JPH0310474B2 - - Google Patents

Info

Publication number
JPH0310474B2
JPH0310474B2 JP58065920A JP6592083A JPH0310474B2 JP H0310474 B2 JPH0310474 B2 JP H0310474B2 JP 58065920 A JP58065920 A JP 58065920A JP 6592083 A JP6592083 A JP 6592083A JP H0310474 B2 JPH0310474 B2 JP H0310474B2
Authority
JP
Japan
Prior art keywords
cylindrical shaft
bevel gear
shaft
rotation transmission
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58065920A
Other languages
Japanese (ja)
Other versions
JPS59192487A (en
Inventor
Koji Okada
Tooru Kawano
Masao Ochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP6592083A priority Critical patent/JPS59192487A/en
Publication of JPS59192487A publication Critical patent/JPS59192487A/en
Publication of JPH0310474B2 publication Critical patent/JPH0310474B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 技術分野 本発明は、腕部材の先端部に手首部材をなす回
動部材を配設した産業用ロボツトの回転伝達装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a rotation transmission device for an industrial robot in which a rotating member serving as a wrist member is disposed at the tip of an arm member.

従来技術 一般に、この種の産業用ロボツトにおいては、
腕部材の先端部の軽量化および小型化を図るため
に、回動部材、即ち手首部材の駆動源が腕部材の
先端部から離れた位置に配置されて、適宜の回転
伝達装置を介して駆動力が手首部材側へ伝達され
ている。
Prior Art Generally, in this type of industrial robot,
In order to reduce the weight and size of the distal end of the arm member, the drive source for the rotating member, that is, the wrist member, is located at a distance from the distal end of the arm member, and is driven via an appropriate rotation transmission device. Force is being transmitted to the wrist member side.

ところで、回転伝達装置としては、チエーン、
タイミングベルト等とチエーンスプロケツト、プ
ーリ等と各種の傘歯車等とを用いることが多い
が、この回転伝達装置を組立てる際に種々の要因
により必然的にガタが発生する。従来、このガタ
を皆無にするために種々の補正機構を設けた回転
伝達装置が提案されているが、未だ小型、軽量化
し得る実用的な産業用ロボツトの回転伝達装置は
具現されていない。
By the way, as a rotation transmission device, a chain,
Timing belts, chain sprockets, pulleys, and various bevel gears are often used, but when assembling this rotation transmission device, play inevitably occurs due to various factors. Conventionally, rotation transmission devices equipped with various correction mechanisms have been proposed in order to completely eliminate this backlash, but a practical rotation transmission device for industrial robots that can be made smaller and lighter has not yet been realized.

発明の目的 本発明は、かかる問題に鑑みてなされたもので
あつて、小型、軽量化し得る実用的な産業用ロボ
ツトの回転伝達装置を提供することを目的として
いる。
OBJECTS OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a practical rotation transmission device for an industrial robot that can be made smaller and lighter.

