JPH03103408A - Device and method for preparing vinyl chloride resin - Google Patents

Device and method for preparing vinyl chloride resin

Info

Publication number
JPH03103408A
JPH03103408A JP1241585A JP24158589A JPH03103408A JP H03103408 A JPH03103408 A JP H03103408A JP 1241585 A JP1241585 A JP 1241585A JP 24158589 A JP24158589 A JP 24158589A JP H03103408 A JPH03103408 A JP H03103408A
Authority
JP
Japan
Prior art keywords
polymerization
vinyl chloride
stirring
polymerization apparatus
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1241585A
Other languages
Japanese (ja)
Other versions
JP2685597B2 (en
Inventor
Yoshio Tomijima
義生 冨島
Kazuo Oraku
和夫 大楽
Takekazu Maeda
武和 前田
Mitsumasa Hasegawa
長谷川 三勝
Keizo Hayashi
敬蔵 林
Masahiro Tsujinaka
辻中 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP1241585A priority Critical patent/JP2685597B2/en
Priority to KR1019900014648A priority patent/KR100191378B1/en
Priority to US07/583,407 priority patent/US5169918A/en
Priority to EP95109549A priority patent/EP0688797A3/en
Priority to DE69030413T priority patent/DE69030413T2/en
Priority to EP90117929A priority patent/EP0421184B1/en
Priority to CN90107830A priority patent/CN1039336C/en
Publication of JPH03103408A publication Critical patent/JPH03103408A/en
Priority to US07/885,686 priority patent/US5278262A/en
Application granted granted Critical
Publication of JP2685597B2 publication Critical patent/JP2685597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To provide the subject resin having good flow characteristics and used for pastes, etc., without the adhesion of scales by subjecting monomers containing vinyl chloride to a microsuspension or emulsion polymerization using a polymerization device equipped with a stirrer and having a specific ratio of effective inner diameter/effective height. CONSTITUTION:Monomers containing vinyl choride are subjected to a microsuspension or emulsion polymerization in the presence of a radial polymerization initiator and a dispersing agent or emulsifying agent in ion-exchanged water at 50 deg.C in a polymerization device to provide the objective resin, the polymerization device being equipped with a stirrer and having an effective height(H)/effective inner diameter(D) of >=4, preferably 5-15, and an outer periphery diameter(d) of the stirrer/effective inner diameter(D) of >=0.6, preferably 0.7-0.9.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、塩化ビニル樹脂、特にペースト用塩化ビニル
樹脂の製造に適用できる重合装置および方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a polymerization apparatus and method applicable to the production of vinyl chloride resin, particularly vinyl chloride resin for paste.

塩化ビニル樹脂、特にペースト用塩化ビニル樹脂は、ミ
クロ懸濁重合法または乳化重合法により製造されている
Vinyl chloride resins, particularly vinyl chloride resins for paste, are produced by micro-suspension polymerization or emulsion polymerization.

ミクロl%濁重合法は、塩化ビニルまたは塩化ビニルを
主成分とする単量体、水、乳化剤、単量体に可溶な重合
開始剤およびその他の重合助剤とを重合装置以外の装置
で高剪断下で均質化した後、重合装置に移して撹拌下で
重合させ、樹脂の平均径が0.2〜3μm程度の微細な
塩化ビニル樹脂の粒子を生成する方法である。
The microl% turbidity polymerization method involves mixing vinyl chloride or a monomer mainly composed of vinyl chloride, water, an emulsifier, a polymerization initiator soluble in the monomer, and other polymerization aids in equipment other than the polymerization equipment. After homogenizing under high shear, the mixture is transferred to a polymerization apparatus and polymerized under stirring to produce fine vinyl chloride resin particles with an average resin diameter of about 0.2 to 3 μm.

均質化工程で分散された液滴は、乳化剤で保護されてい
るために比較的安定であるが、重合の後半になると粒子
が不安定となり、重合中の撹拌が強過ぎると、拉子同志
の衝突による合一が促進されて粗粒が増加したり、重合
装置壁や攪拌翼へのスケール付着量の増大を招き、極端
な場合はラテックスが凝集して壊れることがある。
The droplets dispersed in the homogenization process are relatively stable because they are protected by an emulsifier, but in the latter half of the polymerization, the particles become unstable, and if the stirring during the polymerization is too strong, the droplets become unstable. Coalescence due to collision is promoted, leading to an increase in coarse particles, an increase in the amount of scale adhering to the polymerization equipment walls and stirring blades, and in extreme cases, the latex may aggregate and break.

ま−た、粗粒の増加による粒子径分布の変化により、製
品のゾル粘度など流動特性の悪化を招くことかしばしば
ある。
Furthermore, changes in particle size distribution due to an increase in coarse particles often lead to deterioration of fluid properties such as sol viscosity of the product.

従って、ミクロ懸濁重合法では、重合時の撹拌には一般
に低剪断型の攪拌翼が採用されており、激しく撹拌する
懸濁重合法に比べると重合装置のジャケットの伝熱係数
は小さく、そのため、重合生産性を向上するためには重
合熱の除熱能力が律速となっていた。
Therefore, in the micro suspension polymerization method, a low-shear type stirring blade is generally used for stirring during polymerization, and the heat transfer coefficient of the polymerization equipment jacket is smaller than that in the suspension polymerization method, which requires vigorous stirring. In order to improve polymerization productivity, the ability to remove polymerization heat has been the rate-limiting factor.

一方、乳化重合法は、陰イオン界面活性剤および/また
は非イオン界面活性剤を乳化剤とし、水溶性過酸化物、
水溶性過酸化物と水溶性還元剤との組み合わせまたは油
溶性過酸化物と水溶性還元剤との組み合わせを重合開始
剤として、要すれば他の重合助剤の存在下、水性媒体中
で塩化ビニルモノマーを重合して平均粒子径が0.1〜
0.4μ肩の微小粒子を生戊する乳化重合と、予め、種
粒子として調製された塩化ビニル樹脂の存在下に乳化重
合を行うことにより、種粒子を核として肥大させて0.
4〜2μlの比較的大きな粒子を生戊する播種乳化重合
法がある。
On the other hand, in the emulsion polymerization method, an anionic surfactant and/or a nonionic surfactant is used as an emulsifier, and water-soluble peroxide,
Salting in an aqueous medium using a combination of a water-soluble peroxide and a water-soluble reducing agent or a combination of an oil-soluble peroxide and a water-soluble reducing agent as a polymerization initiator, if necessary in the presence of other polymerization auxiliaries. By polymerizing vinyl monomer, the average particle diameter is 0.1~
By carrying out emulsion polymerization to produce microparticles with a diameter of 0.4 μm and in the presence of vinyl chloride resin prepared in advance as seed particles, the seed particles are enlarged using the seed particles as nuclei.
There is a seeded emulsion polymerization method that produces relatively large particles of 4 to 2 μl.

乳化剤が過剰に存在すると、微細粒子が発生するので、
乳化剤は析出したボリマーを被覆するに必要最小限量を
追加する方法が採用されており、重合中、粒子は極めて
不安定である。従って、乳化重合法においても、先に説
明したミクロ!!!濁重合法と同様に、比較的穏やかな
撹拌が採用されており、重合過程における生産性を向上
させる上で重合熱の除熱能力の改善が重要である。
If the emulsifier is present in excess, fine particles will be generated.
The emulsifier is added in the minimum amount necessary to coat the precipitated polymer, and the particles are extremely unstable during polymerization. Therefore, in the emulsion polymerization method as well, micro! ! ! Similar to the turbid polymerization method, relatively gentle stirring is employed, and improving the ability to remove polymerization heat is important in improving productivity in the polymerization process.

