、危険性を伴うものであっ
た. ジクロロジフェニルシランを電解する方法によると、ポ
リシランを合成することができるが、重合度が4の環状
オクタフェニルテトラシランが収率0.5〜3.0%で
得られているに過ぎず、重合度および収率がともに極め
て低く充分なものが得られなかった。
Furthermore, since the alkali metal itself is extremely dangerous, it is difficult and dangerous to handle during synthesis. Polysilane can be synthesized by electrolyzing dichlorodiphenylsilane, but cyclic octaphenyltetrasilane with a degree of polymerization of 4 is only obtained in a yield of 0.5 to 3.0%, and polymerization is difficult. Both the degree and the yield were extremely low and a sufficient amount could not be obtained.

また、ジクロ口ジアルキルシランあるいはジクロロアル
キルアリールシランを出発原料とした場合には,目的の
ポリシランは全く生成しないかあるいは痕跡程度の生或
であり、目的生成物以外であるボリシロキサン類が生成
してしまっていた。
Furthermore, when dichlorodialkylsilane or dichloroalkylarylsilane is used as a starting material, the desired polysilane is not produced at all or only a trace is produced, and polysiloxanes other than the desired product are produced. It was put away.

そこで、発明者等は先にジクロロオルガノジシランある
いはトリクロロオルガノジシランのうちの少なくとも一
種を、支持電解質を含有する極性溶媒から成る電解液中
において乾燥雰囲気下で電解を行ない、得られる生或物
を分離、精製して単離することを特徴とするポリシラン
の合成方法を提案した(特願昭63−257360号)
Therefore, the inventors first electrolyzed at least one of dichloroorganodisilane or trichloroorganodisilane in an electrolytic solution consisting of a polar solvent containing a supporting electrolyte in a dry atmosphere, and separated the resulting product. proposed a method for synthesizing polysilane characterized by purification and isolation (Japanese Patent Application No. 1983-257360).
.

しかし、この方法はポリシランを収率良く、しかも簡便
かつ安価に得られる合成方法であるが、隔膜付電解槽や
電極材料にプラチナなど高価な金属の使用が望れること
や必然的に生成する副生或物の塩素イオンの処理がむず
かしいことなどの点で改良が望まれていた。
However, although this method is a simple and inexpensive method of synthesizing polysilane with good yield, it requires the use of expensive metals such as platinum in the electrolytic cell with a diaphragm and electrode materials, and it inevitably generates by-products. Improvements have been desired since it is difficult to treat raw chlorine ions.

また,より重合度の高いポリシランを高収率で得る合成
法の開発要求も高まってきている。
Additionally, there is an increasing demand for the development of synthetic methods for producing polysilanes with a higher degree of polymerization in high yields.

本発明はかかる現状に鑑みて成されたものであり、本発
明の目的は,隔膜を使用せずに、また軽量、安価なアル
ミニウム電極若しくはマグネシウム電極を使用して、副
生塩素イオンの処理を容易にし、さらに高取率で効率よ
く重合度の高いボリシランを合成する方法を提供するこ
とにある。
The present invention has been made in view of the current situation, and an object of the present invention is to treat by-product chlorine ions without using a diaphragm and by using lightweight and inexpensive aluminum or magnesium electrodes. It is an object of the present invention to provide a method for easily synthesizing polysilane having a high degree of polymerization with high yield and efficiency.