実施例 以下、図示の実施例を参照して本発明を詳細に
説明する。今、多関節アーム式産業用ロボツトに
ついて述べると、第1図乃至第3図において、1
は固定部材2に対して図示しない駆動源により水
平方向に旋回自在に支持された台枠、3および4
は台枠1に対して回動自在に支持された下腕およ
びリンクレバー、5はリンクレバー4に回転的に
支持された後腕、6は下腕3と後腕5とに夫々回
転自在に支持された上腕で、この上腕6、下腕
3、リンクレバー4および後腕5により平行リン
ク機構が形成されている。8は上腕6の先端部に
配置された回動部で、図示の場合、上腕6に対し
て垂直面上を旋回する旋回枠7と回動部8とによ
り手首部9が構成されている。11乃至13は第
1乃至第3の回転伝達部材、例えばチエーンスプ
ロケツトで、この第1乃至第3のチエーンスプロ
ケツト11,12,13は適宜の軸受14乃至1
9を介して同軸に、かつ夫々のチエーンスプロケ
ツト11,12,13が上腕6に対して独立して
回動自在に構成されていて、第1のチエーンスプ
ロケツト11は旋回枠7と一体的に締着されてい
る。21および22は第1および第2のチエーン
スプロケツト12,13と夫々一体的に回動する
第1および第2の傘歯車で、第1の傘歯車21の
方が第2の傘歯車22よりも大径に形成されてい
る。なお、図示のごとく調整用ナツト23,2
4,25および皿バネ26,27,28を設けれ
ば、例えば第1および第2の傘歯車21,22を
X方向の適宜の位置に設定することができるので
有利である。即ち、調整用ナツト23を、例えば
X1方向に螺進させると第1の傘歯車21は、第
2のスプロケツト12と一体的に回動する軸12
1上をX1方向に変位する。同様に調整用ナツト
24の回動により、第2の傘歯車22は第3のス
プロケツト13の軸131上をX方向に変位す
る。31は上腕6に対して回動自在な筒状軸で、
図示の場合、筒状軸31のZ1側とZ2側とに配設さ
れた軸受32,33を介して旋回枠7に対して回
動自在に支持されている。なお、軸受32は筒状
軸31と一体に支持されつつ旋回枠7に対して長
軸方向に摺動自在であり、かつ筒状軸31と軸受
33とは相互に長軸方向に摺動自在に構成されて
いる。34は第1の傘歯車21に噛合う第3の傘
歯車で、図示の場合、筒状軸31のZ1方向の端部
に一体的に配設されている。35は第2の傘歯車
22に噛合う第4の傘歯車、36は筒状軸31内
に回転自在に挿通された伝達軸で、この伝達軸3
6のZ1方向の端部に第4の傘歯車35が一体的に
配設されている。37は筒状軸31のZ2方向の端
部外周部に挿通されて筒状軸31と一体的に回動
する回動部材で、この回動部材37と筒状軸31
とは、例えばスベリキー嵌合により相互に長軸方
向に摺動自在に構成されている。38は筒状軸3
1のZ2方向の端部外周部に螺着された第1の調整
具、39は筒状軸31のZ2方向の端部内周部に螺
着された第2の調整具、40は伝達軸36のZ2
向の端部に長軸方向に摺動自在に配設された回転
伝達部材、例えば傘歯車、41は伝達軸36のZ2
方向の端部に螺着された第3の調整具、42,4
3,44は軸受で、軸受42は伝達軸36と一体
に支持されつつ筒状軸31に対して長軸方向に摺
動自在であり、軸受43,44と伝達軸とは相互
に長軸方向に摺動自在に構成されている。45
は、例えば軸受33を介して筒状軸31と回動部
材37とを長軸方向に相離間させる第1のバネ部
材、46は同様に軸受44を介して伝達軸36と
第2の調整具39とを長軸方向に相離間させる第
2のバネ部材である。なお、第1および第2のバ
ネ部材45,46は皿バネあるいは圧縮バネが用
いられる。47は回転伝達部材40に噛合う回転
伝達部材、48は出力軸である。
Embodiments The present invention will now be described in detail with reference to illustrated embodiments. Now, when talking about multi-joint arm type industrial robots, in Figures 1 to 3, 1
3 and 4 are horizontally rotatably supported frames 3 and 4 with respect to the fixed member 2 by a drive source (not shown).
The lower arm and the link lever are rotatably supported on the underframe 1, the rear arm 5 is rotatably supported on the link lever 4, and the lower arm 3 and the rear arm 5 are rotatably supported. The supported upper arm 6, lower arm 3, link lever 4, and rear arm 5 form a parallel link mechanism. Reference numeral 8 denotes a rotating part disposed at the distal end of the upper arm 6. In the illustrated case, the wrist part 9 is constituted by the rotating frame 7 that rotates on a plane perpendicular to the upper arm 6 and the rotating part 8. 11 to 13 are first to third rotation transmission members, for example, chain sprockets, and these first to third chain sprockets 11, 12, 13 are connected to appropriate bearings 14 to 1.
The chain sprockets 11, 12, and 13 are configured to be rotatable coaxially through the upper arm 6 and independently of the upper arm 6, and the first chain sprocket 11 is integrally formed with the rotating frame 7. It is fastened to. 21 and 22 are first and second bevel gears that rotate integrally with the first and second chain sprockets 12 and 13, respectively, and the first bevel gear 21 is faster than the second bevel gear 22. It is also formed to have a large diameter. In addition, as shown in the figure, the adjustment nuts 23, 2