上述のようなミクロ懸濁重合法または乳化重合法により
回分式に重合する場合に使用される重合装置の構造とし
ては、重合装置内の上下方向の充分な混合を考慮してH
/D(Hは重合装置の有効高さ、Dは重合装置の有効直
径)が1〜3程度の槽型の重合装置が一般に使用されて
いる。
The structure of the polymerization apparatus used for batch polymerization using the micro suspension polymerization method or emulsion polymerization method as described above is such that sufficient mixing in the vertical direction within the polymerization apparatus is taken into consideration.
A tank-type polymerization apparatus with /D (H is the effective height of the polymerization apparatus and D is the effective diameter of the polymerization apparatus) of about 1 to 3 is generally used.

このような重合装置において、先に説明した除熱に関す
る問題点を解決するために種々の除熱方法が考えられ、
例えば伝熱面積を増大させる方法、重合装置の材質の変
更、ジャケットの構造および攪拌翼の形状の工夫などに
よる総括伝熱係数を増大させる方法ならびに低温冷媒の
採用による温度差を増大させる方法がある。
In such a polymerization apparatus, various heat removal methods can be considered to solve the above-mentioned problems regarding heat removal.
For example, there are methods to increase the overall heat transfer coefficient by increasing the heat transfer area, changing the material of the polymerization equipment, devising the structure of the jacket and the shape of the stirring blade, and increasing the temperature difference by using a low-temperature refrigerant. .

伝熱面積を増大させる方法としては、従来、攪拌翼およ
びバッフルへ冷却水を通水する方法、リフラックスコン
デンサを使用する方法(特開昭54−153894号公
報)、外部冷却装置を使用する方法(特開昭5 5−1
 5 7 6 0 7号公報)およびドラフトチューブ
付き重合装置を使用する方法(特開昭55−62908
号公報)などが提案されている。
Conventional methods for increasing the heat transfer area include a method of passing cooling water through stirring blades and baffles, a method of using a reflux condenser (Japanese Patent Application Laid-open No. 153894/1984), and a method of using an external cooling device. (Unexamined Japanese Patent Publication No. 1975 5-1
5 7 6 0 7) and a method using a polymerization device with a draft tube (Japanese Patent Laid-Open No. 55-62908)
Publication No. 2), etc. have been proposed.

しかしながら、バッフルを使用する方法では、攪拌翼と
バッフルの近傍では撹拌により粒子の合一が促進されて
粗粒が増えたり、構造が複維になりスケール付着量が増
えるなどの問題がある。リフラッグスコンデンサを使用
する方法については、(乳化重合法では一般的に使用さ
れているカリミクロ懸濁重合法では反応液混合物の発泡
によるスケール付着や還流塩化ビニルモノマーの巻き込
み不良による異常昇圧や塊状重合物の発生などの問題点
がある。また、外部冷却装置を使用する方法については
、循環ポンプにおける大きな剪断によるラテックスの壊
れ、粗拉の増大および冷却器におけるスケール付着など
の問題があり、実用化のためには種々の課題が残されて
いる。
However, in the method using baffles, there are problems such as the coalescence of particles is promoted by stirring near the stirring blades and baffles, resulting in an increase in coarse particles, the structure becomes multi-fiber, and the amount of scale adhesion increases. Regarding the method of using a Reflags condenser, (in the emulsion polymerization method, the Kalimicro suspension polymerization method, which is commonly used, causes scale adhesion due to foaming of the reaction mixture, abnormal pressure increase due to insufficient entrainment of refluxed vinyl chloride monomer, and bulk polymerization. In addition, the method using an external cooling device has problems such as breakage of the latex due to large shear in the circulation pump, increased roughness, and scale buildup in the cooler, so it is difficult to put it into practical use. Various challenges remain.

ドラフトチューブ付き重合装置は、ドラフトチューブに
より反応肢混合物を乱れの少ない流動条件下でゆっくり
循環させながら重合する方法であり、スケールの発生を
抑制する上で有効である。しかしながら、スケール付着
を皆無にすることは不可能であり、一旦付着したスケー
ルの除去、特にドラフトチューブと重合装置壁との間お
よび循環用攪拌翼の下部などの掃除が困難で長期安定運
転上問題があった。
A polymerization apparatus with a draft tube is a method in which polymerization is carried out while the reaction mixture is slowly circulated through a draft tube under flow conditions with little turbulence, and is effective in suppressing the generation of scale. However, it is impossible to completely eliminate scale adhesion, and it is difficult to remove scale once it has adhered, especially cleaning between the draft tube and the wall of the polymerization equipment and the lower part of the circulation stirring blade, which poses a problem for long-term stable operation. was there.

また、総括伝熱係数を大きくする方法には、スケールの
発生や混合条件などの装置上の制約と装置の製作コスト
が増えるなどの問題点があり、温度差を大きくする方法
には冷凍機のランニングコストが増加するという問題点
があった。
In addition, the method of increasing the overall heat transfer coefficient has problems such as equipment constraints such as the generation of scale and mixing conditions, as well as an increase in the production cost of the equipment, and the method of increasing the temperature difference has problems such as There was a problem that running costs increased.

[発明が解決しようとする課題] 従って、上述のような問題点を解決して、除払能力が高
く、スケール付着および粗粒発生が少なく、かつゾル粘
度が良好な塩化ビニル樹脂、特にペースト用塩化ビニル
樹脂を製造するミクロ懸濁重合法または乳化重合法に適
した生産性の高い重合装置および方法を提供することが
本発明の課題である。
[Problems to be Solved by the Invention] Therefore, a vinyl chloride resin, especially for pastes, which solves the above-mentioned problems and has high removal ability, less scale adhesion and generation of coarse particles, and good sol viscosity. It is an object of the present invention to provide a highly productive polymerization apparatus and method suitable for microsuspension polymerization or emulsion polymerization for producing vinyl chloride resin.

[課題を解決するための手段] 本発明者は、重合装置の構造および重合条件とスケール
付着、粗粒量およびゾル粘度などの塩化ビニル樹脂の品
質特性、伝熱係数などの関係について鋭意詳細に検討し
た結果、本発明を完戊するに到った。
[Means for Solving the Problems] The present inventor has diligently studied in detail the relationship between the structure of a polymerization apparatus and polymerization conditions, and the quality characteristics of vinyl chloride resin such as scale adhesion, coarse particle amount and sol viscosity, and heat transfer coefficient. As a result of this study, we have completed the present invention.

本発明は、撹拌機を有して成り、重合装置の有効内径(
D)に対する有効高さ(H)の比(H/D)が4以上、
好ましくは5〜l5である塩化ビニルを含む単量体のミ
クロ懸濁重合法または乳化重合法に使用する重合装置を
提供する。
The present invention comprises a stirrer, and the effective inner diameter of the polymerization apparatus (
The ratio (H/D) of the effective height (H) to D) is 4 or more,
A polymerization apparatus is provided for use in microsuspension polymerization or emulsion polymerization of monomers containing vinyl chloride, preferably 5 to 15.

本発明におけるミクロ懸濁重合法および乳化重合法とは
、本明細書の従来の技術の箇所において説明した重合方
法を意味する。
The microsuspension polymerization method and emulsion polymerization method in the present invention refer to the polymerization methods described in the prior art section of this specification.

本発明の特に好ましい態様では、上記重合装置の有効内
径(D)に対する攪拌翼外周部直径(d)の比(d/ 
D )が0.6以上、好ましくは0.7〜0.9である
In a particularly preferred embodiment of the present invention, the ratio (d/
D) is 0.6 or more, preferably 0.7 to 0.9.