[課題を解決するための手段] そこで、本発明者らは前記目的を達或するため鋭意研究
をした結果、ハロゲン化有機ケイ素化合物を支持電解質
と混合するか,あるいは支持電解質を含有する極性溶媒
と混合して電解液とし電解電極として、陽極,陰極とも
アルミニウムまたはマグネシウム電極を使用するか,陽
極にアルミニウムまたはマグネシウム電極を用いかつ陰
極に他の1!極材料を用いたものを使用して隔膜を使用
しない電解槽中で電解し、さらに前者の場合、極性を一
定時間間隔で逆転しつつ電解すれば前記目的が解決でき
るとの知見を得て本発明を完成した.本発明の合成方法
においては,出発原料とじてジクロロオルガノモノシラ
ンが用いられる.ジクロロオルガノモノシランとしては
特に制限されず、種々のものが挙げられるが、ジクロロ
ジメチルシランのようなジクロロジアルキルシラン、ジ
クロロメチルフェニルシランのようなジクロロアルキル
アリールシラン、あるいはジクロロジフェニルシランの
ようなジクロロジアリールシランが好ましい. 出発原料は電解液中に少なくともQ.Qlmo117m
以上の濃度で混合され、電解条件により適宜選定,使用
される. 濃度が上記範囲の下限より少ない場合には混合された出
発原料が,極性溶媒あるいは支持電解質中の不純物,特
に水分により分解され機能しなくなるので好ましくない
. 本発明の合成方法において上記出発原料の電解の際の電
解液は、支持電解質を出発原料と混合するか,あるいは
支持電解質を含有する極性溶媒と混合して使用される. 本発明において使用される支持電解質としては,使用可
能な電位範囲が広く、かつ使用される出発原料あるいは
極性溶媒と反応しない性質のものでなければならず,具
体的にはn−Bu,NBFいn − B u 4N C
 Q等の4級アンモニウム塩等が使用され、特にn−B
u4NCQ(テトラーn−プチルアンモニウムクロライ
ド)が好ましい.また、本発明において使用される極性
溶媒としては,出発原料と反応しない性質のものでなけ
れitならず、従ってプロトン性溶媒(アルコール、カ
ルボン酸等)あるいは含水性の溶媒は不適当であり、さ
らに、誘電率が10以上の極性溶媒であことか好ましく
,具体的には,1,2−ジメトキシエタン(DME) 
、テトラヒドロフラン(THF)、アニソール等の極性
を持ったエーテル系溶媒、ヘキサメチルホスホロアミド
(HMPA).アセトニトリル(AN).ジメチルホル
ムアミド(DMF) 、ジメチルスルホキシド(DMS
O)、プロピレンカーボネート(pc)等の高極性非プ
ロトン性溶媒等のうちの少なくとも一種からなるものが
好ましく用いられ、特に1,2−ジメトキシエタンが好
ましい。
[Means for Solving the Problems] Therefore, as a result of intensive research in order to achieve the above object, the present inventors found that a halogenated organosilicon compound is mixed with a supporting electrolyte, or a polar solvent containing a supporting electrolyte is used. As an electrolytic electrode, use an aluminum or magnesium electrode for both the anode and the cathode, or use an aluminum or magnesium electrode for the anode and another electrode for the cathode. This book was based on the knowledge that the above objective could be solved by electrolyzing in an electrolytic cell without a diaphragm using an electrode material, and further, in the case of the former, reversing the polarity at regular intervals. Completed the invention. In the synthesis method of the present invention, dichloroorganomonosilane is used as a starting material. Dichloroorganomonosilanes are not particularly limited and include various types, including dichlorodialkylsilanes such as dichlorodimethylsilane, dichloroalkylarylsilanes such as dichloromethylphenylsilane, or dichlorodiarylsilanes such as dichlorodiphenylsilane. is preferable. The starting material is at least Q. Qlmo117m
They are mixed at the above concentrations, and are selected and used as appropriate depending on the electrolytic conditions. If the concentration is less than the lower limit of the above range, the mixed starting materials will be decomposed by impurities in the polar solvent or supporting electrolyte, especially water, and will no longer function, which is undesirable. In the synthesis method of the present invention, the electrolytic solution for electrolyzing the above-mentioned starting materials is used by mixing a supporting electrolyte with the starting materials or by mixing with a polar solvent containing the supporting electrolyte. The supporting electrolyte used in the present invention must have a wide usable potential range and a property that does not react with the starting materials or polar solvents used, and specifically, n-Bu, NBF, etc. n − B u 4N C
Quaternary ammonium salts such as Q are used, especially n-B
u4NCQ (tetra n-butylammonium chloride) is preferred. In addition, the polar solvent used in the present invention must be one that does not react with the starting materials, and therefore protic solvents (alcohols, carboxylic acids, etc.) or water-containing solvents are unsuitable. A polar solvent having a dielectric constant of 10 or more is preferable, specifically, 1,2-dimethoxyethane (DME).
, tetrahydrofuran (THF), polar ether solvents such as anisole, hexamethylphosphoramide (HMPA). Acetonitrile (AN). Dimethylformamide (DMF), dimethyl sulfoxide (DMS)
O), highly polar aprotic solvents such as propylene carbonate (pc), etc. are preferably used, and 1,2-dimethoxyethane is particularly preferred.