4, 25 and disc springs 26, 27, 28 are advantageous because, for example, the first and second bevel gears 21, 22 can be set at appropriate positions in the X direction. That is, the adjusting nut 23 is
When the first bevel gear 21 is screwed in the X1 direction, the shaft 12 rotates integrally with the second sprocket 12.
1 in the X 1 direction. Similarly, due to the rotation of the adjusting nut 24, the second bevel gear 22 is displaced on the shaft 131 of the third sprocket 13 in the X direction. 31 is a cylindrical shaft rotatable with respect to the upper arm 6;
In the illustrated case, the cylindrical shaft 31 is rotatably supported with respect to the rotating frame 7 via bearings 32 and 33 arranged on the Z 1 side and the Z 2 side. Note that the bearing 32 is supported integrally with the cylindrical shaft 31 and is slidable in the longitudinal direction with respect to the rotating frame 7, and the cylindrical shaft 31 and the bearing 33 are mutually slidable in the longitudinal direction. It is composed of A third bevel gear 34 meshes with the first bevel gear 21, and in the illustrated case, it is integrally disposed at the end of the cylindrical shaft 31 in the Z1 direction. 35 is a fourth bevel gear that meshes with the second bevel gear 22; 36 is a transmission shaft rotatably inserted into the cylindrical shaft 31;
A fourth bevel gear 35 is integrally disposed at the end of the gear 6 in the Z1 direction. Reference numeral 37 denotes a rotating member that is inserted into the outer periphery of the end of the cylindrical shaft 31 in the Z 2 direction and rotates integrally with the cylindrical shaft 31.
and are configured to be slidable relative to each other in the longitudinal direction by, for example, sliding key fitting. 38 is the cylindrical shaft 3
1, a first adjustment tool screwed onto the outer periphery of the end in the Z 2 direction, 39 a second adjustment tool screwed onto the inner periphery of the end in the Z 2 direction of the cylindrical shaft 31, 40 a transmission A rotation transmission member, for example a bevel gear, is disposed at the end of the shaft 36 in the Z 2 direction so as to be slidable in the longitudinal direction, and 41 is a Z 2 of the transmission shaft 36.
a third adjuster screwed onto the end of the direction, 42,4;
3 and 44 are bearings, and the bearing 42 is supported integrally with the transmission shaft 36 and is slidable in the longitudinal direction with respect to the cylindrical shaft 31, and the bearings 43 and 44 and the transmission shaft are mutually supported in the longitudinal direction. It is configured to be able to slide freely. 45
46 is a first spring member that separates the cylindrical shaft 31 and the rotating member 37 from each other in the longitudinal direction via a bearing 33, and 46 similarly connects the transmission shaft 36 and a second adjustment member via a bearing 44. 39 is a second spring member that separates them from each other in the longitudinal direction. Note that the first and second spring members 45 and 46 are disc springs or compression springs. 47 is a rotation transmitting member that meshes with the rotation transmitting member 40, and 48 is an output shaft.