更に、本発明は、上述のH/D,好ましくはH/Dに加
えて上述のd/Dの条件を満足する重合装置を使用して
塩化ビニルをミクロ懸濁重合または乳化重合して塩化ビ
ニル樹脂、特にペースト用塩化ビニル樹脂を製造する方
法を提供する。
Further, the present invention provides vinyl chloride by micro-suspension polymerization or emulsion polymerization of vinyl chloride using a polymerization apparatus that satisfies the conditions of the above-mentioned H/D, preferably the above-mentioned d/D in addition to H/D. A method for producing resins, particularly vinyl chloride resins for pastes, is provided.

本発明の装置および方法を適用することにより、重合系
からの除熱能力が大きくなり、また、スケールの付着お
よび粗粒発生が少なくなり、ゾル粘度の良好なペースト
用塩化ビニル樹脂を短時間で重合することが可能となっ
た。
By applying the apparatus and method of the present invention, the ability to remove heat from the polymerization system is increased, scale adhesion and generation of coarse particles are reduced, and PVC resin for paste with good sol viscosity can be produced in a short time. It became possible to polymerize.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

重合装置の構造はスケールの付着および除去の点からで
きるだけ単純なものが好ましい。
The structure of the polymerization apparatus is preferably as simple as possible from the viewpoint of scale attachment and removal.

従って、本発明で使用される重合装置の形状としては重
合のために実質的に使用される部分の少なくとも大部分
が直胴の円筒形(即ち、塔型)であるのが好ましく、重
合装置の有効内径(D)に対する有効高さ(H)の比(
H/D)が4以上、好ましくは5〜l5が採用される。
Therefore, it is preferable that the shape of the polymerization apparatus used in the present invention is such that at least the majority of the portion substantially used for polymerization is a straight cylindrical shape (i.e., tower-shaped). Ratio of effective height (H) to effective inner diameter (D) (
H/D) is 4 or more, preferably 5 to 15.

有効高さとは、通常、重合装置に液を供給した場合の液
深を意味するものとして使用しているが、重合装置の直
胴部の長さと考えてもよい。
The effective height is usually used to mean the depth of liquid when liquid is supplied to the polymerization apparatus, but it may also be considered to be the length of the straight body of the polymerization apparatus.

一般に、H/Dの大きな長尺の重合装置は、上下方向の
混合が不充分であるので、連続反応では採用されること
はあっても、回分式反応ではほとんど使用されることは
ない。
In general, long polymerization apparatuses with a large H/D have insufficient mixing in the vertical direction, so although they may be employed in continuous reactions, they are rarely used in batch reactions.

その理由としては、 ■上下方向の混合が不十分であることにより反応系が不
均一となること、および ■反応系の瓜度制御が困難であること が挙げられる。
The reasons for this are: (1) the reaction system becomes non-uniform due to insufficient mixing in the vertical direction; and (2) it is difficult to control the sharpness of the reaction system.

しかしながら、塩化ビニルのミクロ懸濁重合では、予め
均質化された粒径lμm程度に分散された比較的安定な
ラテックスを緩やかに撹拌しながら重合させるため、H
/Dが4以上の重合装置を用いた場合でも、重合装置の
上下部分で粒子径の分布が変化することなく品質上は問
題が無いことが発明者の検討により判った。
However, in the micro-suspension polymerization of vinyl chloride, a relatively stable latex that has been homogenized and dispersed to a particle size of approximately 1 μm is polymerized while being gently stirred.
The inventor's studies have revealed that even when a polymerization apparatus with /D of 4 or more is used, the particle size distribution does not change in the upper and lower parts of the polymerization apparatus, and there is no problem in terms of quality.

また、乳化重合法では塩化ビニルを重合装置の下部から
連続的に追加し、塩化ビニルモノマーの浮力を利用して
重合装置の上下に均一に分散させかつ、開始剤や乳化剤
を重合装置の側面の上下の複数の追加口から供給するこ
とにより、上下方向の混合不足に伴う問題点を解消でき
ることが判った。従って、いずれの重合方法においても
H/Dを大きくしても、上記■の理由を解消できる。
In addition, in the emulsion polymerization method, vinyl chloride is added continuously from the bottom of the polymerization apparatus, and the buoyancy of the vinyl chloride monomer is used to uniformly disperse it above and below the polymerization apparatus, and the initiator and emulsifier are added to the sides of the polymerization apparatus. It has been found that the problem associated with insufficient mixing in the vertical direction can be solved by supplying from a plurality of upper and lower additional ports. Therefore, in any polymerization method, even if H/D is increased, the above reason (2) can be solved.

次に、上記■の理由について検討する。この問題点は、
H/Dが4以上の長尺重合装置を用いる場合、従来の制
御方式では重合装置の上下方向で温度分布が生じ、重合
度分布幅の広い粒子ができることである。
Next, we will discuss the reason for the above (2). This problem is
When using a long polymerization device with an H/D of 4 or more, the conventional control method causes a temperature distribution in the vertical direction of the polymerization device, resulting in the production of particles with a wide degree of polymerization distribution.

特に重合装置を大型化すると、単位容積当たりの除熱能
力が小さくなり、重合装置の内温が制御のバランス点か
らわずかに上昇すると、発熱量に対して除熱量が不足し
て内温かますます上昇するという、いわゆる不安定領域
で重合が進行するため、一旦温度分布が生じて重合装置
上部の温度が上昇すると、上部の液の比重が小さくなり
装置内で液の比重差が大きくなるので、重合装置内で上
下方向の液の混合がますます困難となり、最終的には暴
走反応を引き起こす危険がある。
In particular, when the polymerization equipment is enlarged, the heat removal capacity per unit volume decreases, and if the internal temperature of the polymerization equipment rises slightly from the control balance point, the amount of heat removed is insufficient compared to the calorific value, causing the internal temperature to rise. Polymerization proceeds in the so-called unstable region where the temperature rises, so once a temperature distribution occurs and the temperature at the top of the polymerization apparatus rises, the specific gravity of the liquid at the top decreases and the difference in specific gravity of the liquid within the apparatus increases. It becomes increasingly difficult to mix the liquids in the vertical direction within the polymerization apparatus, and there is a risk that a runaway reaction will eventually occur.

このような問題に対しては、重合装置のジャケットを分
割して重合装置の下部より上部をより冷却することによ
って自然対流による上下方向の混合流動を生じさせ、均
一な温度分布にすることが可能となることが判った。
To solve this problem, it is possible to divide the jacket of the polymerization apparatus and cool the upper part of the polymerization apparatus more than the lower part, thereby creating mixed flow in the vertical direction due to natural convection and achieving a uniform temperature distribution. It turned out that.

具体的には、重合装置内の温度を上下方向の少なくとも
2点で検出し、対応するジャケットを上下方向に少なく
とも2以上に分割し、それぞれ独立のループで温度制御
することが望ましい。
Specifically, it is desirable to detect the temperature inside the polymerization apparatus at at least two points in the vertical direction, to divide the corresponding jacket into at least two or more parts in the vertical direction, and to control the temperature in each independent loop.

同一容量の重合装置で比較するとH/Dが大きい程、単
位容積当たりの伝熱面積は大きくなるが、H/Dが20
以上になると、工業規模の重合装置ではレイアウト上の
問題やメンテナンス、重合装置の清掃が煩雑になるとい
う問題が生じるためH/Dは20以下、好ましくは15
以下である。
When comparing polymerization equipment with the same capacity, the larger the H/D, the larger the heat transfer area per unit volume.
If this is the case, H/D is less than 20, preferably 15, because in industrial-scale polymerization equipment, problems arise in terms of layout, maintenance, and cleaning of the polymerization equipment becomes complicated.
It is as follows.

