JPH0310476Y2 - - Google Patents

Info

Publication number
JPH0310476Y2
JPH0310476Y2 JP8797385U JP8797385U JPH0310476Y2 JP H0310476 Y2 JPH0310476 Y2 JP H0310476Y2 JP 8797385 U JP8797385 U JP 8797385U JP 8797385 U JP8797385 U JP 8797385U JP H0310476 Y2 JPH0310476 Y2 JP H0310476Y2
Authority
JP
Japan
Prior art keywords
compressed air
flow path
channel
porous body
downward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8797385U
Other languages
Japanese (ja)
Other versions
JPS61202797U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8797385U priority Critical patent/JPH0310476Y2/ja
Publication of JPS61202797U publication Critical patent/JPS61202797U/ja
Application granted granted Critical
Publication of JPH0310476Y2 publication Critical patent/JPH0310476Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は、圧縮空気が使用される例えば塗装
あるいは自動機器等において、圧縮空気の流路中
に配設させて圧縮空気の水分を取除く除水湿装置
に関する。
[Detailed description of the invention] (Industrial application field) This invention is installed in the flow path of compressed air to remove moisture from the compressed air, for example in painting or automatic equipment where compressed air is used. Related to dehydration and humidification equipment.

(従来の技術) 現在、圧縮空気は工業上極めて多方面に使用さ
れている。しかし、圧縮時に高温となつた空気に
は水分が含まれており、この水分が、圧縮空気の
温度低下とともに過飽和の状態となつて霧のよう
な液滴を発生させてしまい、その状態で各種作業
を行なうと圧縮空気の流路中に水滴を発生させて
トラブルを発生させる原因となることから、圧縮
空気の使用時には、圧縮空気の除水・除湿を行な
う必要があつた。
(Prior Art) Compressed air is currently used in an extremely wide variety of industrial applications. However, the air that becomes high temperature during compression contains moisture, and as the temperature of the compressed air decreases, this moisture becomes supersaturated and generates mist-like droplets. When working, water droplets are generated in the compressed air flow path, which can cause problems, so when using compressed air, it is necessary to remove water and dehumidify the compressed air.

そして、従来、圧縮空気の除水・除湿を行なう
装置では、次の3種類のものがあつた。
Conventionally, there have been three types of devices for removing water and dehumidifying compressed air:

(1) 圧縮空気の流路を蛇行あるいは螺施状に形成
し、冷却器内を通過させるようにして水分を取
除く方式のもの。
(1) A method in which the compressed air flow path is formed in a meandering or spiral shape, and moisture is removed by passing it through the cooler.

(2) 内部にシリカゲル等の吸湿剤を封入した吸湿
性フイルタを使用し、このフイルタに圧縮空気
を通して水分を吸着させて取除く方式のもの。
(2) A type that uses a hygroscopic filter with a hygroscopic agent such as silica gel sealed inside, and compressed air is passed through the filter to adsorb and remove moisture.

(3) 圧力空気を遠心分離器にかけ、遠心分離器の
作用によつて水分を取除く方式のもの。
(3) A type in which pressurized air is applied to a centrifugal separator and water is removed by the action of the centrifugal separator.

(考案が解決しようとする問題点) しかし、従来の3種類の装置には、それぞれ次
のような欠点があつた。
(Problems to be solved by the invention) However, each of the three conventional devices had the following drawbacks.

まず、(1)の方式によるものでは、装置自体が複
雑となつてランニングコストが高く、(2)の方式に
よるものでは、フイルタ内の吸湿剤が水分を飽和
状態となるまで吸着すれば除水・除湿効果が無く
なるため、頻繁にフイルタを交換する必要があ
り、さらに、コンプレツサ等の圧縮空気供給機か
ら供給される圧縮空気には油分や塵埃を多く含有
する場合もあり、そのような場合にはフイルタの
網目が通常0.1〜30μm程度であるため目詰りし易
く、これまたフイルタを交換させる必要を生じさ
せていた。
First, with method (1), the equipment itself is complicated and the running cost is high; with method (2), water can be removed if the moisture absorbent in the filter absorbs water until it reaches a saturated state.・Since the dehumidification effect is lost, the filter must be replaced frequently. Furthermore, the compressed air supplied from compressed air supply devices such as compressors may contain a lot of oil and dust. Since the mesh size of the filter is usually about 0.1 to 30 μm, it is easily clogged, which also makes it necessary to replace the filter.