たとえば、テトラーn−プチルアンモニウムクロライド
を支持電解質として1,2−ジメトキシエタン(DME
)を極性溶媒とする場合にはその混合割合は飽和濃度約
0.02mon/fiが好ましい. 本発明における電解電極は陽極が純アルミニウムまたは
A1050などのアルミニウム合金,純マグネシウムま
たはA231などのマグネシウム合金からなり、また陰
極は上記陽極と同一材料またはプラチナ、カドミウム,
水銀、鉛などの金属や、炭素などの電解条件下で安定な
電導性材料を使用する。
For example, tetra-n-butylammonium chloride is used as the supporting electrolyte in 1,2-dimethoxyethane (DME).
) is used as a polar solvent, the preferred mixing ratio is a saturation concentration of about 0.02 mon/fi. In the electrolytic electrode of the present invention, the anode is made of pure aluminum or an aluminum alloy such as A1050, pure magnesium or a magnesium alloy such as A231, and the cathode is made of the same material as the above-mentioned anode or platinum, cadmium, etc.
Use conductive materials that are stable under electrolytic conditions, such as metals such as mercury and lead, and carbon.

本発明の合成方法においては、乾燥雰囲気下で電解を行
ない,電解液中に出発原料に対応したポリシランが溶存
および/または析出状態で得られる。
In the synthesis method of the present invention, electrolysis is performed in a dry atmosphere, and polysilane corresponding to the starting material is obtained in an electrolytic solution in a dissolved and/or precipitated state.