本発明の重合装置で用いられる攪拌翼は、スケールの発
生が少なく、重合装置全体を均一に混合し、かつ伝熱の
よいものが好ましく、この条件を満足する翼形状として
は凹型翼、くし型翼、パドル翼、らせん翼などを例示で
き、特に限定されるものではない。
The stirring blade used in the polymerization apparatus of the present invention is preferably one that generates little scale, mixes the entire polymerization apparatus uniformly, and has good heat transfer.The blade shape that satisfies these conditions is a concave blade, a comb type. Examples include wings, paddle wings, spiral wings, etc., and are not particularly limited.

特に好ましい態様としては、重合装置内径と攪拌翼外周
直径の比(d/ D )が0.6以上であり、より好ま
しくは0.7〜0.9である。
In a particularly preferred embodiment, the ratio (d/D) between the inner diameter of the polymerization apparatus and the outer diameter of the stirring blade is 0.6 or more, more preferably 0.7 to 0.9.

d/Dが0.9以上では翼と重合装置壁との剪断により
スケールが増大して回転数が上げられず、逆に、d/D
が0.6未満では回転数を上げると翼付近の剪断により
スケールが増大し、伝熱係数を大きくできないためであ
る。
When d/D is 0.9 or more, the scale increases due to shear between the blades and the walls of the polymerization device, making it impossible to increase the rotational speed;
This is because if the rotation speed is less than 0.6, the scale increases due to shear near the blades and the heat transfer coefficient cannot be increased.

翼の断面形状としては平板、円筒形、楕円形などが用い
られ、翼の内部に冷媒が通液できるタイプが好ましい。
The cross-sectional shape of the blades may be flat, cylindrical, oval, etc., and preferably a type that allows refrigerant to pass through the inside of the blade.

バッフルは上下方向および半径方向の混合を改良し、か
つ伝熱面積を増大する目的でしばしば用いられるが、ペ
ースト用塩化ビニル樹脂の重合では、バッフル付近での
局部的剪断によりスケールの発生が壜加するため撹拌回
転数が上げられず、かえって伝熱効率が低下することが
あるため、バッフルの形状については攪拌翼の形状との
関係で決定することが大切である。
Baffles are often used to improve vertical and radial mixing and increase heat transfer area, but in the polymerization of PVC resin for pastes, localized shear near the baffles can increase scale formation. As a result, the stirring rotational speed cannot be increased, and the heat transfer efficiency may actually decrease. Therefore, it is important to determine the shape of the baffle in relation to the shape of the stirring blade.

本発明において用いられる単量体は塩化ビニルまたは塩
化ビニルを主体とした、これと共重合可能な単量体との
混合物(混合物中塩化ビニルは通常70重量%以上)か
ら選択される。従って、本明細書において「塩化ビニル
樹脂」なる語は、塩化ビニル単量体のみを重合すること
により得られる樹脂または塩化ビニルを主体として含む
単量体を重合することにより得られる樹脂を意味するも
のとして使用している。塩化ビニルと共重合可能な単量
体としては、エチレン、ブロビレンおよびn−ブテンの
ようなオレフィン、酢酸ビニル、プロピオン酸ビニル、
ラウリン酸ビニルおよびステアリン酸ビニルのようなビ
ニルエステル、アクリル酸、メタクリル酸およびイタコ
ン酸のような不飽和酸およびそのエステル、メチルビニ
ルエーテル、エチルビニルエーテル、オクチルビニルエ
ーテルおよびラウリルビニルエーテルのようなビニルエ
ーテル、マレイン酸およびフマール酸ならびにそれらの
無水物まrこはそれらのエステル、芳香族ビニル、不飽
和二トリルなどが挙げられる。
The monomer used in the present invention is selected from vinyl chloride or a mixture of vinyl chloride and a copolymerizable monomer (vinyl chloride in the mixture is usually 70% by weight or more). Therefore, in this specification, the term "vinyl chloride resin" means a resin obtained by polymerizing only vinyl chloride monomers or a resin obtained by polymerizing monomers mainly containing vinyl chloride. It is used as a thing. Monomers copolymerizable with vinyl chloride include olefins such as ethylene, brobylene and n-butene, vinyl acetate, vinyl propionate,
Vinyl esters such as vinyl laurate and vinyl stearate, unsaturated acids and their esters such as acrylic acid, methacrylic acid and itaconic acid, vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, octyl vinyl ether and lauryl vinyl ether, maleic acid and Examples include fumaric acid and its anhydrides, their esters, aromatic vinyls, unsaturated nitriles, and the like.

本発明において使用される乳化剤としては、アルキルス
ルホン酸塩、アルキルアリルスルホン酸塩、アルキルア
ルコール硫酸エステル塩、脂肪酸塩またはジアルキルス
ルホコハク酸塩のような通常の陰イオン系界面活性剤、
特にアルカリ金属塩、非イオン系界面活性剤として例え
ば高級脂肪酸のグリセリンエステル、グリコールエステ
ルまたはソルビタンエステル:高級アルコール縮音物、
高級脂肪酸縮合物、ポリプロピレンオキサイド縮合物な
どが挙げられる。
Emulsifiers used in the present invention include common anionic surfactants such as alkyl sulfonates, alkylaryl sulfonates, alkyl alcohol sulfate salts, fatty acid salts or dialkyl sulfosuccinates;
In particular, alkali metal salts, nonionic surfactants such as glycerol esters, glycol esters or sorbitan esters of higher fatty acids: higher alcohol condensates,
Examples include higher fatty acid condensates and polypropylene oxide condensates.

本発明のミクロ懸濁重合において使用される油溶性(単
量体に可溶な)重合開始剤としては、ペンゾイルパーオ
キサイド、p−クロロベンゾイルパーオキサイドおよび
2.4−ジクロロベンゾイルパーオキサイドなどの芳香
族ジアシルバーオキサイド、カブロイルパーオキサイド
、ラウロイルパーオキサイドおよび3,5.5−トリメ
チルへキサノルパーオキサイドなどの炭素数5〜17個
のアルキル基を有する脂肪族ジアシルバーオキサイド、
アゾビスイソブチロニトリルおよびアゾビスバレロニト
リルなどのアゾ化合物、t−プチルパーオキシピパレー
トなどの有機酸のパーオキシエステル、ジイソブロピル
パーオキシジカーボネートおよびジオクチルパーオキシ
ジカーボネートなどのパーオキシジカーボネートならび
にアセチルシクロへキシルスルホニルパーオキサイドな
どの公知の油溶性重合開始剤が挙げられる。これらは単
独または二種類以上の組合せてこれらの溶剤または塩化
ビニル単量体に溶解させて用いられる。
Oil-soluble (monomer soluble) polymerization initiators used in the microsuspension polymerization of the present invention include aromatic initiators such as penzoyl peroxide, p-chlorobenzoyl peroxide, and 2,4-dichlorobenzoyl peroxide. aliphatic diasilver oxides having an alkyl group having 5 to 17 carbon atoms, such as group diasilver oxides, cabroyl peroxides, lauroyl peroxides and 3,5,5-trimethylhexanol peroxides;
Azo compounds such as azobisisobutyronitrile and azobisvaleronitrile, peroxyesters of organic acids such as t-butylperoxypiparate, peroxydicarbonates such as diisopropylperoxydicarbonate and dioctylperoxydicarbonate and known oil-soluble polymerization initiators such as acetylcyclohexylsulfonyl peroxide. These may be used alone or in combination of two or more dissolved in these solvents or vinyl chloride monomers.