また、(3)の方式によるものでは、圧縮空気の除
湿を行なうことができず、さらに、強力な遠心力
により水滴を微細化させて圧縮空気中に混入させ
てしまう虞れもあり、除水・除湿効果が十分とは
言えなかつた。
In addition, with method (3), it is not possible to dehumidify compressed air, and there is also a risk that the strong centrifugal force will make water droplets finer and mix them into the compressed air.・The dehumidification effect was not sufficient.

この考案は、既述の問題点を解決するもので、
簡単な構造で効果的に圧縮空気の除水・除湿を行
なうことができ、また、部品の交換頻度を著しく
低減できる圧縮空気の除水湿装置を提供すること
を目的とする。
This idea solves the problems mentioned above.
It is an object of the present invention to provide a compressed air dehydration/humidification device that can effectively remove water and dehumidify compressed air with a simple structure and can significantly reduce the frequency of replacing parts.

(問題点を解決するための手段) この考案に係る圧縮空気の除水湿装置は、圧縮
空気の流路中に配設させ圧縮空気の除水・除湿を
行なう装置であつて、該装置に、圧縮空気を下向
きに流入させる流入流路と、流入流路と連通し圧
縮空気に流れを下向きから上向きへ反転させる反
転流路と、反転流路と連通し圧縮空気を流出させ
る流出流路を形成し、流入流路において、上部に
圧縮空気を絞つて膨張させる絞りノズルを配設さ
せ、絞りノズル下方に圧縮空気通過時に圧縮空気
中に含まれている水分を付着させるとともに付着
した水滴を圧縮空気と共に下方へ排出可能な多孔
体を配設し、反転流路底部に下部で連結されるド
レンコツクと連通する開口部を形成させることに
よつて、既述の問題点を解決するものである。な
お、ここで多孔体とは、例えば直径2〜10mmのガ
ラスビーズを充填して形成したり、あるいは金属
タワシ等の細い金属線を集合させて形成したり、
直径0.5〜5mm程度の孔が多数穿設されているポ
ーラスなセルメツト(商品名)等を使用するもの
で、親水性を有する材料から形成される空間率の
高いものをいう。
(Means for Solving the Problems) The compressed air dehydration/humidification device according to this invention is a device that is disposed in a flow path of compressed air to remove water and dehumidify the compressed air. , an inflow channel that allows compressed air to flow downward; a reversal channel that communicates with the inflow channel and reverses the flow of the compressed air from downward to upward; and an outflow channel that communicates with the reversal channel and causes the compressed air to flow out. In the inlet flow path, a throttle nozzle that throttles and expands the compressed air is installed at the top, and below the throttle nozzle, the moisture contained in the compressed air is deposited when the compressed air passes through, and the attached water droplets are compressed. The above-mentioned problems are solved by providing a porous body that can be discharged downward together with air, and by forming an opening at the bottom of the reversing channel that communicates with a drain tank connected at the bottom. Note that the porous body here is, for example, formed by filling glass beads with a diameter of 2 to 10 mm, or formed by gathering thin metal wires such as a metal scrubber,
It uses a porous material such as Celmet (trade name), which has many holes with a diameter of about 0.5 to 5 mm, and is made of a hydrophilic material and has a high porosity.

(考案の作用・効果) この考案に係る圧縮空気の除水湿装置では、ま
ず、圧縮空気が流入流路を通過する際、絞りノズ
ルによつて膨張されて圧縮空気の温度が低下する
ため、圧縮空気に含有されている水分が過飽和の
状態となつて霧のような微細な液滴となり、その
後、その状態で多孔体を通過することとなるた
め、多孔体内の流路周壁に微細な滴液から成長し
た水滴を付着させることとなる。そして、付着さ
れた水滴は、圧縮空気中に混在している油分や塵
埃等を付着しつつ、重力と圧縮空気の風圧とによ
つて圧縮空気と共に多孔体の下部から排出され
る。
(Operations and effects of the invention) In the compressed air dehydration/humidification device according to this invention, first, when the compressed air passes through the inflow channel, it is expanded by the throttle nozzle and the temperature of the compressed air decreases. The moisture contained in the compressed air becomes supersaturated and turns into fine droplets like mist, which then passes through the porous body, causing fine droplets to form on the peripheral wall of the flow path inside the porous body. This results in the attachment of water droplets grown from the liquid. Then, the attached water droplets are discharged from the lower part of the porous body along with the compressed air by gravity and the wind pressure of the compressed air while adhering to oil, dust, etc. mixed in the compressed air.