この際の電流密度は好ましくは0.1〜1000 m 
A / d、さらに好ましくはl−100mA/dであ
る. 一般に、上記範囲の下限より低い電流密度では陰極電位
が残余電流領域になるため出発原料の還元が全く生起し
ないか,生起しても電流効率が激減してしまい、また上
限より高い電流密度では副反応(溶媒および/または支
持電解質の還元)が併起して電流効率の低下を招来する
とともに、目的生成物であるポリシランのうち電解液中
に溶存するものの還元的分解が起こり、収率、選択率、
重合度がともに低下してしまうので、いずれも好ましく
ない. 本発明のように電解槽に隔膜を使用しないと,陽極が耐
CQ,性材料(Pt.Ruなと)である場合,剛性する
塩素イオンが陽極でCQ.に酸化され、さらに、そのC
a2は陰極で塩素イオンに再還元されるので、副生ずる
塩素イオンの処理にならないのみならず電流効率を低下
させ原料のジクロ口オルガノシランの電解還元重合自体
を著しく妨げることになる.また陽極で発生するCQ.
による酸化および塩素化も重大な問題となる.一方,耐
(II,性がない通常の金属(Zn.CUなど)を陽極
に使用した場合、CQ,は発生せず塩化物になるが,陰
極で金属イオンの還元が生じ、CI2−の処理にならな
いばかりか電流効率を低下させ.M料の重合をも妨げる
. 本発明においては、アルミニウムまたはマグネシウム電
極を陽極に使用するので、上記のような陰極における金
属の析出による電流効率の低下もft<.CQ一がA 
ffi C j1.またはMgCQ,の沈殿として除去
できる. すなわち、本発明における電解に際して陰極でR2 (但し、R,.R,;メチル基、フェニル基、アルキル
基、アリール基等を示す.) なる反応が生じ、陽極がアルミニウムでは、n AQ+nCQ− 』ζ”AQCQ3 33 マグネシウムでは、 n −Mg+nCI2− ユS”MgCa.22 となる反応が生じる. 一方、原料のジクロロオルガノシラン又は生成するポリ
シランの酸化電位はこれらの反応の酸化電位より高いの
で原料および生成物の分解は生じない. 従って,陽極のアルミニウムまたはマグネシウム電極は
犠牲電極として消耗していくが副生塩素の処理の面から
有効である. 一方,陽,陰両極ともアルミニウムまたはマグネシウム
電極とし、かつ一定時間(好ましくは0.1〜10時間
)毎に極性を逆転することによって陽極としての電極に
付着していたA fi C Q,またはMgCQ,層の
電極付着面が極性逆転された陰極としての電極で還元状
態となり容易に離脱する.従って,副生塩素の処理に加
え、電極の活性は低下することなく継続されかつこのこ
とより目的反応における電極反応の電流効率の低下は事
実上ない. また,温度条件は−20〜80℃であることが好ましい
. このとき通電量は理論量(出発原料中のCQlmo n
当りIF)の1/10 〜10/1であることが好まし
く、理論量の0.5/1〜1.571が特に好ましい. 一般に上記範囲の下限より少ないと目的とするポリシラ
ンが良好に得られず、上限より過剰の通電では生或した
ポリシランの還元的分解が生じるので好ましくない. このように、本発明のおける上述の電解によって,電解
に供した出発原料に対応してポリジメチルシラン、ポリ
メチルフェニルシラン等のポリシランが得られる. また、電流密度,通電量等の電解条件を任意に選択する
ことによって,得られるポリシランの重合度等のyIa
が可能である. 次に,得られたボリシランを電解終了後の電解液から分
離、精製して単離する. その方法は特に限定されず、目的とするポリシランの種
類,処理量等に従って、良好な方法が適宜選択される.
以下に好ましい方法の一例を示す.まず、電解終了後の
電解液中に沈殿が析出している場合はそれをろ別した後
,支持電解質を電解液から除去せしめる.その方法とし
ては,n−ヘキサン,キシレン、トルエン、ベンゼン等
を過剰量添加して沈殿せしめてろ別する分離手法あるい
はシリカゲルーCH,(112カラムを用いるクロマト
グラフィーによる分離手法等が用いられ、特に前者が好
ましい. 次いで、支持電解質を除去せしめた電解液を減圧蒸留等
により濃縮した後、必要に応じてff/#クロマトグラ
フィー(TLC).カラムクロマトグラフイー等によっ
て精製を行ない、単離されたボリシランが得られる. このようにして得られたポリシランは.SiC繊維、S
iC或形体等の前馳体、ポリスチレン等の重合開始剤等
として有用である。
The current density at this time is preferably 0.1 to 1000 m
A/d, more preferably l-100mA/d. Generally, at current densities lower than the lower limit of the above range, the cathode potential is in the residual current region, so reduction of the starting material either does not occur at all, or even if it occurs, the current efficiency is drastically reduced, and at current densities higher than the upper limit, Reactions (reduction of the solvent and/or supporting electrolyte) occur together, leading to a decrease in current efficiency, and reductive decomposition of the target product polysilane dissolved in the electrolyte occurs, resulting in lower yield and selectivity. rate,
Both are unfavorable because the degree of polymerization decreases in both cases. If a diaphragm is not used in the electrolytic cell as in the present invention, if the anode is made of a CQ-resistant material (such as Pt.Ru), the rigid chlorine ions will be CQ-resistant at the anode. is further oxidized to C
Since a2 is re-reduced to chloride ions at the cathode, not only is the by-product chloride ion not treated, but the current efficiency is reduced and the electrolytic reductive polymerization itself of the dichloroorganosilane as a raw material is significantly hindered. In addition, CQ generated at the anode.
oxidation and chlorination are also serious problems. On the other hand, if a normal metal (such as Zn.CU) that does not have resistance (II) is used for the anode, CQ, will not be generated and will become chloride, but reduction of metal ions will occur at the cathode, and the treatment of CI2- Not only does it reduce the current efficiency, but it also prevents the polymerization of the M material.In the present invention, since an aluminum or magnesium electrode is used as the anode, the current efficiency decrease due to metal precipitation at the cathode as described above is also avoided. <.CQ1 is A
ffi C j1. Alternatively, it can be removed as a precipitate of MgCQ. That is, during the electrolysis in the present invention, the following reaction occurs at the cathode: R, . "AQCQ3 33 For magnesium, n -Mg+nCI2-YS"MgCa. 22 A reaction occurs. On the other hand, since the oxidation potential of the raw material dichloroorganosilane or the polysilane produced is higher than the oxidation potential of these reactions, decomposition of the raw materials and products does not occur. Therefore, although the aluminum or magnesium electrode of the anode wears out as a sacrificial electrode, it is effective in terms of processing by-product chlorine. On the other hand, by using aluminum or magnesium electrodes for both the anode and cathode, and reversing the polarity at regular intervals (preferably 0.1 to 10 hours), A fi C Q or MgCQ attached to the anode electrode is removed. , the electrode-attached surface of the layer becomes a reduced state at the electrode, which serves as a cathode with reversed polarity, and is easily detached. Therefore, in addition to the treatment of by-product chlorine, the activity of the electrode continues without decreasing, and as a result, there is virtually no decrease in the current efficiency of the electrode reaction in the target reaction. Further, the temperature condition is preferably -20 to 80°C. At this time, the energization amount is the theoretical amount (CQlmon in the starting material
It is preferably 1/10 to 10/1 of the IF), and particularly preferably 0.5/1 to 1.571 of the theoretical amount. In general, if the amount is less than the lower limit of the above range, the desired polysilane cannot be obtained satisfactorily, and if the current is applied in excess of the upper limit, reductive decomposition of the formed polysilane occurs, which is not preferable. As described above, by the above-mentioned electrolysis in the present invention, polysilanes such as polydimethylsilane and polymethylphenylsilane can be obtained depending on the starting materials subjected to electrolysis. In addition, by arbitrarily selecting electrolytic conditions such as current density and amount of current, the degree of polymerization of the resulting polysilane can be determined by
is possible. Next, the obtained polysilane is separated from the electrolyte solution after electrolysis, purified, and isolated. The method is not particularly limited, and a suitable method is selected depending on the type of polysilane to be used, the amount of treatment, etc.
An example of a preferred method is shown below. First, if any precipitate is present in the electrolyte after electrolysis, filter it out and remove the supporting electrolyte from the electrolyte. The methods used include a separation method in which an excess amount of n-hexane, xylene, toluene, benzene, etc. is added to precipitate and filtration, or a separation method by chromatography using a silica gel-CH, (112 column). Preferably. Next, the electrolytic solution from which the supporting electrolyte has been removed is concentrated by vacuum distillation, etc., and then purified by ff/# chromatography (TLC), column chromatography, etc. as necessary, and the isolated vorisilane is purified. The polysilane obtained in this way is .SiC fiber, S
It is useful as a precursor for iC or the like, a polymerization initiator for polystyrene, etc.