本発明の乳化重合法において用いられる水溶性重合開始
剤としては過酸化水素、過硫酸アンモニウム、過ホウ酸
ナトリウム、過硫酸カリウム、過硫酸ナトリウムのよう
な過酸化物を例示でき、油溶性重合開始剤としては、t
−プチルハイドロパーオキサイド、イソペンタンハイド
ロパーオキサイド、クメンハイドロバーオキサイド、t
−プチルイソプ口ピルベンゼンハイドロパーオキサイド
、ジイソプロピルベンゼンハイドロパーオキサイドのよ
うな有機ハイドロパーオキサイドを例示でき、更にこれ
らと例えば亜硫酸水素ナトリウム、チオ硫酸ナトリウム
、ピロ亜硫酸ナトリウム、ロンガリットなどの適当な水
溶性還元剤との併用系も使用できる。
Examples of water-soluble polymerization initiators used in the emulsion polymerization method of the present invention include peroxides such as hydrogen peroxide, ammonium persulfate, sodium perborate, potassium persulfate, and sodium persulfate. As, t
-butyl hydroperoxide, isopentane hydroperoxide, cumene hydroperoxide, t
Examples include organic hydroperoxides such as butyl isopylbenzene hydroperoxide and diisopropylbenzene hydroperoxide, together with suitable water-soluble reducing agents such as sodium bisulfite, sodium thiosulfite, sodium pyrosulfite, and Rongalite. A combination system can also be used.

本発明において使用されるその他の重合助剤としては、
セチルアルコールおよびラウリルアルコールなどの高級
アルコール、ラウリル酸、パルミチン酸およびステアリ
ン酸などの高級脂肪酸またはそのエステル、芳香族炭化
水素、高級脂肪族炭化水素、塩素化パラフィンのような
ハロゲン化炭化水素、ポリビニルアルコール、ゼラチン
、粒径凋節剤(硫酸ナトリウムおよび重炭酸ナトリウム
など)、連鎖移動剤、重合禁止剤などが挙げられる。こ
れらは単独または二種類以上を組合せて用いることがで
きる。
Other polymerization aids used in the present invention include:
Higher alcohols such as cetyl alcohol and lauryl alcohol, higher fatty acids or their esters such as lauric acid, palmitic acid and stearic acid, aromatic hydrocarbons, higher aliphatic hydrocarbons, halogenated hydrocarbons such as chlorinated paraffin, polyvinyl alcohol , gelatin, particle size reducing agents (such as sodium sulfate and sodium bicarbonate), chain transfer agents, polymerization inhibitors, and the like. These can be used alone or in combination of two or more.

また、均質化においては、一段または二段加圧式高圧ポ
ンプ、コロイドミル、遠心ポンプ、ホモミキサー、振動
式撹拌機、ノズルまたはオリフィス上りの高圧噴出およ
び超音波などの公知のホモジナイザーまたは方法を用い
ることができる。
In addition, for homogenization, known homogenizers or methods such as one- or two-stage high-pressure pumps, colloid mills, centrifugal pumps, homomixers, vibratory stirrers, high-pressure jets up nozzles or orifices, and ultrasonic waves may be used. I can do it.

重合反応は通常の方法に従って行われ、例えば重合温度
は40〜75℃であり、また重合用水の量は、重量で全
単量体に対して0.6〜3倍の範囲であり、乳化剤、重
合開始剤、その他の重合助剤の使用量も通常の量でよい
。なお、乳化剤、重合開始剤、重合助剤等が供給ライン
等に残るので、重合に使用する水の一部をこれらの水洗
除去に使用し、この水洗水を反応器内に導入してもよい
The polymerization reaction is carried out according to a conventional method, for example, the polymerization temperature is 40 to 75°C, the amount of water for polymerization is in the range of 0.6 to 3 times the weight of the total monomer, and an emulsifier, The amounts of the polymerization initiator and other polymerization aids used may also be the usual amounts. Note that since emulsifiers, polymerization initiators, polymerization aids, etc. remain in the supply line, etc., some of the water used for polymerization may be used to wash and remove these, and this washing water may be introduced into the reactor. .

更に、スケール付着を防止するために、予め、重合装置
壁面にスケール防止剤を塗布しておくことが望ましい。
Furthermore, in order to prevent scale adhesion, it is desirable to apply an anti-scale agent to the wall surface of the polymerization apparatus in advance.

[発明の効果] 本発明の効果は、従来の方法に比べて除熱能力が大きく
、安定な温度制御が得られるため重合時間が短縮され、
かつスケール付着や粗粒を増加させることなく、ゾル粘
度の良好なペースト用塩化ビニル樹脂の重合における生
産性向上が可能となることである。
[Effects of the Invention] The effects of the present invention are that the heat removal capacity is greater than that of conventional methods, and stable temperature control is obtained, so the polymerization time is shortened.
Moreover, it is possible to improve productivity in the polymerization of a vinyl chloride resin for paste having good sol viscosity without increasing scale adhesion or coarse particles.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

除熱能力を比較するため、H/Dの異なる有効容積1.
1+’の重合装置を用いた。実施例1〜6および比較例
1〜4はミクロ懸濁重合でジャケット最低温度を39〜
40℃、実施例7〜9ならびに比較例5および6は乳化
重合でジャケット最低温度を33〜34℃となるように
予め重合開始剤量を決めて重合した。
In order to compare the heat removal capacity, different effective volumes of H/D 1.
A 1+' polymerization apparatus was used. In Examples 1 to 6 and Comparative Examples 1 to 4, the minimum jacket temperature was 39 to
40°C, Examples 7 to 9 and Comparative Examples 5 and 6 were emulsion polymerized by determining the amount of polymerization initiator in advance so that the minimum jacket temperature was 33 to 34°C.

実施例! 1.2−の攪拌機付き分散槽にイオン交換水390kg
を仕込み、次いで予めイオン交換水60kgにラウリル
硫酸ナトリウム2 . 7 kgおよびのセチルアルコ
ール2 . 7 kgを80℃で溶解して常温まで冷却
した乳化剤水溶液およびα.α゜−アゾビスイソブチロ
バレロニトリル(ABVN)1 4 4gをトルエン0
.5Qに溶解した重合開始剤,@肢を加えてlO分間脱
気した後、塩化ビニル単量体450kgを仕込み、撹拌
しながら能力1 0m’/ Hrの遠心ポンプで60分
間、分散均質化した。
Example! 1.2-390 kg of ion-exchanged water in a dispersion tank with a stirrer
Then, 2.0 kg of sodium lauryl sulfate was added to 60 kg of ion-exchanged water in advance. 7 kg and 2.0 kg of cetyl alcohol. 7 kg of emulsifier aqueous solution dissolved at 80°C and cooled to room temperature, and α. α゜-azobisisobutyrovaleronitrile (ABVN) 1 4 4g toluene 0
.. After adding the polymerization initiator dissolved in 5Q and degassing for 10 minutes, 450 kg of vinyl chloride monomer was charged and dispersed and homogenized using a centrifugal pump with a capacity of 10 m'/Hr for 60 minutes while stirring.

