JPH031044B2 - - Google Patents

Info

Publication number
JPH031044B2
JPH031044B2 JP18028981A JP18028981A JPH031044B2 JP H031044 B2 JPH031044 B2 JP H031044B2 JP 18028981 A JP18028981 A JP 18028981A JP 18028981 A JP18028981 A JP 18028981A JP H031044 B2 JPH031044 B2 JP H031044B2
Authority
JP
Japan
Prior art keywords
ceramic
cordierite
collection material
network structure
dimensional network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18028981A
Other languages
Japanese (ja)
Other versions
JPS5881419A (en
Inventor
Shigenori Sakurai
Mikio Murachi
Shinichi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56180289A priority Critical patent/JPS5881419A/en
Publication of JPS5881419A publication Critical patent/JPS5881419A/en
Publication of JPH031044B2 publication Critical patent/JPH031044B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は微粒子の捕集材に関する。 デイーゼル機関の排気ガス中にはカーボン、炭
化水素、金属粉、硫酸塩並びに硫黄等からなる微
粒子が含まれており、これらの微粒子が大気に放
出されると大気汚染の問題をひき起こす。従つて
これらの微粒子を捕集するために機関排気通路内
に捕集材を挿入してこの捕集材により微粒子を捕
集するようにしている。この捕集材として従来よ
り三次元網目構造をなすセラミツクが使用されて
いるがこのセラミツクは圧縮破壊強度が弱く、そ
の結果セラミツクをセラミツクケーシング内に充
填するときに破壊したり、或いは車両走行時に発
生する振動によつて破壊するという問題を生じ
る。更に、捕集材上に捕集された微粒子を燃焼せ
しめてセラミツクによる捕集能力を再生する必要
があるが従来のセラミツクには触媒作用がないた
めに微粒子を燃焼させるのにかなりの高温を必要
とするという問題がある。 本発明は捕集材を構成する三次元網目構造のセ
ラミツクの強度を増大してセラミツクが破壊する
のを阻止し、更にセラミツクに優れた触媒作用を
持たせて低温でも微粒子を燃焼せしめることがで
きるようにした微粒子の捕集材を提供することに
ある。 以下、添附図面を参照して本発明を詳細に説明
する。 第1図を参照すると、1はデイーゼル機関本
体、2は排気マニホルド、3は排気マニホルド2
に連結された捕集材ケーシング、4はケーシング
3内に挿入された捕集材を示す。この捕集材4の
外周面とケーシング3の内周面間には排気ガスの
吹き抜けを防止するためにシール部材5並びにス
チールウール6等が挿入される。捕集材4は第2
図に示すような三次元網目構造をなすセラミツク
により構成され、このセラミツクはコージライト
からなる。このコージライトにはアルミナを含む
セラミツクをコーテイングした後にアルカリ金属
のシリケートが含浸されている。コージライトに
アルカリ金属のシリケートを含浸するだけでもコ
ージライトの強度が高められるが上述のようにア
ルミナを含むセラミツクをコーテイングするとこ
のセラミツクのコーテイング層によりコージライ
トの強度が更に高くなり、斯くしてコージライト
の強度がかなり増強されることになる。その結
果、捕集材4をケーシング3内に充填する際に捕
集材4が破壊するのを阻止でき、更に車両運転時
に発生する振動によつて捕集材4が破壊するのを
阻止することができる。 また、コージライトにアルカリ金属のシリケー
トを含浸させることによつてコージライトには触
媒作用が与えられる。ところがアルミナを含むセ
ラミツクは多孔質であつて極めて大きな表面積を
有し、従つてアルミナを含むセラミツクにアルカ
リ金属のシリケートを含浸せしめると触媒作用が
向上せしめられることになる。従つて上述のよう
にコージライトにアルミナを含むセラミツクをコ
ーテイングした後にアルカリ金属のシリケートを
含浸せしめるとアルミナを含むセラミツクにアル
カリ金属のシリケートが含浸せしめられ、斯くし
て触媒作用が向上せしめられることになる。その
結果、捕集材4により捕集された微粒子を低温で
燃焼せしめることができるようになる。なお、コ
ージライトに含浸すべきアルカリ金属のシリケー
トとしては水ガラス或いはリチウムシリケートを
用いることが好ましい。 以下、コージライトにアルミナを含むセラミツ
クのコーテイングを施こさない比較例と比較しつ
つ本発明による実施例について説明する。 実施例 1 シリカ(SiO2)51重量%、アルミナ(Al2O3
35重量%、マグネシア(MgO)14重量%の化学
組成になるように選ばれた滑石、水酸化アルミニ
ウム又はアルミナ、並びに粘土からなる配合物を
水および若干のバインダーとよく混合してスラリ
ー化した。このスラリーを三次元網目構造をなす
所定の大きさのポリウレタンフオームに浸漬した
後に余分なスラリーを吹き払つて乾燥させ、次い
で再びスラリーをポリウレタンフオームに浸漬し
た後に余分なスラリーを吹き払つて乾燥させ、次
いで更にこれの数回繰返した。その後1400℃で3
時間焼成して三次元網目構造のコージライトを得
た。 次いでこのコージライトに20重量%のγ−
Al2O3を含むセラミツク材をコーテイングした。
次いでJIS 3号の水ガラスを水で50%に希釈した
水ガラス溶液内にコージライトを1時間浸漬し、
その後コージライトを流水で簡単に洗浄した後に
700℃で焼成してサンプルAを得た。 比較例 1 JIS 3号の水ガラスを水で50%に希釈した水ガ
ラス溶液内に実施例1と同じコージライトを1時
間浸漬し、その後コージライトを流水で簡単に洗
浄した後、700℃で焼成してサンプルBを得た。 実施例 2 実施例1と同じコージライトに20重量%のγ−
Al2O3を含むセラミツク材をコーテイングした。
次いで無水珪酸20%、酸化リチウム2.2%、水78
%からなりPH10.7のリチウムシリケートを水で50
%に希釈したリチウムシリケート溶液内にコージ
ライトを1時間浸漬し、その後コージライトを流
水で簡単に洗浄した後に700℃で焼成してサンプ
ルCを得た。 比較例 2 無水珪酸20%、酸化リチウム2.2%、水78%か
らなり、PH10.7のリチウムシリケートを水で50%
に希釈したリチウムシリケート溶液に実施例1と
同じコージライトを1時間浸漬し、その後コージ
ライトを流水で簡単に洗浄後700℃で2時間焼成
してサンプルDを得た。 比較試験 アルカリ金属のシリケートを含浸していないコ
ージライトと、実施例1、2において得られたサ
ンプルA、Cと、比較例1、2において得られた
サンプルB、Dについて強度と微粒子の燃焼性の
比較試験を行なつた。 (1) 強度測定 静水圧下で強度を測定した。サンプルを気密