[実施例] 以下,実施例に基づいて本発明をより具体的に説明する
. 実施例1 支持電解質として,テトラーn−プチルアンモニウムク
ロライド0.02moQ/12となるように添加した1
.2−ジメトキシエタン50mJ1及び出発原料として
のジクロロジメチルシラン1.2mQ(10mmoQ)
を純AQ板( 2 5 m m X40mm)を陰陽極
に有する無隔膜のビーカー型電解槽に注入し,乾燥雰囲
気下で電流密度60mA/am”、温度10℃として理
論量の70%(1350c)通電して電解を行なった.
電解終了後、電解液を04のガラスフィルターで口過し
,電解中に析出した沈殿物を分離した.沈殿は,メタノ
ール及びアセトン及び希塩酸,蒸留水で洗浄して、溶媒
,支持塩、塩化アルミニウム、低分子量生成物を除いた
後,減圧下で乾燥した. 得られた不溶性ポリジメチルシランの収率は20%であ
り、電流効率は29%であった.この不溶性ボリジメチ
ルシランについて赤外吸収スペクトル及び紫外吸収スペ
クトルを調べて分析を行なったところ,この不溶性ボリ
シランの重合度はナトリウム縮合法によって得られる市
販のポリジメチルシランと同等であり,重合度は20を
越えているものであった. 実施例2 実施例1において1時間毎に電極の極性を逆転して電解
したところ得られた不溶性ボリジメチルシランの収率は
40%であり,電流効率は57%であった. また,重合度は実施例lと同程度であった.実施例3 支持電解質として,テトラーn−プチルアニモニウムク
ロライドを0.05mon/nとなるように添加したジ
クロロジメチルシラン24mM( 2 0 0 m m
 o n )を実施例lと同一の装置で実施例2と同様
に電極の極性を30分毎に逆転して,理論量の10%通
電(40mF=3860c)を行なった. 生成物は乾
燥雰囲気下で口過し,実施例1に準じて精製した. この結果、実施例1と同程度の不溶性ポリジメチルシラ
ン0.46.を得た. 電流効率は40%であった. 実施例4 ジクロロジフェニルシランを出発原料に用い,陽極にA
Q合金A1050.陰極に白金を用いた以外は実施例1
に準じて電解を行なった.得られた不溶性のオクタフェ
ニルテトラシクロシラン(phs1)*の収率は15%
,電流効率21%であった. 又口液を減圧濃縮して溶媒を除いた後、シクロヘキサン
少量のn−ヘキサン,メタノールを加えよく撹拌溶解さ
せ分液した後,支持塩および低分子量生成物が除かれた
ヘキサン層を減圧濃縮したところ固体の重合度15程度
の鎖状ペルフエニルポリシランを得た. このポリマーの収率は30%、電流効率43%であった
[Examples] The present invention will be explained in more detail below based on Examples. Example 1 Tetra n-butylammonium chloride was added as a supporting electrolyte at a concentration of 0.02 moQ/12.
.. 50 mJ1 of 2-dimethoxyethane and 1.2 mQ (10 mmoQ) of dichlorodimethylsilane as starting material
was injected into a beaker-type electrolytic cell without a diaphragm having a pure AQ plate (25 mm x 40 mm) as the cathode and anode, and in a dry atmosphere at a current density of 60 mA/am and a temperature of 10 °C, 70% of the theoretical amount (1350 °C) was added. I turned on electricity and performed electrolysis.
After the electrolysis was completed, the electrolyte was passed through a 04 glass filter to separate the precipitate deposited during the electrolysis. The precipitate was washed with methanol and acetone, dilute hydrochloric acid, and distilled water to remove the solvent, supporting salt, aluminum chloride, and low molecular weight products, and then dried under reduced pressure. The yield of the obtained insoluble polydimethylsilane was 20%, and the current efficiency was 29%. When this insoluble polydimethylsilane was analyzed by examining its infrared absorption spectrum and ultraviolet absorption spectrum, it was found that the degree of polymerization of this insoluble polysilane was equivalent to that of commercially available polydimethylsilane obtained by the sodium condensation method, and the degree of polymerization was 20. It was more than that. Example 2 In Example 1, when electrolysis was carried out by reversing the polarity of the electrode every hour, the yield of insoluble boridimethylsilane obtained was 40%, and the current efficiency was 57%. Furthermore, the degree of polymerization was comparable to that of Example 1. Example 3 As a supporting electrolyte, 24mM dichlorodimethylsilane (200 m m
on) was used in the same equipment as in Example 1, and as in Example 2, the polarity of the electrodes was reversed every 30 minutes and 10% of the theoretical amount of current (40 mF = 3860 C) was applied. The product was passed through the mouth under a dry atmosphere and purified according to Example 1. As a result, the insoluble polydimethylsilane 0.46. I got it. The current efficiency was 40%. Example 4 Dichlorodiphenylsilane was used as the starting material, and A was used as the anode.
Q alloy A1050. Example 1 except that platinum was used for the cathode
Electrolysis was performed according to the method. The yield of the obtained insoluble octaphenyltetracyclosilane (phs1)* was 15%.
, the current efficiency was 21%. After concentrating the oral fluid under reduced pressure to remove the solvent, cyclohexane was added with a small amount of n-hexane and methanol, stirred well to dissolve and separate the layers, and the hexane layer from which the supporting salt and low molecular weight products were removed was concentrated under reduced pressure. As a result, a solid linear perphenyl polysilane with a degree of polymerization of about 15 was obtained. The yield of this polymer was 30% and the current efficiency was 43%.