次に、この分散液を、予めスケール防止剤を塗布して脱
気した直径0.65m,直胴部の高さ3,2 5 a+
(H/D = 5 )、ジャケット伝熱面積6.71I
1”、翼の外径5 2cm(d /D=0.8)のパド
ル翼を付設したステンレス製重合装置に移演し、その時
の装置内圧力よりI Kg/cm”だけ高くなるように
窒素で加圧し、撹拌しながら昇温して50℃で重合を行
った。撹拌回転数は2 0 r.p.m.であった。
Next, this dispersion was coated with a scale preventive agent in advance and degassed. The diameter of the dispersion was 0.65 m, and the height of the straight body part was 3.25 a+.
(H/D = 5), jacket heat transfer area 6.71I
Transferred to a stainless steel polymerization apparatus equipped with paddle blades of 1" and outer diameter of the blades of 5 to 2 cm (d/D=0.8), and heated with nitrogen so that the pressure inside the apparatus was 1 Kg/cm" higher than the pressure inside the apparatus at that time. The pressure was increased at 50°C, and the temperature was raised while stirring to carry out polymerization at 50°C. The stirring rotation speed was 20 r. p. m. Met.

装置内圧力が7Kg/ea+”Gまで低下した時点で未
反応塩化ビニル単量体を回収した。尚、装置内温度は上
下2点で検出し、ジャケットを2分割して各々独立に制
御した。
Unreacted vinyl chloride monomer was recovered when the pressure inside the apparatus decreased to 7 Kg/ea+''G.The temperature inside the apparatus was detected at two points, the upper and lower points, and the jacket was divided into two parts, each of which was independently controlled.

得られたラテックスの重合転化率、粗粒量、スケール量
およびゾル粘度を測定した。
The polymerization conversion rate, amount of coarse particles, amount of scale, and sol viscosity of the obtained latex were measured.

尚、粗拉量は、32メッシュ篩を通過し、100メッシ
ュ篩上に残留したラテックス中の樹脂量として測定した
(仕込んだ塩化ビニル単量体に対する重量パーセント)
The amount of rough ablation was measured as the amount of resin in the latex that passed through a 32 mesh sieve and remained on a 100 mesh sieve (weight percent based on the charged vinyl chloride monomer).
.

スケール量は、重合装置内に残留または付着したスケー
ルおよびラテックス払い出しラインに設けた10メッシ
ュ金網で捕集したスケールの合計量として測定した(仕
込んだ塩化ビニル単量体に対するパーセント)。
The amount of scale was measured as the total amount of scale remaining or attached in the polymerization apparatus and scale collected by a 10-mesh wire gauze provided in the latex discharging line (percentage relative to the charged vinyl chloride monomer).

ゾル粘度は、ラテックスをスブレイ乾燥機で52℃で乾
燥し、粉砕機で粉砕した樹脂100重量部に対し、ジオ
クチルフタレート(DOP)65重量部を加えて、らい
かい機で混練したゾルを30℃の恒温槽で1時間保持し
た後、BM粘度計で測定した粘度(センチボイズ)であ
る。
The sol viscosity was determined by drying the latex at 52°C in a Soubray dryer, adding 65 parts by weight of dioctyl phthalate (DOP) to 100 parts by weight of the resin that was ground in a grinder, and kneading the sol in a grinder at 30°C. This is the viscosity (centivoise) measured with a BM viscometer after being kept in a constant temperature bath for 1 hour.

実施例2〜5 実施例2、3、4および5において、ABVNの量をそ
れぞれ1 35g,  1 62g,  1 94g,
 207gとした。
Examples 2 to 5 In Examples 2, 3, 4, and 5, the amount of ABVN was 135 g, 162 g, 194 g, and
It was set to 207g.

また、それぞれ攪拌翼として外径20.8cm(d/D
=0.4)、3 1.2cm(d/D=0.6)、41
.6cm(d /D=0.8)、46.8cm(d/D
=0.9)の門型翼を付設した直径0.52m、直胴部
の高さ5.2a+(H/D=1 0)、ジャケット伝熱
面積8.31のステンレス製重合装置を用いた以外は実
施例lと同様の方法で分散均質化および重合を行った。
In addition, each stirring blade has an outer diameter of 20.8 cm (d/D
=0.4), 3 1.2cm (d/D=0.6), 41
.. 6cm (d/D=0.8), 46.8cm (d/D
A stainless steel polymerization apparatus with a diameter of 0.52 m, a straight body height of 5.2 a + (H/D = 10), and a jacket heat transfer area of 8.31 was equipped with gate-shaped wings of 0.9). Dispersion homogenization and polymerization were carried out in the same manner as in Example 1 except for this.

撹拌回転数はそれぞれ4 0 r.p.m.、30r.
p.a.、2 3 r.p.m.、2 1 r.p.m
.であった。
The stirring speed was 40 r.m. each. p. m. , 30r.
p. a. , 2 3 r. p. m. , 2 1 r. p. m
.. Met.

笈監鯉i ABVNの量を207g,外径36cmのらせん翼を撹
拌機として付設した直径0.45a+(d/D=0.8
)、直胴部の高さ6.7 5m(H/D= 1 5)、
ジャケット伝熱面積9.2m”のステンレス製重合装置
を用いた以外は実施例1と同様の方法で分散均質化およ
び重合を行った。
Kokankoi i The amount of ABVN is 207g, the diameter is 0.45a + (d / D = 0.8
), straight body height 6.75 m (H/D = 15),
Dispersion homogenization and polymerization were carried out in the same manner as in Example 1, except that a stainless steel polymerization apparatus with a jacket heat transfer area of 9.2 m'' was used.

比較例l 重合開始剤としてABVN8 1g、攪拌翼の外径32
cmの門型翼を付設した直径0.8m(d/D=0.4
)、直胴部の高さ2m(H/D=2.5)、伝熱面積5
.3m’のステンレス製重合装置を用いた以外は実施例
lと同様の方法で分散均質化および重合を行った。但し
、装置内温度はl点で制御した。
Comparative Example 1 1 g of ABVN8 as a polymerization initiator, outer diameter of stirring blade 32
diameter 0.8 m (d/D=0.4
), straight body height 2m (H/D=2.5), heat transfer area 5
.. Dispersion homogenization and polymerization were carried out in the same manner as in Example 1 except that a 3 m' stainless steel polymerization apparatus was used. However, the temperature inside the apparatus was controlled at point l.

撹拌回転数は3 0 r.p.m.であった。The stirring rotation speed was 30 r. p. m. Met.

星4鮭4 重合開始剤としてABVN1 1 3g、比較例lで用
いた重合装置に外径64cm(d/D=0.8)の門型
翼を攪拌翼として取り付けた以外は実施例lと同様の方
法で分散均質化および重合を行った。
Star 4 Salmon 4 Same as Example 1 except that 13 g of ABVN1 was used as a polymerization initiator and a portal blade with an outer diameter of 64 cm (d/D = 0.8) was attached as a stirring blade to the polymerization apparatus used in Comparative Example 1. Dispersion homogenization and polymerization were performed using the method described in .

撹拌回転数は1 7 r.p.m.であった。The stirring rotation speed is 17 r. p. m. Met.

比較例3 重合開始剤としてABVN 1 2 2g ,比較例l
で用いた重合装置に外径6.5cn+の円筒バッフル4
本を付設し、ジャケットおよびバッフルで冷却しながら
重合する以外は実施例lと同様の方法で分散均質化およ
び重合を行った。撹拌回転数は30 r.p劃.であっ
た。
Comparative Example 3 ABVN 1 2 2 g as a polymerization initiator, Comparative Example 1
A cylindrical baffle 4 with an outer diameter of 6.5 cn+ was installed in the polymerization apparatus used in
Dispersion homogenization and polymerization were carried out in the same manner as in Example 1, except that a book was attached and polymerization was carried out while cooling with a jacket and baffles. The stirring rotation speed was 30 r. p. Met.