上記構成において、第3図に示されるごとく各
部が組付けられているものとする。ただし、回転
伝達部材47および出力軸48の組付けが行なわ
れていないものとする。
In the above configuration, it is assumed that each part is assembled as shown in FIG. However, it is assumed that the rotation transmission member 47 and the output shaft 48 have not been assembled.

今、仮に部品の製作誤差および組付け誤差によ
り、第1の傘歯車21が所定位置よりもX1方向
の位置に配設されているものとする。
Now, assume that the first bevel gear 21 is disposed at a position in the X1 direction from a predetermined position due to manufacturing errors and assembly errors of parts.

この場合、第1の調整具38が筒状軸31に対
してZ2方向に螺進するよう第1の調整具38を回
動すると、筒状軸31が第1のバネ部材45によ
りZ1方向に変位して、第1の調整具38が回動部
材37と当接した状態で位置決めされる。この調
整により筒状軸31のZ1方向の端部に支持された
第3の傘歯車34と第1の傘歯車21とが噛合う
ことになる。この場合、第1および第3の傘歯車
21,34は夫々所定の位置に対してX1方向お
よびZ1方向に変位した位置で噛合うことになるた
め、傘歯車としての有効噛合い面が減少するが、
勿論予じめこのことを考慮して設計しておくので
強度上問題となることはない。
In this case, when the first adjusting tool 38 is rotated so that the first adjusting tool 38 spirally advances in the Z 2 direction with respect to the cylindrical shaft 31, the cylindrical shaft 31 is moved in the Z 1 direction by the first spring member 45. direction, and the first adjustment tool 38 is positioned in a state where it is in contact with the rotating member 37. By this adjustment, the third bevel gear 34 supported at the end of the cylindrical shaft 31 in the Z1 direction and the first bevel gear 21 mesh with each other. In this case, the first and third bevel gears 21 and 34 mesh at positions displaced in the X 1 direction and the Z 1 direction with respect to the predetermined position, respectively, so that the effective meshing surfaces of the bevel gears are Although it decreases,
Of course, since this is taken into consideration in the design, there will be no problem in terms of strength.

上記調整作業と相前後して、第2の調整具39
をZ1方向に螺進させると、35,36,39乃至
44および46が一体となつてZ1方向に変位す
る。このようにして、回転伝達部材40が所定位
置よりも僅かにZ1方向の位置に設定された状態で
回転伝達部材47および出力軸48を取付ける。
この後、第2の調整具39をZ2方向に螺進させて
回転伝達部材40のZ2方向の位置調整を行なう。
次に、第3の調整具41を適宜に回動することに
より、第4の傘歯車35の位置がZ1方向又はZ2
向に任意に調整される。
Before and after the above adjustment work, the second adjustment tool 39
When it is spirally moved in the Z1 direction, 35, 36, 39 to 44 and 46 are integrally displaced in the Z1 direction. In this way, the rotation transmission member 47 and the output shaft 48 are attached with the rotation transmission member 40 set at a position slightly in the Z1 direction from the predetermined position.
Thereafter, the second adjustment tool 39 is screwed in the Z2 direction to adjust the position of the rotation transmission member 40 in the Z2 direction.
Next, by appropriately rotating the third adjuster 41, the position of the fourth bevel gear 35 is arbitrarily adjusted in the Z1 direction or the Z2 direction.

このようにして、第3および第4の傘歯車3
4,35と回転伝達部材40との位置調整を夫々
別々に行なつた後、図示しない適宜の駆動機構に
より手首部9に任意の駆動力が伝達される。
In this way, the third and fourth bevel gears 3
After adjusting the positions of the rotation transmitting member 4, 4 and 35 separately, a desired driving force is transmitted to the wrist portion 9 by an appropriate drive mechanism (not shown).

なお、第1乃至第3の調整具が同軸をなす伝達
軸および筒状軸の同一端部側に配設されているこ
とと相俟つてこの第1乃至第3の調整具により第
3の傘歯車、第4の傘歯車および回転伝達部材が
腕部材に対して夫々別々に位置調整自在に構成さ
れているため、傘歯車および回転伝達部材の調整
作業が容易であり、ガタ無く駆動力が伝達され
る。
In addition, since the first to third adjustment tools are disposed on the same end side of the coaxial transmission shaft and the cylindrical shaft, the third umbrella can be adjusted by the first to third adjustment tools. Since the gear, the fourth bevel gear, and the rotation transmission member are configured so that their positions can be adjusted independently with respect to the arm member, the adjustment work of the bevel gear and rotation transmission member is easy, and the driving force is transmitted without play. be done.

さらに、第3の傘歯車および第4の傘歯車が
夫々腕部材に対してバネ部材を介して取付けられ
ているため、過負荷回転力や衝撃回転力などの、
いわゆる衝撃荷重に対して緩衝作用を有し、この
ため回転伝達各部を損傷する虞れがない。
Furthermore, since the third bevel gear and the fourth bevel gear are each attached to the arm member via a spring member, overload rotational force, impact rotational force, etc.
It has a buffering effect against so-called impact loads, so there is no risk of damaging the rotation transmission parts.

勿論、手首部9に任意の駆動力が伝達される
が、この場合、旋回台1、下腕3および上腕6は
夫々適宜に作動される。
Of course, any driving force is transmitted to the wrist portion 9, but in this case, the swivel base 1, lower arm 3, and upper arm 6 are operated as appropriate.