この生成物の分子量をTHAを溶媒としてGPC(ゲル
パーミエーションクロマトグラフイ)で金属ナトリウム
を用いた化学的合成法より得られた鎖状ペルフェニルポ
リシランと比較したところ,同様あるいは若干の分子量
の向上が認められた。
When the molecular weight of this product was compared with that of linear perphenylpolysilane obtained by chemical synthesis using metallic sodium by GPC (gel permeation chromatography) using THA as a solvent, it was found that the molecular weight was the same or slightly improved. was recognized.

実施例5 出発原料としてジクロロメチルフェニルシランを用いた
以外は実施例1に準じて電解を行なった.その結果、得
られた重合度20程度の可溶性鎖状ポリマーの収率は5
0%,電流効率は71%であった. 実施例6 支持電解質としてテトラーn−プチルアンモニウムクロ
ライド0.02mol/flとなるように添加した1,
2ジメトキシエタン40mQ、及び出発原料としてジク
ロロジメチルシラン0.24mQ (2mmol)を、
純pt板( 2 0 m X 3 0mm)を陰極に,
純マグネシウム板( 2 0 m x 3 0m+)を
陽極に有する無隔膜のビーカー型電解槽に注入し、乾燥
雰囲気下で電流密度3 . 0 mA/ cm2、温度
20℃として理論量(386c)通電して電解還元を行
なった. 電解終了後,電解液を04のガラスフィルターで口過し
、電解中に析出した沈殿物を分離した。
Example 5 Electrolysis was carried out according to Example 1, except that dichloromethylphenylsilane was used as the starting material. As a result, the yield of the obtained soluble chain polymer with a degree of polymerization of about 20 was 5.
0%, and the current efficiency was 71%. Example 6 Tetra n-butylammonium chloride was added as a supporting electrolyte at a concentration of 0.02 mol/fl.
40 mQ of 2-dimethoxyethane, and 0.24 mQ (2 mmol) of dichlorodimethylsilane as a starting material,
A pure PT plate (20 m x 30 mm) was used as the cathode,
A pure magnesium plate (20 m x 30 m+) was poured into a beaker-type electrolytic cell without a diaphragm having an anode, and a current density of 3. Electrolytic reduction was performed by applying a theoretical amount of current (386 c) at 0 mA/cm2 and a temperature of 20°C. After the electrolysis was completed, the electrolytic solution was passed through a 04 glass filter to separate the precipitate deposited during the electrolysis.

沈殿はメタノール及びアセトン及び希塩酸及び蒸留水で
洗浄して、溶媒,支持塩,塩化マグネシウム、低分子量
生成物を除いた。
The precipitate was washed with methanol and acetone, dilute hydrochloric acid, and distilled water to remove solvent, supporting salt, magnesium chloride, and low molecular weight products.