その後、圧縮空気と水滴とは反転流路を通過す
ることとなるが、反転流路では、圧縮空気が下向
きから上向きへ急反転することとなるため、遠心
力も加わつて圧縮空気と水滴とが分離され、水滴
は反転流路底部に溜まつて開口部を経てドレンコ
ツクから排出可能とすることができ、一方、除水
湿された圧縮空気は流出流路を経て流出可能とす
ることができる。
After that, the compressed air and water droplets pass through a reversal channel, but in the reversal channel, the compressed air suddenly reverses from downward to upward, and centrifugal force is also applied, causing the compressed air and water droplets to separate. The water droplets can accumulate at the bottom of the reversing channel and can be discharged from the drain tank via the opening, while the dehydrated and moistened compressed air can flow out via the outflow channel.

したがつて、この考案に係る圧縮空気の除水湿
装置では、流入流路と反転流路と流出流路を形成
し、流入流路に絞りノズルと多孔体を配設し、反
転流路に下部でドレンコツクと連通する開口部を
形成するだけの簡単な構造で圧縮空気の除水・除
湿を効果的に行なうことができる。また、多孔体
は、従来の吸湿性フイルタのように吸湿剤を封入
させたものでなく、さらに、フイルタに比べて空
間率が高くかつ圧縮空気の流路中に上下方向に配
設されて自重と圧縮空気の風圧とにより油分や塵
埃を吸着させた水滴を下方へ排出させ易いため、
長期間使用しても多孔体を取替える必要がなくな
る。
Therefore, in the compressed air dehydration/humidification device according to this invention, an inflow channel, a reversal channel, and an outflow channel are formed, a throttle nozzle and a porous body are arranged in the inflow channel, and a porous body is provided in the inversion channel. Water and dehumidification of compressed air can be effectively performed with a simple structure that only requires an opening in the lower part to communicate with the drain tank. In addition, porous bodies do not have a moisture absorbent sealed in them like conventional hygroscopic filters, and they also have a higher porosity than filters and are placed vertically in the compressed air flow path, making them heavier than their own weight. Water droplets adsorbing oil and dust can be easily discharged downward by the wind pressure of compressed air.
There is no need to replace the porous body even after long-term use.

(実施例) 以下、この考案の実施例を図面に基づいて説明
する。
(Example) Hereinafter, an example of this invention will be described based on the drawings.

第1図に示す第1実施例の除水湿装置1は、圧
縮空気の供給流路管Pにおける圧縮空気の使用場
所近傍に介在されて配設されるもので、円盤状の
ヘツド5が供給流路管Pに連結されている。
The dehydration/humidification device 1 of the first embodiment shown in FIG. 1 is disposed in a compressed air supply flow path pipe P near the place where the compressed air is used. It is connected to the flow path pipe P.

ヘツド5には、側面から平面中央に連通する入
口孔5aと、入口孔5aにおける下面側の周縁に
形成された環状の凹溝5cと入口孔5aの反対側
の側面とを連通する出口孔5bとが形成され、入
口孔5aと出口孔5bとはそれぞれヘツド5の側
面部位で供給流路管Pに接続されている。
The head 5 includes an inlet hole 5a that communicates from the side surface to the center of the plane, and an outlet hole 5b that communicates between an annular groove 5c formed on the periphery of the lower surface of the inlet hole 5a and the side surface on the opposite side of the inlet hole 5a. The inlet hole 5a and the outlet hole 5b are respectively connected to the supply flow path pipe P at a side surface of the head 5.

入口孔5aのヘツド5下面側には、略円筒状の
内筒6が下向きに連結され、凹溝5c周縁には内
筒6と同心的に円筒状の外筒13が連結されてい
る。
A substantially cylindrical inner tube 6 is connected downward to the lower surface side of the head 5 of the inlet hole 5a, and a cylindrical outer tube 13 is connected concentrically with the inner tube 6 to the periphery of the groove 5c.

外筒13下部には、外筒13下部を塞ぐ底盤1
0が配設され、底盤10には内筒6における下方
の先端部6aが挿入されるとともに下部でドレン
コツク11が設けられる連結管12に連結されて
いる。
At the lower part of the outer cylinder 13, there is a bottom plate 1 that closes the lower part of the outer cylinder 13.
A lower tip 6a of the inner cylinder 6 is inserted into the bottom plate 10, and is connected to a connecting pipe 12 in which a drain tank 11 is provided at the lower part.

内筒6の先端部6aには、多数の小孔6cを備
える連通孔6bが設けられ、この連通孔6bが連
結管12に連結している。
A communication hole 6b having a large number of small holes 6c is provided at the tip 6a of the inner cylinder 6, and the communication hole 6b is connected to the connecting pipe 12.

また、内筒6には、先端部6aにおける連通孔
6b上部が塞がれて底部6dが形成され、底部6
d上方の壁面に多数の小孔6eが形成され、その
小孔6eの形成されている内筒6外周面には下方
へ向かうにつれて広がる円錐形状のフイン9が固
着されている。
Further, the inner cylinder 6 has a bottom portion 6d formed by closing the upper portion of the communication hole 6b at the tip portion 6a.
A large number of small holes 6e are formed in the upper wall d, and conical fins 9 that widen downward are fixed to the outer peripheral surface of the inner cylinder 6 where the small holes 6e are formed.

したがつて、第1実施例の装置1では、内筒6
によつてヘツド入口孔5aからの圧縮空気を下向
きに流入させる流入流路2が形成され、内筒6下
部の外周面とフイン9と底盤10とによつて圧縮
空気の流れを下向きから上向きに反転させる反転
流路3が形成され、内筒6外周面と外筒13内周
面とによつて圧縮空気をヘツド出口孔5bから流
出させる流出流路4が形成されることとなる。
Therefore, in the device 1 of the first embodiment, the inner cylinder 6
An inflow passage 2 is formed through which the compressed air from the head inlet hole 5a flows downward, and the outer peripheral surface of the lower part of the inner cylinder 6, the fins 9, and the bottom plate 10 direct the flow of compressed air from downward to upward. A reversing flow path 3 is formed to reverse the flow, and the outer peripheral surface of the inner cylinder 6 and the inner peripheral surface of the outer cylinder 13 form an outflow flow path 4 through which the compressed air flows out from the head outlet hole 5b.

そして、流入流路2における内筒6上部には、
ヘツド入口孔5aからの圧縮空気を絞つて膨張さ
せる絞りノズル7が配設され、絞りノズル7下方
に多孔体8が配設されている。
In the upper part of the inner cylinder 6 in the inflow channel 2,
A throttle nozzle 7 is provided to throttle and expand the compressed air from the head inlet hole 5a, and a porous body 8 is provided below the throttle nozzle 7.

この多孔体8は、空間率が高く、親水性を有す
る材料から形成されるポーラスなもので、例え
ば、直径2〜10mmのガラスビーズを充填して形成
したり、金属タワシ等の細い金属線を集合させて
形成したり、あるいは直径0.5〜5mm程度の孔が
多数穿設されているポーラスなセルメツト等を使
用して形成されるものである。
The porous body 8 is a porous body made of a hydrophilic material with a high porosity, and may be formed by filling it with glass beads having a diameter of 2 to 10 mm, or by filling it with a thin metal wire such as a metal scrubber. They may be formed in clusters, or they may be formed using porous cellmet, etc., in which many holes with a diameter of about 0.5 to 5 mm are bored.

この第1実施例の装置1の使用態様について述
べれば、ヘツド入口孔5aから流入流路2へ入つ
てきた圧縮空気は、絞りノズル7によつて膨張さ
れ、その温度を低下させるため、含有されていた
水分が過飽和の状態となつて霧のような微細な液
滴を発生させ、その後、その状態で多孔体8内を
通過することとなるため、多孔体8内の流路周壁
に微細な滴液から成長した水滴を付着させること
となる。
Regarding the usage of the device 1 of the first embodiment, the compressed air entering the inflow channel 2 from the head inlet hole 5a is expanded by the throttle nozzle 7, and in order to lower its temperature, the compressed air is The water that was in the porous body 8 becomes supersaturated and generates fine droplets like mist, which then passes through the porous body 8, causing fine droplets to form on the peripheral wall of the flow path in the porous body 8. This results in the attachment of water droplets grown from droplets.

そして、付着された水滴は、圧縮空気中に混在
されている油分や塵埃等を吸着しつつ、重力と圧
縮空気の風圧とによつて圧縮空気と共に多孔体8
下部から排出され、小孔6eから内筒6外へ排出
される。
The attached water droplets adsorb oil, dust, etc. mixed in the compressed air, and are moved along with the compressed air to the porous body by gravity and the wind pressure of the compressed air.
It is discharged from the lower part and is discharged to the outside of the inner cylinder 6 through the small hole 6e.