性のある薄いゴム袋に入れ、徐々に圧力を上げ
てサンプルの破壊する圧力を破壊音を検知する
ことにより求めた。
The present invention relates to a collection material for fine particles. Exhaust gas from diesel engines contains fine particles consisting of carbon, hydrocarbons, metal powder, sulfate, sulfur, etc., and when these fine particles are released into the atmosphere, they cause air pollution problems. Therefore, in order to collect these particulates, a collection material is inserted into the engine exhaust passage, and the particulates are collected by this collection material. Ceramic with a three-dimensional network structure has traditionally been used as this collection material, but this ceramic has low compressive fracture strength, and as a result, it may break when it is filled into a ceramic casing, or it may break when the vehicle is running. This causes the problem of destruction due to vibration. Furthermore, it is necessary to combust the particulates collected on the collection material to regenerate the collection ability of the ceramic, but since conventional ceramics do not have catalytic activity, a considerably high temperature is required to combust the particulates. There is a problem that. The present invention increases the strength of the ceramic with a three-dimensional network structure that constitutes the collection material, thereby preventing the ceramic from being destroyed, and furthermore, it provides the ceramic with an excellent catalytic action, making it possible to burn particulates even at low temperatures. An object of the present invention is to provide a collection material for fine particles. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. Referring to Figure 1, 1 is the diesel engine body, 2 is the exhaust manifold, and 3 is the exhaust manifold 2.
The collection material casing is connected to the casing 3, and 4 indicates the collection material inserted into the casing 3. A sealing member 5, steel wool 6, etc. are inserted between the outer circumferential surface of the collection material 4 and the inner circumferential surface of the casing 3 to prevent exhaust gas from blowing through. The collection material 4 is the second
It is made of ceramic that has a three-dimensional network structure as shown in the figure, and this ceramic is made of cordierite. This cordierite is coated with ceramic containing alumina and then impregnated with an alkali metal silicate. The strength of cordierite can be increased simply by impregnating cordierite with an alkali metal silicate, but as mentioned above, when alumina-containing ceramic is coated, the strength of cordierite is further increased by this ceramic coating layer. The intensity of the light will be considerably increased. As a result, the collection material 4 can be prevented from being destroyed when filling the casing 3 with the collection material 4, and furthermore, the collection material 4 can be prevented from being destroyed due to vibrations generated during vehicle operation. Can be done. Further, by impregnating cordierite with an alkali metal silicate, cordierite is given a catalytic action. However, ceramics containing alumina are porous and have an extremely large surface area, and therefore, impregnating the ceramics containing alumina with an alkali metal silicate improves the catalytic action. Therefore, as mentioned above, if cordierite is coated with alumina-containing ceramic and then impregnated with alkali metal silicate, the alumina-containing ceramic will be impregnated with alkali metal silicate, thus improving the catalytic action. Become. As a result, the particulates collected by the collection material 4 can be burned at a low temperature. It is preferable to use water glass or lithium silicate as the alkali metal silicate to be impregnated into cordierite. Examples according to the present invention will be described below in comparison with a comparative example in which cordierite is not coated with ceramic containing alumina. Example 1 Silica (SiO 2 ) 51% by weight, alumina (Al 2 O 3 )
A formulation of talc, aluminum hydroxide or alumina, and clay, selected to have a chemical composition of 35% by weight, 14% by weight of magnesia (MgO), was thoroughly mixed with water and some binder to form a slurry. This slurry is immersed in a polyurethane foam of a predetermined size having a three-dimensional network structure, and then the excess slurry is blown off and dried.Then, the slurry is immersed in the polyurethane foam again, and the excess slurry is blown off and dried. This was then repeated several more times. Then 3 at 1400℃
After time firing, cordierite with a three-dimensional network structure was obtained. Next, this cordierite was coated with 20% by weight of γ-
Coated with ceramic material containing Al 2 O 3 .
Next, the cordierite was immersed for 1 hour in a water glass solution prepared by diluting JIS No. 3 water glass to 50% with water.
After that, after washing the cordierite briefly with running water,
Sample A was obtained by firing at 700°C. Comparative Example 1 The same cordierite as in Example 1 was immersed in a water glass solution prepared by diluting JIS No. 3 water glass to 50% with water for 1 hour, then the cordierite was briefly washed with running water, and then heated at 700℃. Sample B was obtained by firing. Example 2 The same cordierite as in Example 1 with 20% by weight of γ-
Coated with ceramic material containing Al 2 O 3 .
Next, silicic anhydride 20%, lithium oxide 2.2%, water 78%
50% lithium silicate with pH 10.7 in water
Sample C was obtained by immersing cordierite in a lithium silicate solution diluted to 100% for 1 hour, then briefly washing the cordierite with running water, and firing it at 700°C. Comparative Example 2 Consisting of 20% silicic anhydride, 2.2% lithium oxide, and 78% water, lithium silicate with pH 10.7 was mixed with 50% water.
Sample D was obtained by immersing the same cordierite as in Example 1 in a diluted lithium silicate solution for 1 hour, and then washing the cordierite briefly with running water and calcining it at 700° C. for 2 hours. Comparative Test Strength and flammability of fine particles for cordierite not impregnated with alkali metal silicate, samples A and C obtained in Examples 1 and 2, and samples B and D obtained in Comparative Examples 1 and 2 A comparative test was conducted. (1) Strength measurement Strength was measured under hydrostatic pressure. The sample was placed in a thin airtight rubber bag, the pressure was gradually increased, and the pressure at which the sample broke was determined by detecting the breaking sound.

【表】 (2) 燃焼性測定 上述の5サンプルをデイーゼル機関の排気通
路内に挿入し、デイーゼル機関を2000r.p.m、
トルエン6Kg・mのもとで5時間づつ運転して
各サンプルに微粒子を捕集させた。その後サン
プルを取り出してその一部を削り出し、よく粉
砕して約20mgのサンプルを示差熱分析および熱
天秤測定を行なつてカーボン分の燃焼開始温度
を求めた。
[Table] (2) Flammability measurement Insert the five samples mentioned above into the exhaust passage of a diesel engine, and heat the diesel engine at 2000rpm.
Each sample was operated for 5 hours under 6 kg·m of toluene to collect fine particles. After that, the sample was taken out, a part of it was scraped out, and it was thoroughly crushed. About 20 mg of the sample was subjected to differential thermal analysis and thermobalance measurement to determine the combustion start temperature of the carbon content.

【表】 上述の比較試験からアルミナを含むセラミツク
をコーテイングしたサンプルA、Cがアルミナを
含むセラミツクをコーテイングしていないサンプ
ルB、Dよりもコージライトの強度が高くなり、
しかもカーボン分の燃焼開始温度が低くなること
がわかる。 以上述べたように本発明によれば三次元網目構
造をなすセラミツクの強度を増大することができ
るのでこのセラミツクをケーシング内に充填する
際に、或いは車両運転時の振動によつてこのセラ
ミツクが破壊するのを阻止することができる。ま
た、車両運転時において三次元網目構造セラミツ
クに多量の微粒子が捕集されると排気ガス流の圧
力損失が大きくなるために適当な周期で微粒子を
燃焼させる必要があるデイーゼル機関は排気ガス
温が低いために従来では微粒子を燃焼させるのに
このセラミツクの加熱手段が必要となつていた。
しかしながら本発明では微粒子の燃焼開始温度を
低下させることができるのでこのような加熱手段
を用いなくとも微粒子を燃焼させることができ
る。
[Table] From the above comparative test, samples A and C coated with ceramic containing alumina have higher cordierite strength than samples B and D which are not coated with ceramic containing alumina.
Furthermore, it can be seen that the combustion start temperature of the carbon component becomes lower. As described above, according to the present invention, the strength of the ceramic having a three-dimensional network structure can be increased, so that when the ceramic is filled into the casing, or due to vibrations during vehicle operation, the ceramic is destroyed. can be prevented from doing so. In addition, when a large amount of particulates are collected in the three-dimensional network structure ceramic during vehicle operation, the pressure loss of the exhaust gas flow increases. Because of the low heat content, heating means for this ceramic was required in the past to burn the fine particles.
However, in the present invention, since the combustion start temperature of the fine particles can be lowered, the fine particles can be combusted without using such a heating means.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はデイーゼル機関排気系の全体図、第2
図は第1図のA部の拡大図である。 3……捕集材ケーシング、4……捕集材。
Figure 1 is an overall diagram of the diesel engine exhaust system, Figure 2
The figure is an enlarged view of section A in FIG. 3... Collection material casing, 4... Collection material.

Claims (1)

【特許請求の範囲】[Claims] 1 三次元網目構造をなすセラミツクにアルミナ
を含むセラミツク材のコーテイング層を形成し、
次いで該三次元網目構造セラミツクにアルカリ金
属のシリケートを含浸せしめてなることを特徴と
する微粒子の捕集材。
1. Forming a coating layer of ceramic material containing alumina on ceramic having a three-dimensional network structure,
A fine particle collection material characterized in that the three-dimensional network structure ceramic is impregnated with an alkali metal silicate.
JP56180289A 1981-11-12 1981-11-12 Collecting member for fine particle Granted JPS5881419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180289A JPS5881419A (en) 1981-11-12 1981-11-12 Collecting member for fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180289A JPS5881419A (en) 1981-11-12 1981-11-12 Collecting member for fine particle

Publications (2)

Publication Number Publication Date
JPS5881419A JPS5881419A (en) 1983-05-16
JPH031044B2 true JPH031044B2 (en) 1991-01-09

Family

ID=16080601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180289A Granted JPS5881419A (en) 1981-11-12 1981-11-12 Collecting member for fine particle

Country Status (1)

Country Link
JP (1) JPS5881419A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139718A (en) * 1982-02-15 1983-08-19 Toyota Motor Corp Filter for purification of exhaust gas of internal combustion engine and its production
US4968467A (en) * 1989-07-10 1990-11-06 Industrial Filter & Pump Mfg. Co. Hot gas filter
JP2002174111A (en) * 2000-12-07 2002-06-21 Matsushita Electric Ind Co Ltd Exhaust gas purifying material
US20050103232A1 (en) 2003-11-19 2005-05-19 Gadkaree Kishor P. Composition and method for making ceramic filters
ES2312008T3 (en) * 2004-07-26 2009-02-16 Dow Global Technologies Inc. IMPROVED CATALIZED HOLLIN FILTER.
CN114699944B (en) * 2022-02-18 2023-05-23 潍柴动力股份有限公司 Steel wool mixer and diesel engine tail gas aftertreatment device with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938919A (en) * 1972-08-17 1974-04-11
JPS4974279A (en) * 1972-11-16 1974-07-17
JPS505410A (en) * 1973-05-18 1975-01-21

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938919A (en) * 1972-08-17 1974-04-11
JPS4974279A (en) * 1972-11-16 1974-07-17
JPS505410A (en) * 1973-05-18 1975-01-21

Also Published As

Publication number Publication date
JPS5881419A (en) 1983-05-16

Similar Documents

Publication Publication Date Title
US6231818B1 (en) Amorphous non-intumescent inorganic fiber mat for low temperature exhaust gas treatment devices
RU2388522C2 (en) Device to process exhaust gases and method of its fabrication
US5254410A (en) Partially dehydrated vermiculite flakes and method of making same
US5384188A (en) Intumescent sheet
CA2256769C (en) Free-standing internally insulating liner
US3488723A (en) Acoustical material for high temperature application
US20140147340A1 (en) Compositions containing biosoluble inorganic fibers and micaceous binders
US3961907A (en) Catalytic converter
JPS5947712B2 (en) thermally expandable sheet material
US7695796B2 (en) Honeycomb structural body and method of manufacturing the same
JPH1136853A (en) Coated catalyst converter base and mounting of the same
KR20200135853A (en) Activated porous fibers and products containing them
KR20120095417A (en) Mounting mat for exhaust gas treatment device
EP0798042B1 (en) Method of making a ceramic honeycomb body or catalyst
JPH031044B2 (en)
US3959865A (en) Method of containing a resiliently supported rigid ceramic catalyst support
Montanaro et al. Influence of some pollutants on the durability of cordierite filters for diesel cars
JPH0337962B2 (en)
JPH05270943A (en) Fiber-reinforced porous body
JPS58159828A (en) Filter for exhaust gas of internal combustion engine and its production
JPH0360714A (en) Filter for collecting particulates
JPS605068A (en) High strength ceramic structure and manufacture
Montanaro et al. Durability of cordierite honeycomb structure for automotive emissions control
CN113443927A (en) Skin slurry, porous honeycomb ceramic with skin and preparation method
EP3034825B1 (en) Mounting mat for an exhaust gas treatment device