得られた実施例1と同程度の重合度の不溶性ボリジメチ
ルシランの収率は30%であった.実施例7 実施例6で用いた電解液50mfl、出発原料1.2m
g (10mmo 1)を用い、両極に純マグネシウム
板(25mX40m)を用いて30分毎に電極を逆転し
て、理論量の70%(1350c)通電して電解還元し
た. 得られた実施例1と同程度の重合度の不溶性ポリジメチ
ルシランの収率は35%であり,電流効率は50%であ
った。
The yield of insoluble boridimethylsilane having the same degree of polymerization as in Example 1 was 30%. Example 7 50 mfl of electrolyte used in Example 6, 1.2 m of starting material
Electrolytic reduction was carried out by using pure magnesium plates (25 m x 40 m) at both electrodes, rotating the electrodes every 30 minutes, and applying current to 70% of the theoretical amount (1350 c). The yield of the obtained insoluble polydimethylsilane having the same degree of polymerization as in Example 1 was 35%, and the current efficiency was 50%.

[効果] 以上のように、本発明は隔膜不要な簡易な電解槽を使用
し、重合度の高いポリシランを収率よく得ることができ
ものであり、また,副生塩素による反応への影響や装置
,環境上の弊害もなく、工業的にきわめて有用なもので
ある.
[Effects] As described above, the present invention uses a simple electrolytic cell that does not require a diaphragm, can obtain polysilane with a high degree of polymerization in good yield, and also eliminates the influence of by-product chlorine on the reaction. The device has no adverse effects on the environment and is extremely useful industrially.

Claims (1)

【特許請求の範囲】 1、出発原料としてのジクロロオルガノモノシランを支
持電解質と混合して電解液とし、陽極が純アルミニウム
、アルミニウム合金、純マグネシウム、またはマグネシ
ウム合金からなり、かつ陰極が純アルミニウム、アルミ
ニウム合金、純マグネシウムまたはマグネシウム合金か
若しくは他の電極材料からなる電解電極を用いて隔膜を
使用しない電解槽中で電解を行ない、得られる生成物を
分離、精製して単離することを特徴とするポリシランの
合成方法。 2、出発原料としてのジクロロオルガノモノシランを支
持電解質を含有する極性溶媒と混合して電解液とし、陽
極が純アルミニウム、アルミニウム合金、純マグネシウ
ム、またはマグネシウム合金からなり、かつ陰極が純ア
ルミニウム、アルミニウム合金、純マグネシウム、また
はマグネシウム合金か若しくは他の電極材料からなる電
解電極を用いて隔膜を使用しない電解槽中で電解を行な
い、得られる生成物を分離、精製して単離することを特
徴とするポリシランの合成方法。 3、出発原料としてのジクロロオルガノモノシランを支
持電解質と混合して電解液とし、陽極、陰極とも純アル
ミニウム、アルミニウム合金、純マグネシウム、または
マグネシウム合金からなる電解電極を用い、隔膜を使用
しない電解槽中で一定時間間隔で両極の極性を逆転しつ
つ電解を行ない得られる生成物を分離、精製して単離す
ることを特徴とするポリシランの合成方法。 4、出発原料としてのジクロロオルガノモノシランを支
持電解質を含有する極性溶媒と混合して電解液とし、陽
極、陰極とも純アルミニウム、アルミニウム合金、純マ
グネシウム、またはマグネシウム合金からなる電解電極
を用い、隔膜を使用しない電解槽中で一定時間間隔で両
極の極性を逆転しつつ電解を行ない得られる生成物を分
離、精製して単離することを特徴とするポリシランの合
成方法。 5、前記ジクロロオルガノモノシランがジクロロジメチ
ルシラン、ジクロロメチルフェニルシランあるいはジク
ロロジフェニルシランである、請求項1乃至4のいずれ
かに記載のポリシランの合成方法。
[Claims] 1. Dichloroorganomonosilane as a starting material is mixed with a supporting electrolyte to form an electrolytic solution, the anode is made of pure aluminum, an aluminum alloy, pure magnesium, or a magnesium alloy, and the cathode is made of pure aluminum or aluminum. It is characterized by conducting electrolysis in an electrolytic cell without using a diaphragm using an electrolytic electrode made of an alloy, pure magnesium, a magnesium alloy, or other electrode material, and separating, purifying, and isolating the resulting product. Method for synthesizing polysilane. 2. Dichloroorganomonosilane as a starting material is mixed with a polar solvent containing a supporting electrolyte to form an electrolytic solution, and the anode is made of pure aluminum, aluminum alloy, pure magnesium, or magnesium alloy, and the cathode is made of pure aluminum or aluminum alloy. , characterized in that electrolysis is carried out in an electrolytic cell without using a diaphragm using an electrolytic electrode made of pure magnesium, a magnesium alloy, or other electrode material, and the resulting product is separated, purified, and isolated. Method for synthesizing polysilane. 3. Mix dichloroorganomonosilane as a starting material with a supporting electrolyte to form an electrolytic solution, and use electrolytic electrodes made of pure aluminum, aluminum alloy, pure magnesium, or magnesium alloy for both the anode and cathode in an electrolytic cell without using a diaphragm. A method for synthesizing polysilane, which is characterized by performing electrolysis while reversing the polarity of both poles at regular intervals, and separating, purifying, and isolating the resulting product. 4. Dichloroorganomonosilane as a starting material is mixed with a polar solvent containing a supporting electrolyte to form an electrolytic solution, and a diaphragm is formed using electrolytic electrodes made of pure aluminum, aluminum alloy, pure magnesium, or magnesium alloy for both the anode and cathode. A method for synthesizing polysilane, which comprises performing electrolysis in an unused electrolytic cell while reversing the polarity of both poles at regular intervals, and separating, purifying, and isolating the resulting product. 5. The method for synthesizing polysilane according to any one of claims 1 to 4, wherein the dichloroorganomonosilane is dichlorodimethylsilane, dichloromethylphenylsilane, or dichlorodiphenylsilane.
JP1240254A 1989-09-18 1989-09-18 Polysilane synthesis method Expired - Lifetime JP2687020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240254A JP2687020B2 (en) 1989-09-18 1989-09-18 Polysilane synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240254A JP2687020B2 (en) 1989-09-18 1989-09-18 Polysilane synthesis method

Publications (2)

Publication Number Publication Date
JPH03104893A true JPH03104893A (en) 1991-05-01
JP2687020B2 JP2687020B2 (en) 1997-12-08

Family

ID=17056755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240254A Expired - Lifetime JP2687020B2 (en) 1989-09-18 1989-09-18 Polysilane synthesis method

Country Status (1)

Country Link
JP (1) JP2687020B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006152A1 (en) * 1991-09-19 1993-04-01 Osaka Gas Company Ltd. Process for producing silicon network polymer
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237386A (en) * 1985-03-29 1987-02-18 ソシエテ ナシオナル デ プ−ドル エ エクスプロジフ Electric synthesis of ketone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237386A (en) * 1985-03-29 1987-02-18 ソシエテ ナシオナル デ プ−ドル エ エクスプロジフ Electric synthesis of ketone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006152A1 (en) * 1991-09-19 1993-04-01 Osaka Gas Company Ltd. Process for producing silicon network polymer
US5416182A (en) * 1991-09-19 1995-05-16 Osaka Gas Company Ltd. Method for producing silicon network polymers
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US8378050B2 (en) 2005-10-05 2013-02-19 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions

Also Published As

Publication number Publication date
JP2687020B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JP5135926B2 (en) Process for producing 4-fluoro-1,3-dioxolan-2-one
JP3116117B2 (en) Method for producing polysilane
JPH03104893A (en) Method for synthesizing polysilane
JP3778238B2 (en) Method for producing sodium persulfate
HU201303B (en) Process for production of derivatives of azetidine
JP2754287B2 (en) Method for synthesizing polycarbosilane
JP2970257B2 (en) Method for producing polysilane
JP2682972B2 (en) Interlocked polymer composed of bifunctional 2-catenan derivative
JP3455942B2 (en) Method for producing metal alkoxide by electrolytic method
JP2626336B2 (en) Method for producing hexamethylcyclotrisilazane
JP2746097B2 (en) Method for producing polysilane
JP3120160B2 (en) Method for producing compound having Si-Ge bond
JPH02105825A (en) Synthesis of polysilane
JPH07330755A (en) Production of piperonal
JPH01113338A (en) Production of hydroxybenzoic acid
JP3215889B2 (en) Method for producing silicon network polymer
Batanero et al. Electrosynthesis of N-substituted imidazole-2-thiones
JPH05247217A (en) Production of silicon network polymer
EP0040830B1 (en) Method for the preparation of (e)-4-bromo-2-methylbut-2-en-1-al
GB1562079A (en) Electrochemical porocess for production of ferrocene
JP2019156766A (en) Fluorine-containing 1,4-bis(trichloromethyl) benzene compound, method for producing the same and method for producing fluorine-containing terephthaloyl dichloride compound
JPH0436289A (en) Production of tertiary-butylmethyldimethoxysilane
JPH0764770B2 (en) Method for purifying m-phenoxybenzyl alcohol
JP2599746B2 (en) Cleavage method of epoxy ketone
JPH0673180A (en) Production of polysilane