その後、圧縮空気と水滴は、反転流路3におけ
るフイン9に沿つて下方へ向かうが、圧縮空気は
底盤10の底面及び内周面によつて急反転して上
方へ向かうこととなるため、遠心力も加わつて圧
縮空気と水滴とが分離され、水滴は底盤10底部
に溜まり、除水湿され油分・塵埃等が除去された
清浄な圧縮空気は流出流路4からヘツド出口孔5
bを経て供給流路管Pへ流出される。
Thereafter, the compressed air and water droplets head downward along the fins 9 in the reversing flow path 3, but the compressed air is suddenly reversed by the bottom surface and inner circumferential surface of the bottom plate 10 and heads upward. The compressed air and water droplets are separated by the application of force, and the water droplets accumulate at the bottom of the bottom plate 10, and the clean compressed air, which has been dehydrated and moistened and from which oil, dust, etc. have been removed, flows from the outflow passage 4 to the head outlet hole 5.
It flows out to the supply flow path pipe P via b.

そして、底盤10底部に溜まつた水は、反転流
路3底部の開口部である小孔6cを通り、連通孔
6b、連結管12を経て、ドレンコツク11の操
作によつて、装置1外へ排出させることができ
る。
The water accumulated at the bottom of the bottom plate 10 passes through the small hole 6c, which is the opening at the bottom of the reversing channel 3, passes through the communication hole 6b and the connecting pipe 12, and is drained out of the device 1 by operating the drain kettle 11. It can be discharged.

したがつて、第1実施例の装置1では、構造も
簡単で故障少なく効率よく圧縮空気の除水・除湿
のみならず油分・塵埃等の除去を行なうことがで
き、装置1自体をコンパクトにすることもできる
ため、圧縮空気の供給流路中のどの部位にも設置
できて利用価値大である。また、多孔体8は、吸
湿剤を使用するものでなく目詰りも無いため、長
期間使用しても、交換の必要性がない。
Therefore, the device 1 of the first embodiment has a simple structure, can efficiently remove water and dehumidification from compressed air, and can also remove oil, dust, etc., with little trouble, and the device 1 itself can be made compact. Therefore, it can be installed at any location in the compressed air supply flow path, and has great utility value. Moreover, since the porous body 8 does not use a moisture absorbent and is not clogged, there is no need to replace it even if it is used for a long period of time.

なお、反転流路3において、フイン9下端に付
着する水滴が、除水湿された圧縮空気と共に流出
流路4を上昇することを考慮して、第2図に示す
第2実施例の装置21のように、外筒13下部内
周に環状のジヤマ板13aを設け、圧縮空気を流
出流路4の入口部位で再度反転させ、流出流路4
内へ侵入する虞れのある水滴を阻止してもよい。
Note that in consideration of the fact that water droplets adhering to the lower end of the fins 9 in the reversing flow path 3 rise through the outflow flow path 4 together with the dehydrated and moistened compressed air, the device 21 of the second embodiment shown in FIG. As shown in FIG.
It may also prevent water droplets from entering the interior.