比較例4 ABVNの量を194gとし、比較例1で用いた重合装
置を用いて実施例lと同様の方法で重合を開始した。撹
拌回転数は3 0 r.p.m.であった。
Comparative Example 4 The amount of ABVN was 194 g, and polymerization was started in the same manner as in Example 1 using the polymerization apparatus used in Comparative Example 1. The stirring rotation speed was 30 r. p. m. Met.

但し、重合開始後、2時間目から回収前まで重合装置の
ラテックスを抜出してダイヤフラムボンプを経由して伝
熱面積1.5m’の二重管式熱交換器(外部クーラ)で
、約1 5 0 0 0 kcal/Hrの熱量を除去
して重合装置へ戻しながら、重合温度をジャケットで温
度コントロールして重合を行った。
However, from the second hour after the start of polymerization until before recovery, latex from the polymerization apparatus is extracted and passed through a diaphragm pump to a double-tube heat exchanger (external cooler) with a heat transfer area of 1.5 m. Polymerization was carried out by controlling the polymerization temperature with a jacket while removing 0 0 0 kcal/Hr of heat and returning it to the polymerization apparatus.

重合終了後に装置などを点検した結果、ポンプ、熱交換
器およびラテックス配管内に多量のスケールが認められ
た。
Upon inspection of the equipment after polymerization, a large amount of scale was found inside the pump, heat exchanger, and latex piping.

実施例1〜6および比較例l〜4の結果を第1表に示す
The results of Examples 1 to 6 and Comparative Examples 1 to 4 are shown in Table 1.

実施例7 実施例lで用いた重合装置にイオン交換水390kg,
0.3μ種子ラテックスllkg(固形分として)、ラ
ウリル硫酸ナトリウム120g1ロンガリッ}7 6.
5g − FeSO4・7HtO  O.0 2 2g
を仕込み、内圧が25mmHgになるまで真空ポンプで
減圧した後、塩化ビニル単量体22.5kgを初期に仕
込み、6 0 r.p.m.で撹拌しながら昇温した。
Example 7 390 kg of ion-exchanged water was added to the polymerization apparatus used in Example 1.
0.3 μ seed latex 1 kg (as solid content), sodium lauryl sulfate 120 g 1 Rongarit}7 6.
5g - FeSO4.7HtO O. 0 2 2g
was charged and the pressure was reduced using a vacuum pump until the internal pressure reached 25 mmHg, then 22.5 kg of vinyl chloride monomer was initially charged and the temperature was increased to 60 r.p.m. p. m. The temperature was raised while stirring.

装置温度が40℃に達した時点で過酸化水素0.05%
水溶液を最初の3時間は5.4(2/Hr, 4時間目
までは2.772/Hr, 5時間目までは!.54f
/Hr,5時間目以降は1.34Q/Hrとなるように
、液面の変化に合わせ重合装置の上下方向に設けられた
3点の追加口から液相郎に均等に追加した。
Hydrogen peroxide 0.05% when the device temperature reaches 40℃
The aqueous solution is 5.4 (2/Hr for the first 3 hours, 2.772/Hr for the 4th hour, and 54f for the 5th hour.
/Hr, and after the 5th hour, it was added evenly to the liquid so as to be 1.34Q/Hr from three additional ports provided in the vertical direction of the polymerization apparatus according to changes in the liquid level.

同時に残りの塩化ビニル単量体427.5kgを重合装
置の下部から内径4叩のノズルを通し、予め予測した重
合転化率曲線から求めた塩化ビニルlLffi体追加速
度に従って塩化ビニル追加しながら40℃で重合した。
At the same time, the remaining 427.5 kg of vinyl chloride monomer was passed through a nozzle with an inner diameter of 4 mm from the bottom of the polymerization apparatus, and the temperature was increased at 40°C while adding vinyl chloride according to the vinyl chloride lLffi addition rate determined from the polymerization conversion curve predicted in advance. Polymerized.

重合中、1時間毎にラテックスをサンプリングし、塩化
ビニル単量体の仕込総量が重合転化率より15%以上、
20%以下となるように追加速度を修正した。
During polymerization, the latex was sampled every hour, and the total amount of vinyl chloride monomer charged was 15% or more than the polymerization conversion rate.
The additional speed has been corrected so that it is less than 20%.

更に、ドデシルベンゼン硫酸ナトリウムの5%水廖液4
0.5Qを重合開始後2時間目から8時間目まで6.7
512/Hrで等速追加した。重合時間10.5時間目
で過酸化水素の供給を停止し、未反応塩化ビニル単量体
を回収した。
Furthermore, 5% aqueous solution of sodium dodecylbenzene sulfate 4
0.5Q from 2 hours to 8 hours after the start of polymerization 6.7
Addition was made at a constant speed of 512/Hr. At 10.5 hours of polymerization time, the supply of hydrogen peroxide was stopped, and unreacted vinyl chloride monomer was recovered.

哀監鯉4 実施例5で用いた重合器装置用い実施例7と同じ方法で
重合を行った。
Aikan carp 4 Polymerization was carried out in the same manner as in Example 7 using the polymerization vessel used in Example 5.

但し、過酸化水素はO.l%水溶液を最初の2時間は4
.512/Hr、3時間目までは2.2512/Hr,
4時間目までは1.29Q/Hr,4時間目以降は1.
1212/Hrで追加し、ドデシルベンゼン硫酸ナトリ
ウムの5%水溶液を1.5時間目から6時間目まで9Q
/Hrで等速追加した(総量40.512)。
However, hydrogen peroxide is O. 1% aqueous solution for the first 2 hours.
.. 512/Hr, 2.2512/Hr until the 3rd hour,
1.29Q/Hr until the 4th hour, 1.29Q/Hr after the 4th hour.
Add 5% aqueous solution of sodium dodecylbenzene sulfate at 9Q from 1.5 hours to 6 hours.
/Hr at a constant speed (total amount 40.512).

重合開始後8時間目で過酸化水素の供給を停止し、未反
応塩化ビニル単量体を回収した。撹拌回転数は6 3 
r.p.m.であった。
Eight hours after the start of polymerization, the supply of hydrogen peroxide was stopped, and unreacted vinyl chloride monomer was recovered. Stirring speed is 6 3
r. p. m. Met.

実施例9 実施例6で用いた重合装置を用い、実施例8と同じ方法
で重合を行った。撹拌回転数は75r.p.l.であっ
た。
Example 9 Polymerization was carried out in the same manner as in Example 8 using the polymerization apparatus used in Example 6. The stirring rotation speed was 75r. p. l. Met.

塩蝶鯉i 比較例1で用いた重合装置を用い、実施例7と同じ方法
で重合を行った。
Salt butterfly carp i Polymerization was carried out in the same manner as in Example 7 using the polymerization apparatus used in Comparative Example 1.

但し、過酸化水素は、0,05%水溶液を最初の4時間
は1.812/Hr, 7時間目までは0.912/H
r,9時間目までは0.5212/Hr, 9時間目以
降は0.4412/Hrで追加し、ドデシルベンゼン硫
酸ナトリウムの5%水溶液を重合開始後2、′5時間目
から13時間目まで3.86Q/Hrで等速追加した(
総量40.512)。
However, for hydrogen peroxide, use a 0.05% aqueous solution at 1.812/Hr for the first 4 hours and 0.912/Hr until the 7th hour.
r, 5% aqueous solution of sodium dodecylbenzene sulfate was added at 0.5212/Hr until the 9th hour, and 0.4412/Hr after the 9th hour, from the 2nd and 5th hour to the 13th hour after the start of polymerization. Added constant velocity at 3.86Q/Hr (
Total amount 40.512).