上記において、例えば出力軸48に、組立用工
具、塗装用スプレーガンあるいは溶接トーチなど
の操作要素を支持する支持部材を設ければ、旋回
枠7と回動部材8と上記支持部材とにより手首部
9が構成されるため、操作要素を任意の状態に位
置設定することができる。勿論、回転伝達部材4
0による駆動力は操作要素の直線移動に応用した
り、あるいはハンドリング部材の開閉に用いたり
することができる。
In the above case, for example, if the output shaft 48 is provided with a support member that supports an operating element such as an assembly tool, a paint spray gun, or a welding torch, the rotation frame 7, the rotation member 8, and the support member can support the wrist. 9, the operating elements can be positioned in any desired state. Of course, the rotation transmission member 4
The zero driving force can be applied to linear movement of the operating element or used to open and close the handling member.

上記実施例において、軸受33は回動部材37
の端部に配置されているが、この軸受33を回動
部材37の外周部に配設することができる。この
場合、第1のバネ部材45は、回動部材37と直
接当接することになる。また、第1の調整具38
がZ方向に螺進するよう回転部材37に螺着させ
ることもできる。この場合、第1の調整具38よ
りもZ2方向の位置に第1の調整具38と当接しう
る突起部を筒状軸31に設けることになる。さら
にまた、回転伝達部材40としては平歯車、チエ
ーンスプロケツトまたはプーリーなど適宜のもの
を選定することができる。勿論、上記した如く旋
回枠7を設ければ手首部の自由度が大きいため有
利であるが、これにも拘わらず旋回枠7を腕部材
6に固定とすることができる。また筒状軸31と
第3の傘歯車34とを別体に形成したり、第4の
傘歯車35と伝達軸36とを一体に形成したりす
ることもできる。
In the above embodiment, the bearing 33 is the rotating member 37
Although the bearing 33 is disposed at the end of the rotating member 37, it is also possible to dispose the bearing 33 on the outer circumference of the rotating member 37. In this case, the first spring member 45 will come into direct contact with the rotating member 37. In addition, the first adjustment tool 38
It can also be screwed onto the rotating member 37 so that it can be screwed in the Z direction. In this case, a protrusion that can come into contact with the first adjuster 38 is provided on the cylindrical shaft 31 at a position further in the Z 2 direction than the first adjuster 38 . Furthermore, as the rotation transmission member 40, an appropriate member such as a spur gear, a chain sprocket, or a pulley can be selected. Of course, it is advantageous to provide the swing frame 7 as described above because the degree of freedom of the wrist portion is large, but the swing frame 7 can be fixed to the arm member 6 in spite of this. Further, the cylindrical shaft 31 and the third bevel gear 34 may be formed separately, or the fourth bevel gear 35 and the transmission shaft 36 may be formed integrally.

なお、本発明を極座標式、円筒座標式あるいは
直交座標式などの適宜の産業用ロボツトに適用す
ることができる。
Note that the present invention can be applied to any suitable industrial robot such as a polar coordinate system, a cylindrical coordinate system, or an orthogonal coordinate system.

発明の効果 本発明は、上記実施例に詳記した如く、腕部材
の先端部に夫々径の異なる少なくとも2個の傘歯
車を同軸に配置し、この2個の傘歯車に噛合う第
3および第4の傘歯車を夫々筒状軸および伝達軸
の端部に配置し、該伝達軸と筒状軸とを同軸にか
つ腕部材に対して夫々回転自在に配設すると共
に、同軸をなす伝達軸および筒状軸の同一端部側
に第1乃至第3の調整具を配設しているため、産
業用ロボツトを小型、軽量化することができ、し
かも第1乃至第3の調整具が同軸をなす伝達軸お
よび筒状軸の同一端部側に配設されていることと
相俟つてこの第1乃至第3の調整具により第3の
傘歯車、第4の傘歯車および回転伝達部材が腕部
材に対して夫々別々に位置調整自在に構成されて
いるため、傘歯車および回転伝達部材の調整作業
が容易であり、ガタ無く駆動力が伝達されるとと
もに、第3の傘歯車および第4の傘歯車が夫々腕
部材に対してバネ部材を介して取付けられている
ため、過負荷回転力や衝撃回転力などの、いわゆ
る衝撃荷重に対して緩衝作用を有し、このため回
転伝達各部を損傷する虞れがなく、極めて実用的
な産業用の回転伝達装置を実現することができ
る。
Effects of the Invention As described in detail in the above embodiment, the present invention includes at least two bevel gears having different diameters coaxially disposed at the distal end of the arm member, and a third bevel gear meshing with these two bevel gears. A fourth bevel gear is disposed at the ends of the cylindrical shaft and the transmission shaft, respectively, and the transmission shaft and the cylindrical shaft are coaxially arranged and rotatable with respect to the arm member, respectively, and the transmission shaft is coaxial. Since the first to third adjustment tools are arranged on the same end side of the shaft and the cylindrical shaft, the industrial robot can be made smaller and lighter, and the first to third adjustment tools are Coupled with the fact that they are disposed on the same end side of the coaxial transmission shaft and cylindrical shaft, the third bevel gear, the fourth bevel gear, and the rotation transmission member are controlled by the first to third adjustment tools. are configured to be able to adjust their positions separately with respect to the arm member, so the adjustment work of the bevel gear and the rotation transmission member is easy, the driving force is transmitted without play, and the third bevel gear and the rotation transmission member are Since the bevel gears 4 are each attached to the arm member via a spring member, they have a buffering effect against so-called impact loads such as overload rotational force and impact rotational force, and therefore the rotation transmission parts It is possible to realize an extremely practical industrial rotation transmission device without the risk of damaging the rotor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る回転伝達装置を装填した
産業用ロボツトを示す左側面図、第2図は第1図
の−線断面図、第3図は第2図の−線断
面図である。 6…上腕、7…旋回枠、8…回動部、9…手首
部、21…大径の傘歯車、22…小径の傘歯車、
31…筒状軸、34…第3の傘歯車、35…第4
の傘歯車、36…伝達軸、37…回動部材、38
…第1の調整具、39…第2の調整具、40…回
転伝達部材、41…第3の調整具、45…第1の
バネ部材、46…第2のバネ部材。
Fig. 1 is a left side view showing an industrial robot equipped with a rotation transmission device according to the present invention, Fig. 2 is a sectional view taken along the - line in Fig. 1, and Fig. 3 is a sectional view taken along the - line in Fig. 2. . 6... Upper arm, 7... Swivel frame, 8... Rotating part, 9... Wrist part, 21... Large diameter bevel gear, 22... Small diameter bevel gear,
31...Cylindrical shaft, 34...Third bevel gear, 35...Fourth
bevel gear, 36...transmission shaft, 37...rotating member, 38
...first adjustment tool, 39...second adjustment tool, 40...rotation transmission member, 41...third adjustment tool, 45...first spring member, 46...second spring member.

Claims (1)

【特許請求の範囲】[Claims] 1 腕部材の先端部に夫々径の異なる少なくとも
2個の傘歯車を同軸に配置し、該大径の傘歯車に
噛合う第3の傘歯車を回転自在な筒状軸の端部に
支持し、該筒状軸の他端部に回動部材を配設し、
前記筒状軸内に同軸で回転自在に挿通された伝達
軸の一端に前記小径の傘歯車に噛合う第4の傘歯
車を固定すると共に、前記伝達軸の他端部に回転
伝達部材を配設して前記第1および第2の傘歯車
を夫々独立して適宜に回動させる産業用ロボツト
の回転伝達装置において、前記筒状軸と回動部材
とを長軸方向に可動に構成し、前記筒状軸と回動
部材とを長軸方向に相離間させる第1のバネ部材
を配設し、前記筒状軸の端部位置で筒状軸および
回動部材に相対的に当接して長軸方向に位置設定
自在な第1の調整具を配設し、前記筒状軸の端部
内周部に長軸方向に位置設定自在な第2の調整具
を配設すると共に、該第2の調整具と前記伝達軸
とを長軸方向に相離間させる第2のバネ部材を配
設し、回転軸受を介して前記第2の調整具に当接
する回転伝達部材を前記伝達軸の長軸方向に位置
設定自在な第3の調整具を配設してなる産業用ロ
ボツトの回転伝達装置。
1 At least two bevel gears having different diameters are coaxially disposed at the tip of the arm member, and a third bevel gear that meshes with the large diameter bevel gear is supported at the end of a freely rotatable cylindrical shaft. , a rotating member is disposed at the other end of the cylindrical shaft,
A fourth bevel gear that meshes with the small diameter bevel gear is fixed to one end of a transmission shaft coaxially and rotatably inserted into the cylindrical shaft, and a rotation transmission member is disposed at the other end of the transmission shaft. In the rotation transmission device for an industrial robot, the cylindrical shaft and the rotating member are configured to be movable in a longitudinal direction, and the first and second bevel gears are rotated independently and suitably. A first spring member is provided that separates the cylindrical shaft and the rotating member from each other in the longitudinal direction, and is in relative contact with the cylindrical shaft and the rotating member at an end position of the cylindrical shaft. A first adjusting tool whose position can be freely set in the longitudinal axis direction is disposed, a second adjusting tool whose position can be freely set in the longitudinal axis direction is arranged on the inner circumference of the end of the cylindrical shaft, and A second spring member is provided to separate the adjustment tool and the transmission shaft from each other in the longitudinal direction, and the rotation transmission member that abuts the second adjustment tool via a rotation bearing is aligned with the transmission shaft in the longitudinal direction. A rotation transmission device for an industrial robot, which is provided with a third adjusting tool whose position can be freely set in any direction.
JP6592083A 1983-04-13 1983-04-13 Transmission gear for revolution of industrial robot Granted JPS59192487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6592083A JPS59192487A (en) 1983-04-13 1983-04-13 Transmission gear for revolution of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6592083A JPS59192487A (en) 1983-04-13 1983-04-13 Transmission gear for revolution of industrial robot

Publications (2)

Publication Number Publication Date
JPS59192487A JPS59192487A (en) 1984-10-31
JPH0310474B2 true JPH0310474B2 (en) 1991-02-13

Family

ID=13300885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6592083A Granted JPS59192487A (en) 1983-04-13 1983-04-13 Transmission gear for revolution of industrial robot

Country Status (1)

Country Link
JP (1) JPS59192487A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274895A (en) * 1985-05-29 1986-12-05 フアナツク株式会社 Drive for wrist of industrial robot
JPS6364487U (en) * 1986-10-20 1988-04-28
JP2539269Y2 (en) * 1990-11-30 1997-06-25 住友重機械工業株式会社 Wheel forming unit and forming grinder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107784U (en) * 1975-02-25 1976-08-28
JPS56142882U (en) * 1980-03-28 1981-10-28
JPS56171193U (en) * 1980-05-20 1981-12-17

Also Published As

Publication number Publication date
JPS59192487A (en) 1984-10-31

Similar Documents

Publication Publication Date Title
US7454995B2 (en) Joint mechanism for robot hand and the like
US4396344A (en) Industrial robot of the articulated type
US5314293A (en) Direct drive robotic system
EP1616673B1 (en) Joint mechanism with two actuators for robot hand and the like
EP2177325B1 (en) Articulated structure of a multiple-axis robot and robot comprising such a structure
US4807486A (en) Three-axes wrist mechanism
JPH0583353B2 (en)
US4626165A (en) Industrial robot wrist mechanism
US5924330A (en) Industrial robot wrist unit
JPS62287991A (en) Wrist drive mechanism of industrial robot
US4761114A (en) Articulated head for an industrial robot and a robot equipped with a head of this type
US11938624B2 (en) Parallel kinematic robot
JPH0310474B2 (en)
EP0089129B1 (en) A power transmission mechanism with a backlash regulator for industrial robots
JPH02190288A (en) Wrist mechanism for robot for industrial use
JPS632315Y2 (en)
TWI458614B (en) Robot arm assembly
JPS6334870Y2 (en)
JPH0451313B2 (en)
JPS6263074A (en) Electric robot
JPH05253882A (en) Robot having wrist of three degrees of freedom
JPH02218583A (en) Industrial robot
JPH0620938U (en) Rotation transmission mechanism
JPS61100383A (en) Joint arm type robot
JPS5953176A (en) Industrial robot