また、第1・2実施例の装置1・21におい
て、使用場所によつて圧縮空気の流量が相違する
場合には、絞りノズル7の内径や多孔体8の開口
表面積(あるいは内筒6の内径)を対応させて対
処させればよい。例えば絞りノズル7の径は流量
を多くしたい場合に大きくし、多孔体8も流量が
大きくなれば大きくする。さらに、絞りノズル7
の形状としては、ノズル7前後の圧力差が大きな
場合には、先細末広の形状が望ましく、圧力差が
小さい場合には先細の形状が望ましい。
In the devices 1 and 21 of the first and second embodiments, if the flow rate of compressed air differs depending on the place of use, the inner diameter of the throttle nozzle 7, the opening surface area of the porous body 8 (or the inner diameter of the inner cylinder 6 ) can be dealt with accordingly. For example, the diameter of the throttle nozzle 7 is increased when a higher flow rate is desired, and the diameter of the porous body 8 is also increased as the flow rate increases. Furthermore, the aperture nozzle 7
When the pressure difference before and after the nozzle 7 is large, a tapered and divergent shape is desirable, and when the pressure difference is small, a tapered shape is desirable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の第1実施例を示す除水湿装
置の使用態様断面図、第2図は第2実施例の除水
湿装置を示す使用態様断面図である。 1,21……除水湿装置、2……流入流路、3
……反転流路、4……流出流路、6e……(開口
部)小孔、7……絞りノズル、8……多孔体、1
1……ドレンコツク。
FIG. 1 is a sectional view showing how a dehydrating/humidifying device according to the first embodiment of this invention is used, and FIG. 2 is a sectional view showing how the dehydrating/humidifying device according to the second embodiment is used. 1, 21... Dehydration humidification device, 2... Inflow channel, 3
... Reversing channel, 4... Outflow channel, 6e... (opening) small hole, 7... Throttle nozzle, 8... Porous body, 1
1...Drenkotsuk.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮空気の流路中に配設させ圧縮空気の除水・
除湿を行なう装置であつて、該装置には、前記圧
縮空気を下向きに流入させる流入流路と、該流入
流路と連通し前記圧縮空気に流れを下向きから上
向きへ反転させる反転流路と、該反転流路と連通
し前記圧縮空気を流出させる流出流路とが形成さ
れ、前記流入流路には、上部に前記圧縮空気を絞
つて膨張させる絞りノズルが配設され、該絞りノ
ズル下方に前記圧縮空気通過時に前記圧縮空気中
に含まれている水分を付着させるとともに該付着
した水滴を前記圧縮空気と共に下方へ排出可能な
多孔体が配設され、前記反転流路底部には下部で
連結されるドレンコツクと連通する開口部が形成
されていることを特徴とする圧縮空気の除水湿装
置。
Installed in the compressed air flow path to remove water from compressed air.
An apparatus for dehumidifying, the apparatus comprising: an inflow passage through which the compressed air flows downward; and an inversion passage communicating with the inflow passage and through which the compressed air reverses its flow from downward to upward; An outflow channel is formed that communicates with the reversal channel and causes the compressed air to flow out, and the inflow channel is provided with a throttle nozzle in the upper part that throttles and expands the compressed air, and a throttle nozzle is provided below the throttle nozzle. A porous body is provided that can attach moisture contained in the compressed air when the compressed air passes through and discharge the attached water droplets downward together with the compressed air, and is connected to the bottom of the reversing flow path at a lower part. A compressed air dehydration/humidification device characterized in that an opening communicating with a drain tank is formed.
JP8797385U 1985-06-11 1985-06-11 Expired JPH0310476Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8797385U JPH0310476Y2 (en) 1985-06-11 1985-06-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8797385U JPH0310476Y2 (en) 1985-06-11 1985-06-11

Publications (2)

Publication Number Publication Date
JPS61202797U JPS61202797U (en) 1986-12-19
JPH0310476Y2 true JPH0310476Y2 (en) 1991-03-14

Family

ID=30640680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8797385U Expired JPH0310476Y2 (en) 1985-06-11 1985-06-11

Country Status (1)

Country Link
JP (1) JPH0310476Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910064B2 (en) * 2017-10-31 2021-07-28 パーパス株式会社 Filter device and hot water supply device

Also Published As

Publication number Publication date
JPS61202797U (en) 1986-12-19

Similar Documents

Publication Publication Date Title
US5667566A (en) Apparatus for water vapor removal from a compressed gas
JP5379792B2 (en) Filter assembly and method
US4105561A (en) Directional filter
US5145497A (en) In-line filter device for compressed air having mist filter and air collector
JP6519862B2 (en) Pneumatic filter and filter element
US4156601A (en) Filter cartridge and method of manufacturing the filter cartridge
JP2007529313A (en) Single-use cartridge for air / gas dryer
RU98148U1 (en) CARTRIDGE FOR AIR DRYER (OPTIONS)
JPH0310476Y2 (en)
US3733789A (en) Gas-liquid contacting apparatus for separating micromists from a carrier gas
US3085690A (en) Water separator
JP3510250B2 (en) Conical adsorption filter
DE3786782T2 (en) HUMIDITY REMOVAL IN COMPRESSED AIR SYSTEM.
JP3272938B2 (en) Oil and moisture removal device for compressed air
US4274844A (en) Evaporator
JPH0444169Y2 (en)
JP2582800Y2 (en) Liquid tank
JPS6331697Y2 (en)
CN205536436U (en) Clean effectual supply -air outlet
JPS6331698Y2 (en)
JPH07275602A (en) Drain discharging apparatus
CN110354615A (en) A kind of dedusting dehumidifying integrated apparatus in ammonium perchlorate production
JPH0244823Y2 (en)
CN211462666U (en) Gas-liquid separation device for chemical production
CN108918732B (en) Chromatographic gas filtering device