重合開始後18時間目で過酸化水素の供給を停止し未反
応塩化ビニル単量体を回収した。撹拌回転数は9 0 
r.p.m.であった。
The supply of hydrogen peroxide was stopped 18 hours after the start of polymerization, and unreacted vinyl chloride monomer was recovered. Stirring speed is 90
r. p. m. Met.

塩4鯉彰 比較例lで用いた重合装置を用い、実施例8と同じ重合
処方で重合を行った。
Salt 4 Koiaki Polymerization was carried out using the same polymerization apparatus as used in Comparative Example 1 and the same polymerization recipe as in Example 8.

但し、重合装置の頂部に付設した伝熱面積3m”のりフ
ラックスコンデンサにより、重合開始後1時間目から8
時間目まで除去熱量を10.000〜l 5 , O 
O O kcal/Hrに調節して重合した。
However, a glue flux condenser with a heat transfer area of 3 m attached to the top of the polymerization apparatus allows
The amount of heat removed is 10.000 to 15,000
Polymerization was carried out while adjusting the temperature to O kcal/Hr.

重合開始後8時間目で過酸化水素の供給を停止し未反応
塩化ビニル単量体を回収した。撹拌回転数は9 0 r
.p.m.であった。
Eight hours after the start of polymerization, the supply of hydrogen peroxide was stopped and unreacted vinyl chloride monomer was recovered. Stirring speed is 90 r
.. p. m. Met.

実施例7〜9ならびに比較例5および6の結果を第2表
に示す。
The results of Examples 7 to 9 and Comparative Examples 5 and 6 are shown in Table 2.

Claims (1)

【特許請求の範囲】 1、撹拌機を有して成り、有効内径(D)に対する有効
高さ(H)の比(H/D)が4以上、好ましくは5〜1
5である塩化ビニルを含む単量体のミクロ懸濁重合法ま
たは乳化重合法に使用する重合装置。 2、有効内径(D)に対する攪拌翼外周部直径(d)の
比(d/D)が0.6以上、好ましくは0.7〜0.9
である請求項1記載の重合装置。 3、請求項1または2記載の重合装置を使用して塩化ビ
ニルを含む単量体をミクロ懸濁重合または乳化重合して
塩化ビニル樹脂を製造する方法。
[Claims] 1. It comprises a stirrer, and the ratio (H/D) of the effective height (H) to the effective inner diameter (D) is 4 or more, preferably 5 to 1.
5. A polymerization device used for micro-suspension polymerization or emulsion polymerization of monomers containing vinyl chloride. 2. The ratio (d/D) of the outer peripheral diameter (d) of the stirring blade to the effective inner diameter (D) is 0.6 or more, preferably 0.7 to 0.9.
The polymerization apparatus according to claim 1. 3. A method for producing a vinyl chloride resin by carrying out micro-suspension polymerization or emulsion polymerization of a monomer containing vinyl chloride using the polymerization apparatus according to claim 1 or 2.
JP1241585A 1989-09-18 1989-09-18 Vinyl chloride resin polymerization apparatus and manufacturing method Expired - Fee Related JP2685597B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1241585A JP2685597B2 (en) 1989-09-18 1989-09-18 Vinyl chloride resin polymerization apparatus and manufacturing method
US07/583,407 US5169918A (en) 1989-09-18 1990-09-17 Polymerization apparatus having an effective height/effective inner diameter ratio of at least 4 and a circumferential agitative diameter/effective inner ratio diameter of from 0.7 to 0.9
KR1019900014648A KR100191378B1 (en) 1989-09-18 1990-09-17 Process for producing vinyl chloride resin
DE69030413T DE69030413T2 (en) 1989-09-18 1990-09-18 Process for the production of vinyl chloride resin
EP95109549A EP0688797A3 (en) 1989-09-18 1990-09-18 Polymerization apparatus and process for the microsuspension or emulsion polymerization of vinyl chloride
EP90117929A EP0421184B1 (en) 1989-09-18 1990-09-18 Process for producing vinyl chloride resin
CN90107830A CN1039336C (en) 1989-09-18 1990-09-18 Polymerization apparatus and process for producing vinyl chloride resin
US07/885,686 US5278262A (en) 1989-09-18 1992-05-19 Polymerization apparatus and batch-wise process for producing vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1241585A JP2685597B2 (en) 1989-09-18 1989-09-18 Vinyl chloride resin polymerization apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JPH03103408A true JPH03103408A (en) 1991-04-30
JP2685597B2 JP2685597B2 (en) 1997-12-03

Family

ID=17076501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1241585A Expired - Fee Related JP2685597B2 (en) 1989-09-18 1989-09-18 Vinyl chloride resin polymerization apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP2685597B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140205A (en) * 1991-11-21 1993-06-08 Kanegafuchi Chem Ind Co Ltd Production of vinyl chloride resin
JPH06287203A (en) * 1993-03-31 1994-10-11 Nippon Zeon Co Ltd Production of vinyl chloride resin
JP2008215845A (en) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp Fuel property detector for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589301A (en) * 1978-12-05 1980-07-05 Wacker Chemie Gmbh Polymerization autoclave

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589301A (en) * 1978-12-05 1980-07-05 Wacker Chemie Gmbh Polymerization autoclave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140205A (en) * 1991-11-21 1993-06-08 Kanegafuchi Chem Ind Co Ltd Production of vinyl chloride resin
JPH06287203A (en) * 1993-03-31 1994-10-11 Nippon Zeon Co Ltd Production of vinyl chloride resin
JP2008215845A (en) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp Fuel property detector for vehicle

Also Published As

Publication number Publication date
JP2685597B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US4125574A (en) Process and apparatus for the continuous production of vinyl chloride polymers in aqueous emulsion
US4464517A (en) Process for the suspension polymerization of vinyl chloride
KR100638631B1 (en) agitator wing and agitator and fabricating method of polymer using thereof
US5169918A (en) Polymerization apparatus having an effective height/effective inner diameter ratio of at least 4 and a circumferential agitative diameter/effective inner ratio diameter of from 0.7 to 0.9
JP4608701B2 (en) Emulsion polymerization process and reactor for the process
JPH03103408A (en) Device and method for preparing vinyl chloride resin
JP3389629B2 (en) Method for producing vinyl chloride resin
KR100634988B1 (en) Process for preparing vinyl chloride paste resin
US4228268A (en) Process for polymerizing homogenized vinyl chloride emulsion which had been pre-dispersed
JPH10265511A (en) Production of vinyl chloride-based polymer
JP3645406B2 (en) Vinyl chloride polymer latex for paste processing and method for producing the same
JP2002128805A (en) Method of preparing dispersion and method of manufacturing polyvinyl chloride paste resin
JPH0597908A (en) Polymerization of vinyl chloride
JPH05140205A (en) Production of vinyl chloride resin
JP3848955B2 (en) Method for producing vinyl chloride polymer
JPH055007A (en) Production of vinyl chloride polymer
JPH04154807A (en) Production of vinyl chloride polymer
JPH0525204A (en) Suspension polymerization method of vinyl chloride monomer
JPH06107710A (en) Production of vinyl chloride polymer
JPH01289802A (en) Preparation of polymer bead
JPH07179502A (en) Polymerization of vinyl chloride monomer
JPH11279208A (en) Production of vinyl chloride-based polymer latex
JP2003335802A (en) Process for producing vinyl chloride-based polymer latex for paste processing
JPH10237114A (en) Continuous suspension polymerization of vinyl chloride-based monomer
JPH10120707A (en) Polymerization of vinyl chloride-based resin

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees