JPH03103406A - Preparation of linear alpha-olefin - Google Patents

Preparation of linear alpha-olefin

Info

Publication number
JPH03103406A
JPH03103406A JP23956989A JP23956989A JPH03103406A JP H03103406 A JPH03103406 A JP H03103406A JP 23956989 A JP23956989 A JP 23956989A JP 23956989 A JP23956989 A JP 23956989A JP H03103406 A JPH03103406 A JP H03103406A
Authority
JP
Japan
Prior art keywords
compound
catalyst
ethylene
polymerization reaction
reaction product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23956989A
Other languages
Japanese (ja)
Other versions
JP2761544B2 (en
Inventor
Yasushi Shiraki
安司 白木
Kenichi Ueda
憲一 上田
Takao Tamura
隆生 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP23956989A priority Critical patent/JP2761544B2/en
Publication of JPH03103406A publication Critical patent/JPH03103406A/en
Application granted granted Critical
Publication of JP2761544B2 publication Critical patent/JP2761544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To prepare the subject highly pure oligomer extremely reduced in the contamination of organic halides by subjecting a polymerization reaction product to a specific catalyst-deactivating treatment, the polymerization reaction product being prepared by polymerizing ethylene in the presence of a catalyst comprising a Zr compound and an organic Al compound. CONSTITUTION:Ethylene is first polymerized in the presence of a catalyst comprising a Zr compound and an organic Al compound. The prepared linear alpha- olefin-containing polymerization solution is mixed with a deactivating agent (preferably water or alcohol) against the Zr compound in an amount of 0.5-3.5 mole times that of the Zr compound. After the unreacted ethylene is removed, the reaction product solution is mixed with a basic deactivating agent (e.g. ammonia and/or an amine) to perfectly deactivate the catalyst. ZrCl4 and ethylsesquichloride are employed as the Zr compound and the organic Al compound, respectively, in the catalyst and further the catalysts are preferably combined with thiophene.

Description

【発明の詳細な説明】 [産業上の利用分野] コノ発明は、線状α−オレフィンの製造方法に関し、さ
らに詳しく言うと,エチレンオリゴマーである線状α−
オレフィンを高純度で製造する方法に関する. [従来の技術と発明が解決しようとする課題]線状α−
才レフィンは、ポリオレフィンの製造分野における改質
用コモノマーとして,あるいは,アルコール化すること
により可塑剤や界面活性剤として有用である. かかる線状α−オレフィンは、四塩化チタンとエチルア
ルミニウムジクロライドとからなる2成分系の触媒や,
この系に第3戊分を添加してなる31rF.分系の触媒
の存在下でエチレンをオリゴマー化することによって製
造することができる.また,近年になって,更に活性の
高い触媒として,上記チタン化合物に代えて、ジルコニ
ウム((Zr)化合物を用いた2或分系の触媒が提案さ
れている.例えば、特開昭58− 109428号公報
,特公昭5G− 30042号公報,特開昭58− 2
01729号公報、特開昭58− 113138号公報
にはそれぞれジルコニウム化合物とアルミニウム化合物
との2r&分系触媒がそれぞれ開示されている. また、米国特許第4,488,815号には、ジルコニ
ウム化合物とアルミニウム化合物との2t分系触媒の活
性を高めるために、触媒の第3戒分としてルイス塩基で
ある第3級アミン、第2級アミン,エーテル、ホスフィ
ンオキサイド、アルキルまたはアリールホスフェート、
スルホキシドなどを添加してなる触媒が開示されている
. そして、従来から.&l状α−才レフィンの製造方法に
おいては、製品純度の向上が問題になっている. 通常,線状α−才レフィンの純度を向上させるには,重
合条件として低温度、高エチレン圧力にすれば良いこと
が知られている.具体的には100 〜130℃の低温
度条件、30 〜80kg/cm2Gの高圧条件が設定
されている. しかしながら,重合反応後に未反応エチレンを有効に回
収することも、線状α−オレフィンの工業的製造方法に
要求されることであり、この要求項目に対して、重合反
応後にθ〜30kg/cm2Gの定圧に維持されたフラ
ッシャーに重合反応生戒物を移送して未反応エチレンを
回収する手法が採用される. その結果、前記フラッシャー内でさらに副反応が進行す
るために、製品純度が低下すると言う問題を生じる. この問題を解消するために、重合反応生戊液のフラッシ
ャー内での滞留時間を短縮すると良いのであるが、純度
の低下がないような短時間の滞留時間で未反応エチレン
を回収することのできるフラッシャーを設計するのは困
難である.この発明の目的は、従来の前記問題点を解消
し、エチレシをオリゴマー化して線状α−オレフィンを
製造する方法において、高純度の線状α−才レフィンを
製造する方法を提供することにある. [課題を解決するための手段] 前記課題を解決するための本発明は、ジルコニウム化合
物と有機アルミニウム化合物とから得られる触媒の存在
下にエチレンを重合して得られる、線状α一才レフィン
を含有する重合反応生戊液に、先づジルコニウム化合物
を失活させる失活剤を、前記ジルコニウム化合物に対し
て0.5〜3,5モル,倍の割合で添加した後、未反応
エチレンを除去し、次いで塩基性失活剤を添加すること
を特徴とする線状α一才レフィンの製造方法である. 本発明においては、ジルコニウム化合物と有機アルミニ
ウム化合物とから得られる触媒の存在下にエチレンを重
合して得られる、線状α−才レフィンを含有する重合反
応生戊液中の触媒を失活させる手順が重要である. 以下. fff合反応生成液およびその重合反応生戒液
中の触媒の失活手順について順に説明する.一重合反応
生成液一 この発明の方法を適用するのに好適な重合反応生戊液は
、ジルコニウム化合物と有機アルミニウム化合物とから
得られる触媒の存在下に、エチレンを重合して得られる
重合反応生戊液であれば、前記ジルコニウム化合物と有
機アルミニウム化合物とから得られる2或分系の触媒の
存在下に重合して得られる重合反応生戊液であっても良
いのであるが、本発明の効果を良く奏することのできる
重合反応生戊液は、前記ジルコニウム化合物と有機アル
ミニウム化合物とルイス塩基とから得られる3成分系の
触媒の存在下に重合して得られる重合反応生成液である
. ■ジルコニウム化合物 この発明の方法に使用することのできる前記ジルコニウ
ム化合物は、次式 Z rXa As−a         [11(ただ
し式中、式中XおよびAは同一であっても異なっていて
も良く,それぞれ、Cl、Br、または工を表わす.ま
た、aは0〜4の整数を表わす.)で表わすことができ
る. 前記式[11で示されるハロゲン化ジルコニウムの具体
例として、ZrCla .ZrBra、ZrIa ,Z
rBrClx .ZrBr2 Cfl等を挙げることが
できる.これらの中でも、特にZrclaが好ましい.
なお、これらは,一種単独で使用しても、二種以上を組
み合わせて使用してもよい. この発明の方法における有機アルミニウム化合物として
は、次式 AJI Rl.5 Q+.5        [2](
式中、Rは炭素数1〜20のアルキル基を表わし、Qは
Cl、Br、またはIを表わす.なお、前記式は、AM
2R3 Q3によって表わすこともできる.)で表わさ
れるアルキルアルミニウムセスキハライドおよび/また
は次式: A文Rb Q’3−b        [3](式中、
R′およびQ′は、それぞれ前記Rおよび前記Qと同様
の意味を表わす.また、bは1〜3の整数を表わす.た
だし、R′およびQ′はそれぞれ同一のものであっても
、異なったものであってもよい.)で表わされるアルキ
ルアルミニウム化合物を挙げることができる. 前記第【21式で示されるアルキルアルミニウムセスキ
ハライドは,前記第【21式中において、RおよびQが
それぞれ前記の条件を満足するものであれば、特に制限
はなく、具体例として、たとえば、メチルアルミニウム
セスキクロライド、メチルアルミニウムセスキブロマイ
ド、エチルアルミニウムセスキクロライド、エチルアル
ミニウムセスキプロマイド、エチルアルミニウムセスキ
アイオダイド、エチルアルミニウムブロムクロライド、
プロビルアルミニウムセスキクロライド、インプロビル
アルミニウムセスキクロライド、ブチルアルミニウムセ
スキクロライド、イソブチルアルミニウムセスキクロラ
イド、ペンチルアルミニウムセスキクロライド,オクチ
ルアルミニウムセスキクロライド、等を挙げることがで
きる.これらの中でも,Rとして,メチル基,エチル基
、プロビル基,ブチル基等が好ましく、特にエチル基が
好ましい. Qとしては.Clが好ましい. 具体的には,エチルアルミニウムセスキクロライドを好
適例として挙げることができる.なお、これらのアルキ
ルアルミニウムハライドは,一種単独で使用しても、二
種以上を組み合わせて使用してもよい. 前記第〔31式で示されるアルキルアルミニウム化合物
は,前記【31式中のR′およびQ′が前記の条件を満
足するものであれば特に制限されるものではなく、具体
例として、たとえば、トリエチルアルミニウム、トリエ
チルアルミニウム、トリプロビルアルミニウム、トリイ
ンブロビルアルミニウム、トリブチルアルミニウム、ト
リイソブチルアルミニウム、トリヘキシルアルミニウム
、トリオクチルアルミニウム、ジェチルアルミニウムブ
ロマイド、ジェチルアルミニウムクロライド、ジエチル
アルミニウムアイオダイド、エチルアルミニウムジブロ
マイド、エチルアルミニウムジクロライド,エチルアル
ミニウムジアイオダイド等を挙げることができる. もっとも、前記第[31式で示される化合物の中でも、
bが3または2であるものが好ましい.第【31式中、
R′としては、エチル基、プロビル基、ブチル基、イソ
ブチル基等が好ましく、特にエチル基が好ましい. Q′としては、C文が好ましい. 具体的には、たとえば、トリエチルアルミニウム、ジエ
チルアルミニウムクロライド、エチルアルミニウムジク
ロライドが好適である.なお、これらのアルキルアルミ
ニウム化合物は、一種単独で、あるいは二種以上を組み
合わせて、有機アルミニウム化合物として使用すること
ができる. 本発明の方法に使用することのできる前記ルイス塩基と
しては、チオエーテル類,二硫化アルキル類、チ才フェ
ン類、チオ尿素、スルフィド類、ホスフィン類等を挙げ
ることができる.前記チオエーテル類としては、たとえ
ば、硫化ジメチル,I&化ジエチル、硫化ジプロピル、
硫化ジヘキシル、硫化ジシクロヘキシル、ジフェニルチ
オエーテル等が挙げられる. 前記二硫化アルキル類としては、たとえば二硫化ジメチ
ル[(CH3 )2 S2 ] .二硫化ジェチル,二
硫化ジプロビル、二硫化ジブチル、二硫化ジヘキシル、
二硫化ジシクロヘキシル、二硫化エチルメチル等が挙げ
られる. 前記チオフェン類としては、チオフェン、2−メチルチ
オフェン、3−メチルチオフェン、2.3−ジメチルチ
オフェン、2−エチルチ才フェン、ペンゾチオフェン、
テトラヒドロチオフェン、ペンゾチオフェン等が挙げら
れる. 前記スルフィド類としては、メチルスルフィド、エチル
スルフィド、プチルスルノイド等が挙げられる. 前記ホスフィン類としては、たとえば、トリフェニルホ
スフィン、トリエチルホスフィン、トリブチルホスフォ
ン、トリプロピルホスフィン、トリオクチルホスフィン
、トリシクロヘキシルホスフィン等を挙げることができ
る. 前記第1級アミン類としては,たとえば、メチルアミン
、エチルアミン、プロビルアミン,プチルアミン、ベン
チルアミン、ヘキシルアミン、シクロヘキシルアミン,
オクチルアミン,デシルアミン、アニリン、ペンジルア
ミン、ナフチルアミン,トリメチルアミン、トリエチル
アミン、トリブチルアミン、トリフェニルアミン、ピリ
ジン、ビコリン等の有機アミン類を挙げることができる
. これらの化合物は、一種単独で用いても、二種以上を組
み合わせて用いてもよい. 前記様々のルイス塩基の中でも、二硫化ジメチル,チオ
フェン、チオ尿素、トリフェニルホスフィン、トリオク
チルホスフィン、アニリン等が好ましく,さらにはチオ
フェンが特に好ましい.この発明の方法において、前述
のように本発明の効果を良く奏することのできる重合反
応生戊液を与える触媒としては、ジルコニウム化合物と
宥機アルミニウム化合物とルイス塩基とから得られる3
戊分系の触媒が好ましい. もっとも、前記有機アルミニウム化合物として特に前記
アルキルアルミニウムセスキハライドとアルキルアルミ
ニウム化合物との混合物を選択し、この混合物とジルコ
ニウム化合物と前記ルイス塩基とを組み合せた触媒、な
らびに前記ジルコニウム化合物と前記アルキルアルミニ
ウムセスキハライドと前記ルイス塩基とを組み合せた触
媒が好まし〈、特にアルキルアルミニウムセスキハライ
ドとトリアルキルアルミニウムとの混合物と、四塩化ジ
ルコニウム、チオフェンとからなる触媒、ならびにアル
キルアルミニウムセスキハライドと、四塩化ジルコニウ
ムと、チオフェンとからなる触媒が好ましい.と言うの
は、このような触媒を使用すると、オリゴマー化反応に
より生威する生成物中のワックス含有量をより一層低減
させることができると共にハロゲン化ジルコニウムのf
fi1当りの線状α−オレフィンの収量を大きくするこ
とができ、しかも、得られる線状α−オレフィンの純度
を高めることができるからである. 前記アルキルアルミニウムセスキハライドと前記アルキ
ルアルミニウム化合物との混合物を触媒戊分として使用
するときは,前記アルキルアルミニウムセスキハライド
と前記アルキルアルミニウム化合物との配合割合は、通
常、アルキルアルミニウム化合物が50モル%CAM基
準)以下,好ましくは30モル%CAN基準)以下に設
定するのが望ましい. この発明の方法においては、前記ジルコニウム化合物と
前記有機アルミニウム化合物と前記ルイス塩基とから触
媒を調製する方法については,特に制限がないが,前記
ジルコニウム化合物と前記有機アルミニウム化合物とを
、適当な溶媒の存在下で接触させて触媒調製液を生威さ
せ、エチレンの重合(オリゴマー化)に際し、あるいは
重合に先だって、この触媒調製液と前記ルイス塩基とを
混合することにより触媒液を調製するのが好ましい. この触媒調製液もしくは触媒液を調製する際に,適当な
温度(通常、たとえば、重合反応の温度より低い温度で
あり、具体的にはBO〜80℃の範囲)で10〜120
分間加熱して、触媒の活性化処理を行なうことが望まし
い. 前記溶媒としては,通常、不活性溶媒を使用することが
できる、そのような溶媒として、たとえば、ベンゼン、
トルエン、キシレン、クロロベンゼン,エチルベンゼン
、ジクロロベンゼン、クロロトルエン等の芳香族炭化水
素またはそのハロゲン置換体;ペンタン、ヘキサン、ヘ
プタン、オクタン,ノナン、デカン等の脂肪族パラフィ
ン類;シクロヘキサン,デカリンなどのナフテン系パラ
フィン類:ジクロロエタン、ジクロロブタン等のハロア
ルカン類等を挙げることができる.中でも、シクロヘキ
サン、ベンゼン、トルエン、キシレン、クロロベンゼン
が好まし〈、特にシクロヘキサン、ベンゼンが好ましい
. これらの溶媒は、一種単独でも,二種以上を組み合わせ
て用いることもできる. この発明における、前記ジルコニウム化合物、有機アル
ミニウム化合物、ルイス塩基および前記溶媒の配合割合
は,前記溶媒250mM当り、通常、ジルコニウム化合
物を0.Ol〜5ミリモル、好ましくは、0.03〜1
ミリモル,有機アルミニウム化合物を通常0.05〜1
5ミリモル、好ましくは0.06〜3ミリモル,ルイス
塩基を通常0.01〜20ミリモル、好ましくはルイス
塩基としてイオウ化合物(チオエーテル類、二硫化アル
キル類,チ才フェン類、チオ尿素,スルフィド類)を用
いる場合には、0.02〜20ミリモル,ルイス塩基と
してホスフィン類または第1級アミン類を用いる場合に
は0.0l〜5ミリモルである.また、前記ジルコニウ
ム化合物と有機アルミニウム化合物との配合比に関して
は、A9./Zr(モル比)を1−15ノ[囲に設定す
ることによって、さらに好ましい結果を得ることができ
る.また,有機アルミニウム化合物として、アルキルア
ルミニウムセスキハライドとトリアルキルアルミニウム
とを併用するときには、有機アルミニウム化合物全体に
対してトリアルキルアルミニウムを50モル%以下、好
ましくは30モル%以下にするのが良い. 重合に際して、前記触媒液は、必要に応じてさらに前記
溶媒と混合し、濃度を調製して用いることができる. このようにして調製した触媒もしくは触媒液とエチレン
あるいはエチレンを含有するガスとを前記溶媒の存在下
で所定の反応温度、反応圧力のもとに接触させることに
よって、エチレンの重合(オリゴマー化)が効率よく行
なわれる.使用するエチレンを含有するガスとしては,
エチレンを含有する不活性ガス、重合用精製エチレンガ
ス,高純度エチレン等の重合用エチレンガスを用いるこ
とができ、高純度エチレンが好ましい. 重合に際しての反応温度は、通常、50〜200℃,好
ましくは、 100〜150℃である.反応圧力には、
通常、5 kg/cm2G以上、好ましくは、25kg
/cm2G以上、さらに好ましくは30 〜80kg/
cm211;である.反応時間は,通常、5分間〜2時
間程度、好ましくは、15分間〜1時間程度である.な
お、触媒の調製から重合反応を終了するまでのすべての
操作は,空気、水分を避けて行なうことが望ましい. 触媒の調製は、たとえば、窒素、アルゴン等の不活性ガ
ス雰囲気下で行なうことが好適である. また、触媒調製原料、溶媒,反応原料等は、十分に乾燥
しておくのが望ましい.ただし、微量の水分、空気の共
存によって、触媒活性、生成物の選択率が増加する場合
もある. 以下に、この発明における、線状α−オレフィンを含有
する重合反応生戒液を得る方法の例を、より具体的に述
べる. すなわち、撹拌機付容器中において、アルゴン、窒素等
の不活性ガス、雰囲気下で、四塩化ジルコニウム等の前
記ジルコニウム化合物とエチルアルミニウムセスキクロ
リド等の前記有機アルミニウム化合物とをシクロヘキサ
ン等の前記溶媒に溶解した後、攪拌しながら、60〜8
0℃でlO〜120分間加熱して触媒調製液を調製する
. この触媒調製液の一部を前記不活性ガス雰囲気下で、別
の攪拌機付容器に導入し,シクロヘキサン等の前記溶媒
で稀釈し、室温付近でチオフェン等の前記ルイス塩基を
添加し、攪拌し触媒液を調製する.このようにして触媒
を調製することによって、四塩化ジルコニウム等のハロ
ゲン化ジルコニウムとアルキルアルミニウム化合物との
錯体触媒が形戊され、目的とする生或物の収率,&1状
α−才レフィンの純度を向上させることができる. 次に不活性ガス雰囲気下で、前記触媒を50〜60℃に
保った反応器中に圧輸送によって導入し、触媒液を攪拌
しながら、高純度エチレン等のエチレンを含有するガス
を導入して前記反応条件でオリゴマー化させる. 以上のようにして線状α−才レフィンを含有する重合反
応生成液を得る. 一触媒失活一 この発明においては、エチレンの重合(オリゴメリゼー
ション)によって得られる重合反応生成液に触媒失活剤
を添加して反応を停止させる場合の失活剤の添加方法が
重要である. すなわち、前述のようにして得られーる重合反応生戊液
を例えばフラッシャーに供給して未反応エチレンを回収
する前後において触媒失活を行なう. 未反応エチレンの回収前に行なう触媒の失活は,重合反
応生成液に、ジルコニウム化合物と反応可能な化合物を
添加することにより行なわれる. 前記ジルコニウム化合物と反応可能な化合物としては,
たとえば、水,アルコール、アミン等を使用することが
でき、特に好ましいのは水および/またはアルコールで
ある.アルコールとしては、一価アルコール、多価アル
コール、環状アルコール,非環状アルコール、脂肪族ア
ルコール、芳香族アルコール等である.これらのアルコ
ールは一種単独で用いても,二種以上を組み合わせて用
いてもよい.また水とアルコールとを組み合わせて用い
ることもできる. このジルコニウム化合物と反応可能な化合物の添加量は
、ジルコニウム化合物に対して0.5〜3.5モル倍量
である.ジルコニウム化合物1モルに対して失活剤とし
ての前記化合物0.5モル未満ではジルコニウム化合物
を失活させるのに十分でなく、失活剤が3.5モルを越
えると、活性時に発生したハロゲン化水素がα−オレフ
ィンに付加し、製品α−オレフィン中に有機ハロゲン化
化合物が混入し、製品の純度および製品の品質を低下さ
せるために好ましくない. この最初の触媒失活操作につき、温度および圧力に関す
る条件としては特に制限がないのであるが、温度として
50〜130℃、特に80〜110℃が好ましい. このような条件の下で重合反応生成液に前記失活剤とし
ての化合物を添加して、十分に混合する.この混合を行
なう時間としては,重合反応生戊液の容量にもよって一
概に規定することはできないが、通常1〜10分間であ
る. 重合反応生戊液からの未反応エチレンの回収は、重合反
応生成液の雰囲気圧力を、重合反応時の圧力よりも低く
することにより行なうことができる.前記最初の触媒失
活操作を重合反応時の圧力よりも低い圧力下で行なうの
であれば、前記最初の触媒失活操作と未反応エチレンの
回収操作を同時に行なうことができ、装置の簡略化を達
或することかできる. もっとも、フラッシャーに重合反応生戊液を供給する直
前に,失活剤を重合反応生成液に供給するのが,ジルコ
ニウム化合物の失活反応生成物の影響ξ避けるためにも
、好ましい. フラッシャーで未反応エチレンを回収した後、さらに塩
基性失活剤を添加して完全に触媒を失活させる.塩基性
化合物の添加により、生戒する線状α−オレフィンに触
媒由来のハロゲンが付加するのを防止し,線状α一才レ
フィンの純度をより一層向上させることができる. 前記塩基性失活剤としては,アンモニアおよび/または
アミン類を挙げることができる.アミン類としてはメチ
ルアミン、エチルアミン,プロビルアミン、ブチルアミ
ン、ベンチルアミン,ヘキシルアミン,シクロヘキシル
アミン、オクチルアミン、デシルアミン,アニリン,ペ
ンジルアミン,ナフチルアミン,ジメチルアミン,ジェ
チルアミン,ジブチルアミン、ジフェニルアミン、メチ
ルフェニルアミン、トリメチルアミン、トリエチルアミ
ン、トリブチルアミン、トリフェニルアミン、ピリジン
,ピコリン等が挙げられる.これらのアミンは,一種単
独で使用することもできるし,また二種以上を併用する
こともできる. 前記塩基性失活剤の添加量は、通常、重合反応に使用し
た有機アルミニウム化合物に対して過剰であれば良いの
であるが、有機アルミニウム化合物に対して0.5〜3
0モル倍であり、好ましくは1〜10モル倍である. このようにして触媒を失活させた後の重合反応生戊液中
には、炭素数が6〜44程度、特に炭素数が6〜20の
範囲にあり,しかもハロゲンを付加していない線状α−
オレフィンが高い分率で含まれる.一方、ワックス分の
副生は、著しく抑制される. 触媒失活後の前記重合反応生成液に、たとえば、水等に
よる洗浄、抽出、濾過等による分離、乾燥工程等の通常
の後処理工程を施して、目的生戊物である高純度の線状
α−オレフィンを高い効率で回収することができる. すなわち,この発明の方法によって、炭素数が6から2
0程度の範囲の純度の高い線状α−才レフィンを高い収
率,高い選択率をもって、安定に得ることができる.な
お、反応条件、触媒組戊、濃度等の選定によって、生或
物の炭素数分布をさらに狭い範囲に調製することも可能
である.なお、回収された未反応エチレン、もしくは、
これを含有する低沸点留分は,そのまま,もしくは,精
製後、リサイクルして反応原料の一部として、使用する
こともできる. この発明の方法によって製造された線状α−オレフィン
は、種々の共重合体製造用のコモノマーとして、また、
可塑剤、界面活性剤原料等の種々の工業分野等に好適に
用いることができる.[実施例] 触媒液の調製 1,000mJlの攪拌機付きフラスコに、アルゴン雰
囲気下で、無水四塩化ジルコニウム(ZrCjL4)1
00 ミリモルと乾燥したシクロヘキサン500mfL
とを導入し、10分間かけて攪拌した.これにトリエチ
ルアルミニウム(TEAと略記することがある) 15
13.3 ミリモルを添加し,約10分かけて攪拌した
のち、エチルアルミニウムセスキクロライド(EASC
と略記することがある)541.7 ミリモルを添加し
,70℃でさらに2時間かけて攪拌しながら錯体を形威
した. 次に、500mJlの三ツ口フラスコに、アルゴン雰囲
気下でシクロヘキサン250m lと前記錯体溶液をZ
rClaが0.12ミリモル、EASCが0.85ミリ
モル、TEAが0.19ミリモルになるように導入し、
チオフェン0.36ミリモルを加えて室温で10分間か
けて攪拌して触媒液を調製した.(実施例1〜6および
比較例1〜6) α−オレフィンの製造例(エチレンのオリゴマー生Σ IJIの攪拌付きオートクレープに、乾燥したアルゴン
雰囲気下で、前記触媒調製例で調製した触媒液をアルゴ
ンで圧送することにより導入した.このとき、オートク
レープの温度は、50〜60℃に保持した.触媒液の張
り込みが終了した後、攪拌を開始し、オートクレープ内
に高純度のエチレンガスをその圧力がfl5kg/cm
2Gになるまで急速に吹き込み、しかるのち、 120
℃に昇温した.エチレンは、前記圧力を雑持するのに必
要な量を導入し続けた.この反応条件で30分反応を続
けた.30分間反応させた後、第1表に示すフラッシュ
条件で脱圧、降温し、第1表に示す種類および廿の失活
剤を圧入し、フラッシュ開始時、5分目lO分目の生戒
液を採取して30%アンモニア水溶液中に投入して攪拌
することにより、最終的な触媒失活を行ない、ガスクロ
マトグラフを用いて分析した.フラッシュ開始時と5分
経過後、10分経過後の炭素数14 (CN)−炭素数
16(CI6)、炭素数18(C+s)の線状α−オレ
フィンの純度の差を第1表に示した. [発明の効果]
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for producing a linear α-olefin, and more specifically, relates to a method for producing a linear α-olefin, which is an ethylene oligomer.
Concerning a method for producing olefins with high purity. [Prior art and problems to be solved by the invention] Linear α-
Polyolefins are useful as modifying comonomers in the field of polyolefin production, or as plasticizers and surfactants when alcoholized. Such linear α-olefins can be prepared using a two-component catalyst consisting of titanium tetrachloride and ethylaluminum dichloride,
A 31rF. It can be produced by oligomerizing ethylene in the presence of a separate catalyst. In addition, in recent years, a two-component catalyst using a zirconium ((Zr) compound instead of the titanium compound described above has been proposed as a catalyst with even higher activity. For example, JP-A-58-109428 Publication No. 5G-30042, Japanese Patent Publication No. 58-2
No. 01729 and Japanese Unexamined Patent Publication No. 113138/1988 disclose 2r&separation catalysts using a zirconium compound and an aluminum compound, respectively. Moreover, in US Pat. No. 4,488,815, in order to increase the activity of a 2t-type catalyst consisting of a zirconium compound and an aluminum compound, a tertiary amine, which is a Lewis base, and a secondary amines, ethers, phosphine oxides, alkyl or aryl phosphates,
Catalysts containing sulfoxide and the like have been disclosed. And from the past. In the production method of &l-shaped α-olefins, improving product purity is a problem. It is generally known that in order to improve the purity of linear α-olefins, the polymerization conditions are low temperature and high ethylene pressure. Specifically, a low temperature condition of 100 to 130°C and a high pressure condition of 30 to 80 kg/cm2G are set. However, effective recovery of unreacted ethylene after the polymerization reaction is also required for the industrial production method of linear α-olefins, and in response to this requirement, a A method is adopted in which the polymerization reactants are transferred to a flasher maintained at a constant pressure and unreacted ethylene is recovered. As a result, side reactions further proceed within the flasher, resulting in a problem of reduced product purity. In order to solve this problem, it would be better to shorten the residence time of the polymerization reaction product solution in the flasher, but it is possible to recover unreacted ethylene with a short residence time without reducing purity. Designing a flasher is difficult. An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for producing highly pure linear α-olefins in a method for producing linear α-olefins by oligomerizing ethylethiol. .. [Means for Solving the Problems] The present invention for solving the problems described above uses a linear α-olefin obtained by polymerizing ethylene in the presence of a catalyst obtained from a zirconium compound and an organoaluminum compound. First, a deactivating agent that deactivates the zirconium compound is added to the polymerization reaction raw solution containing the zirconium compound at a ratio of 0.5 to 3.5 times the amount of the zirconium compound, and then unreacted ethylene is removed. This is a method for producing a linear α-olefin, which is characterized by adding a basic deactivator. In the present invention, a procedure for deactivating a catalyst in a polymerization reaction solution containing linear α-olefins obtained by polymerizing ethylene in the presence of a catalyst obtained from a zirconium compound and an organoaluminum compound is performed. is important. below. The procedure for deactivating the catalyst in the fff reaction product solution and its polymerization reaction solution will be explained in order. Monopolymerization reaction product liquid - The polymerization reaction product liquid suitable for applying the method of the present invention is a polymerization reaction product obtained by polymerizing ethylene in the presence of a catalyst obtained from a zirconium compound and an organoaluminum compound. If it is a stock solution, it may be a polymerization reaction product stock solution obtained by polymerizing the zirconium compound and the organoaluminum compound in the presence of a two-part catalyst, but the effects of the present invention A polymerization reaction product solution that can exhibit good performance is a polymerization reaction product solution obtained by polymerization in the presence of a three-component catalyst obtained from the above-mentioned zirconium compound, an organoaluminium compound, and a Lewis base. ■ Zirconium compound The zirconium compound that can be used in the method of the present invention has the following formula Z rXa As-a [11 (wherein, X and A may be the same or different, and each , Cl, Br, or engineering.Also, a represents an integer from 0 to 4.). Specific examples of the zirconium halide represented by the formula [11] include ZrCla. ZrBra, ZrIa, Z
rBrClx. Examples include ZrBr2 Cfl. Among these, Zrcla is particularly preferred.
Note that these may be used alone or in combination of two or more. The organoaluminum compound used in the method of this invention has the following formula AJI Rl. 5 Q+. 5 [2] (
In the formula, R represents an alkyl group having 1 to 20 carbon atoms, and Q represents Cl, Br, or I. Note that the above formula is AM
It can also be expressed by 2R3 Q3. ) and/or the following formula: A Rb Q'3-b [3] (in the formula,
R' and Q' represent the same meanings as R and Q above, respectively. Moreover, b represents an integer from 1 to 3. However, R' and Q' may be the same or different. ) can be mentioned. The alkylaluminum sesquihalide represented by the formula [21] is not particularly limited as long as R and Q each satisfy the above conditions in the formula [21], and specific examples include, for example, methyl Aluminum sesquichloride, methylaluminum sesquibromide, ethylaluminum sesquichloride, ethylaluminum sesquipromide, ethylaluminum sesquiiodide, ethylaluminum bromchloride,
Examples include probyl aluminum sesquichloride, improvil aluminum sesquichloride, butyl aluminum sesquichloride, isobutyl aluminum sesquichloride, pentyl aluminum sesquichloride, octyl aluminum sesquichloride, and the like. Among these, R is preferably a methyl group, an ethyl group, a proyl group, a butyl group, etc., and an ethyl group is particularly preferred. As for Q. Cl is preferred. Specifically, ethylaluminum sesquichloride can be cited as a suitable example. Note that these alkyl aluminum halides may be used alone or in combination of two or more. The alkylaluminum compound represented by the formula [31] is not particularly limited as long as R' and Q' in the formula [31] satisfy the above conditions, and specific examples include, for example, triethyl Aluminum, triethylaluminum, triprobylaluminum, triimbrobylaluminum, tributylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminum bromide, diethylaluminum chloride, diethylaluminum iodide, ethylaluminum dibromide, Examples include ethylaluminum dichloride and ethylaluminum diiodide. However, among the compounds represented by the formula [31],
Preferably, b is 3 or 2. No. 31,
R' is preferably an ethyl group, a probyl group, a butyl group, an isobutyl group, etc., and an ethyl group is particularly preferred. As Q', sentence C is preferable. Specifically, for example, triethylaluminum, diethylaluminum chloride, and ethylaluminum dichloride are suitable. Incidentally, these alkylaluminum compounds can be used alone or in combination of two or more kinds as an organoaluminum compound. Examples of the Lewis base that can be used in the method of the present invention include thioethers, alkyl disulfides, thiophenes, thioureas, sulfides, and phosphines. Examples of the thioethers include dimethyl sulfide, diethyl chloride, dipropyl sulfide,
Examples include dihexyl sulfide, dicyclohexyl sulfide, diphenylthioether, etc. Examples of the alkyl disulfides include dimethyl disulfide [(CH3)2S2]. Jetyl disulfide, diprovir disulfide, dibutyl disulfide, dihexyl disulfide,
Examples include dicyclohexyl disulfide and ethylmethyl disulfide. The thiophenes include thiophene, 2-methylthiophene, 3-methylthiophene, 2,3-dimethylthiophene, 2-ethylthiophene, penzothiophene,
Examples include tetrahydrothiophene and penzothiophene. Examples of the sulfides include methyl sulfide, ethyl sulfide, and butylsulnoid. Examples of the phosphines include triphenylphosphine, triethylphosphine, tributylphosphine, tripropylphosphine, trioctylphosphine, tricyclohexylphosphine, and the like. Examples of the primary amines include methylamine, ethylamine, probylamine, butylamine, benzylamine, hexylamine, cyclohexylamine,
Examples include organic amines such as octylamine, decylamine, aniline, penzylamine, naphthylamine, trimethylamine, triethylamine, tributylamine, triphenylamine, pyridine, and vicoline. These compounds may be used alone or in combination of two or more. Among the various Lewis bases mentioned above, dimethyl disulfide, thiophene, thiourea, triphenylphosphine, trioctylphosphine, aniline, etc. are preferred, and thiophene is particularly preferred. In the method of this invention, as mentioned above, the catalyst for providing the polymerization reaction solution that can exhibit the effects of the invention well is 3, which is obtained from a zirconium compound, a suppressor aluminum compound, and a Lewis base.
A fractional catalyst is preferred. However, a mixture of the alkyl aluminum sesquihalide and the alkyl aluminum compound is particularly selected as the organoaluminum compound, and a catalyst that combines this mixture, a zirconium compound, and the Lewis base, and a catalyst that combines the zirconium compound and the alkyl aluminum sesquihalide. Catalysts in combination with the above Lewis bases are preferred (particularly catalysts consisting of a mixture of alkyl aluminum sesquihalides and trialkylaluminum, zirconium tetrachloride, and thiophene, as well as alkyl aluminum sesquihalides, zirconium tetrachloride, and thiophene). A catalyst consisting of is preferred. This is because the use of such a catalyst makes it possible to further reduce the wax content in the product produced by the oligomerization reaction and to reduce the f of zirconium halide.
This is because the yield of linear α-olefin per fi1 can be increased, and the purity of the obtained linear α-olefin can be increased. When a mixture of the alkyl aluminum sesquihalide and the alkyl aluminum compound is used as a catalyst, the blending ratio of the alkyl aluminum sesquihalide and the alkyl aluminum compound is usually such that the alkyl aluminum compound is 50 mol% on a CAM basis. ) or less, preferably 30 mol% CAN standard) or less. In the method of the present invention, there is no particular restriction on the method for preparing the catalyst from the zirconium compound, the organoaluminum compound, and the Lewis base, but the zirconium compound and the organoaluminum compound are mixed in a suitable solvent. It is preferable to make the catalyst preparation liquid viable by contacting it in the presence of the catalyst, and prepare the catalyst liquid by mixing this catalyst preparation liquid and the Lewis base during or prior to the polymerization (oligomerization) of ethylene. .. When preparing this catalyst preparation liquid or catalyst liquid, the temperature is 10 to 120°C at an appropriate temperature (usually, for example, lower than the temperature of the polymerization reaction, specifically in the range of BO to 80°C).
It is preferable to activate the catalyst by heating it for a minute. As the solvent, an inert solvent can usually be used, such as benzene,
Aromatic hydrocarbons or their halogen-substituted products such as toluene, xylene, chlorobenzene, ethylbenzene, dichlorobenzene, and chlorotoluene; Aliphatic paraffins such as pentane, hexane, heptane, octane, nonane, and decane; Naphthenes such as cyclohexane and decalin Paraffins: Examples include haloalkanes such as dichloroethane and dichlorobutane. Among these, cyclohexane, benzene, toluene, xylene, and chlorobenzene are preferred (especially cyclohexane and benzene are preferred). These solvents can be used alone or in combination of two or more. In this invention, the blending ratio of the zirconium compound, organoaluminum compound, Lewis base, and solvent is usually 0.0% of the zirconium compound per 250mM of the solvent. Ol~5 mmol, preferably 0.03~1
mmol, organoaluminum compound usually 0.05 to 1
5 mmol, preferably 0.06 to 3 mmol, usually 0.01 to 20 mmol of a Lewis base, preferably a sulfur compound (thioethers, alkyl disulfides, thiophenes, thioureas, sulfides) as a Lewis base. When using phosphines or primary amines as the Lewis base, the amount is 0.02 to 20 mmol, and when using phosphines or primary amines as the Lewis base, the amount is 0.01 to 5 mmol. Regarding the blending ratio of the zirconium compound and the organic aluminum compound, A9. Even more preferable results can be obtained by setting the molar ratio of /Zr in the range of 1 to 15. Further, when using an alkylaluminum sesquihalide and a trialkylaluminium together as an organoaluminum compound, it is preferable that the trialkylaluminum is 50 mol% or less, preferably 30 mol% or less, based on the whole organoaluminum compound. During polymerization, the catalyst liquid can be further mixed with the solvent as necessary to adjust the concentration before use. Polymerization (oligomerization) of ethylene is carried out by bringing the catalyst or catalyst solution thus prepared into contact with ethylene or a gas containing ethylene in the presence of the solvent at a predetermined reaction temperature and reaction pressure. It is done efficiently. The gas containing ethylene used is:
Ethylene gas for polymerization such as an inert gas containing ethylene, purified ethylene gas for polymerization, and high purity ethylene can be used, with high purity ethylene being preferred. The reaction temperature during polymerization is usually 50 to 200°C, preferably 100 to 150°C. The reaction pressure is
Usually 5 kg/cm2G or more, preferably 25 kg
/cm2G or more, more preferably 30 to 80 kg/
cm211; The reaction time is usually about 5 minutes to 2 hours, preferably about 15 minutes to 1 hour. It is desirable to perform all operations from the preparation of the catalyst to the completion of the polymerization reaction while avoiding air and moisture. Preferably, the catalyst is prepared under an atmosphere of an inert gas such as nitrogen or argon. It is also desirable to thoroughly dry catalyst preparation raw materials, solvents, reaction raw materials, etc. However, the coexistence of trace amounts of moisture and air may increase catalyst activity and product selectivity. Below, an example of the method for obtaining a polymerization reaction solution containing a linear α-olefin in the present invention will be described in more detail. That is, in a container equipped with a stirrer, the zirconium compound such as zirconium tetrachloride and the organic aluminum compound such as ethylaluminum sesquichloride are dissolved in the solvent such as cyclohexane under an atmosphere of an inert gas such as argon or nitrogen. After that, while stirring, 60~8
Prepare a catalyst preparation solution by heating at 0°C for 120 minutes. A portion of this catalyst preparation solution was introduced into another container equipped with a stirrer under the above inert gas atmosphere, diluted with the above solvent such as cyclohexane, the above Lewis base such as thiophene was added at around room temperature, and the catalyst was stirred. Prepare the liquid. By preparing the catalyst in this way, a complex catalyst of a zirconium halide such as zirconium tetrachloride and an alkylaluminum compound is formed, and the yield of the desired product and the purity of the mono-alpha-olefin are improved. can be improved. Next, under an inert gas atmosphere, the catalyst was introduced by pressure transport into a reactor maintained at 50 to 60°C, and while stirring the catalyst liquid, a gas containing ethylene such as high-purity ethylene was introduced. Oligomerize under the above reaction conditions. In the manner described above, a polymerization reaction product solution containing linear α-olefins is obtained. - Catalyst deactivation - In this invention, the method of adding a catalyst deactivator is important when the catalyst deactivator is added to the polymerization reaction product liquid obtained by ethylene polymerization (oligomerization) to stop the reaction. .. That is, the catalyst is deactivated before and after supplying the polymerization reaction product solution obtained as described above to, for example, a flasher and recovering unreacted ethylene. The catalyst is deactivated before recovery of unreacted ethylene by adding a compound capable of reacting with a zirconium compound to the polymerization reaction product solution. Compounds that can react with the zirconium compound include:
For example, water, alcohol, amines, etc. can be used, with water and/or alcohol being particularly preferred. Examples of alcohols include monohydric alcohols, polyhydric alcohols, cyclic alcohols, acyclic alcohols, aliphatic alcohols, and aromatic alcohols. These alcohols may be used alone or in combination of two or more. It is also possible to use a combination of water and alcohol. The amount of the compound capable of reacting with the zirconium compound added is 0.5 to 3.5 moles relative to the zirconium compound. Less than 0.5 mol of the above compound as a deactivating agent per 1 mol of the zirconium compound is not sufficient to deactivate the zirconium compound, and if the amount of the deactivating agent exceeds 3.5 mol, the halogenation generated during activation is Hydrogen is added to the α-olefin and organic halogenated compounds are mixed into the α-olefin product, which is undesirable because it reduces the purity and quality of the product. Regarding this initial catalyst deactivation operation, there are no particular restrictions regarding the temperature and pressure conditions, but the temperature is preferably 50 to 130°C, particularly 80 to 110°C. Under these conditions, the compound as a deactivator is added to the polymerization reaction product solution and mixed thoroughly. Although the time for this mixing cannot be absolutely defined depending on the volume of the polymerization reaction solution, it is usually 1 to 10 minutes. Unreacted ethylene can be recovered from the polymerization reaction product solution by lowering the atmospheric pressure of the polymerization reaction product solution lower than the pressure during the polymerization reaction. If the first catalyst deactivation operation is performed under a pressure lower than the pressure during the polymerization reaction, the first catalyst deactivation operation and the unreacted ethylene recovery operation can be performed at the same time, simplifying the equipment. It is possible to achieve something. However, it is preferable to supply a deactivator to the polymerization reaction product liquid immediately before supplying the polymerization reaction product liquid to the flasher, in order to avoid the influence of the deactivation reaction product of the zirconium compound. After collecting unreacted ethylene using a flasher, add a basic deactivator to completely deactivate the catalyst. By adding a basic compound, it is possible to prevent the addition of halogen derived from the catalyst to the linear α-olefin to be used, thereby further improving the purity of the linear α-olefin. Examples of the basic deactivator include ammonia and/or amines. Amines include methylamine, ethylamine, probylamine, butylamine, benzylamine, hexylamine, cyclohexylamine, octylamine, decylamine, aniline, penzylamine, naphthylamine, dimethylamine, jetylamine, dibutylamine, diphenylamine, methylphenylamine, trimethylamine. , triethylamine, tributylamine, triphenylamine, pyridine, picoline, etc. These amines can be used alone or in combination of two or more. The amount of the basic deactivator added is usually sufficient as long as it is in excess of the organoaluminum compound used in the polymerization reaction;
0 mole times, preferably 1 to 10 mole times. After the catalyst has been deactivated in this way, the polymerization reaction product has a carbon number of about 6 to 44, particularly a carbon number of about 6 to 20, and has no halogen added. α−
Contains a high fraction of olefins. On the other hand, wax by-products are significantly suppressed. After the catalyst has been deactivated, the polymerization reaction product liquid is subjected to ordinary post-treatment steps such as washing with water, extraction, separation by filtration, drying step, etc. to obtain a high-purity linear product, which is the target product. α-olefins can be recovered with high efficiency. That is, by the method of this invention, the number of carbon atoms is reduced from 6 to 2.
It is possible to stably obtain linear α-olefins with high purity in the range of about 0 with high yield and high selectivity. Furthermore, by selecting the reaction conditions, catalyst composition, concentration, etc., it is also possible to adjust the carbon number distribution of the raw material to an even narrower range. In addition, recovered unreacted ethylene or
The low-boiling fraction containing this can be used as it is, or after purification, it can be recycled and used as part of the reaction raw material. The linear α-olefin produced by the method of this invention can be used as a comonomer for producing various copolymers, and
It can be suitably used in various industrial fields such as raw materials for plasticizers and surfactants. [Example] Preparation of catalyst solution In a 1,000 mJl flask equipped with a stirrer, 1 part of anhydrous zirconium tetrachloride (ZrCjL4) was added under an argon atmosphere.
00 mmol and 500 mfL of dry cyclohexane
and stirred for 10 minutes. This includes triethyl aluminum (sometimes abbreviated as TEA) 15
After adding 13.3 mmol and stirring for about 10 minutes, ethylaluminum sesquichloride (EASC) was added.
541.7 mmol (sometimes abbreviated as ) was added, and the complex was formed with stirring at 70°C for an additional 2 hours. Next, 250 ml of cyclohexane and the above complex solution were added to a 500 ml three-necked flask under an argon atmosphere.
rCla was introduced to be 0.12 mmol, EASC was 0.85 mmol, and TEA was introduced to be 0.19 mmol,
A catalyst solution was prepared by adding 0.36 mmol of thiophene and stirring at room temperature for 10 minutes. (Examples 1 to 6 and Comparative Examples 1 to 6) α-olefin production example (Ethylene oligomer raw material) The catalyst solution prepared in the above catalyst preparation example was placed in a stirred autoclave of Σ IJI under a dry argon atmosphere. The gas was introduced by pressure-feeding argon. At this time, the temperature of the autoclave was maintained at 50 to 60°C. After filling the catalyst liquid, stirring was started and high-purity ethylene gas was introduced into the autoclave. The pressure is fl5kg/cm
Blow rapidly until it reaches 2G, then 120
The temperature was raised to ℃. Ethylene was continued to be introduced in the amount necessary to maintain the above pressure. The reaction was continued under these reaction conditions for 30 minutes. After reacting for 30 minutes, the pressure was depressurized and the temperature was lowered under the flash conditions shown in Table 1, and the type and amount of deactivating agent shown in Table 1 was injected. The liquid was collected, poured into a 30% ammonia aqueous solution, and stirred to perform final catalyst deactivation, and analyzed using a gas chromatograph. Table 1 shows the difference in purity of linear α-olefins with carbon number 14 (CN) - carbon number 16 (CI6) and carbon number 18 (C+s) at the start of flashing, after 5 minutes, and after 10 minutes. Ta. [Effect of the invention]

Claims (2)

【特許請求の範囲】[Claims] (1)ジルコニウム化合物と有機アルミニウム化合物と
から得られる触媒の存在下にエチレンを重合して得られ
る、線状α−オレフィンを含有する重合反応生成液に、
先づジルコニウム化合物を失活させる失活剤を、前記ジ
ルコニウム化合物に対して0.5〜3.5モル倍の割合
で添加した後、未反応エチレンを除去し、次いで塩基性
失活剤を添加することを特徴とする線状α−オレフィン
の製造方法。
(1) A polymerization reaction product liquid containing a linear α-olefin obtained by polymerizing ethylene in the presence of a catalyst obtained from a zirconium compound and an organoaluminum compound,
First, a deactivator for deactivating the zirconium compound is added at a ratio of 0.5 to 3.5 times the mole of the zirconium compound, unreacted ethylene is removed, and then a basic deactivator is added. A method for producing a linear α-olefin, the method comprising:
(2)前記触媒がハロゲン化ジルコニウムと有機アルミ
ニウム化合物とルイス塩基とから得られる触媒である前
記請求項1に記載の線状α−オレフィンの製造方法。
(2) The method for producing a linear α-olefin according to claim 1, wherein the catalyst is a catalyst obtained from a zirconium halide, an organoaluminum compound, and a Lewis base.
JP23956989A 1989-09-14 1989-09-14 Method for producing linear α-olefin Expired - Lifetime JP2761544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23956989A JP2761544B2 (en) 1989-09-14 1989-09-14 Method for producing linear α-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23956989A JP2761544B2 (en) 1989-09-14 1989-09-14 Method for producing linear α-olefin

Publications (2)

Publication Number Publication Date
JPH03103406A true JPH03103406A (en) 1991-04-30
JP2761544B2 JP2761544B2 (en) 1998-06-04

Family

ID=17046749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23956989A Expired - Lifetime JP2761544B2 (en) 1989-09-14 1989-09-14 Method for producing linear α-olefin

Country Status (1)

Country Link
JP (1) JP2761544B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019332A1 (en) * 1994-01-14 1995-07-20 Institut Français Du Petrole Method for producing light alpha olefins having improved purity by ethylene oligomerisation
CN1061021C (en) * 1993-11-10 2001-01-24 林德股份公司 Method for inactivating catalyst in preparation of linear 2-olefin by oligomerizing ethene with catalyst
WO2009095147A1 (en) * 2008-01-30 2009-08-06 Linde Ag Method for preparing linear alpha-olefins
JP2011506069A (en) * 2007-12-12 2011-03-03 リンデ アーゲー Catalyst composition for oligomerization of ethylene, oligomerization process and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061021C (en) * 1993-11-10 2001-01-24 林德股份公司 Method for inactivating catalyst in preparation of linear 2-olefin by oligomerizing ethene with catalyst
WO1995019332A1 (en) * 1994-01-14 1995-07-20 Institut Français Du Petrole Method for producing light alpha olefins having improved purity by ethylene oligomerisation
FR2715154A1 (en) * 1994-01-14 1995-07-21 Inst Francais Du Petrole Process for the production of light alpha olefins of improved purity by oligomerization of ethylene.
JP2011506069A (en) * 2007-12-12 2011-03-03 リンデ アーゲー Catalyst composition for oligomerization of ethylene, oligomerization process and preparation method thereof
WO2009095147A1 (en) * 2008-01-30 2009-08-06 Linde Ag Method for preparing linear alpha-olefins
RU2469014C2 (en) * 2008-01-30 2012-12-10 Линде Аг Method of producing linear alpha-olefins

Also Published As

Publication number Publication date
JP2761544B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
US4783573A (en) Process for preparing linear α-olefins
JP3188335B2 (en) Method for producing catalyst system and method for trimerizing, oligomerizing and / or polymerizing olefin
US6576721B2 (en) Process for producing low polymer of ethylene
EP3834932B1 (en) Process for preparation of ethylene oligomerization catalyst and oligomerization thereof
KR100849299B1 (en) Process for producing ?-olefin oligomer
KR920005669B1 (en) A process for preparing linear alpha-olefins
JP2538811B2 (en) Method for producing linear α-olefin
EP0015603B1 (en) Process for the dimerization of 1-alkenes
JPH03103406A (en) Preparation of linear alpha-olefin
JP2799342B2 (en) Method for producing linear α-olefin
JP2002256007A (en) METHOD FOR PRODUCING alpha-OLEFIN OLIGOMER
JP3832869B2 (en) Method for producing linear α-olefin
JP4681773B2 (en) Method for producing ethylene low polymer
JP2529916B2 (en) Hydrogen chloride-free catalyst system for olefin dimerization and codimerization
JP2622797B2 (en) Method for producing linear α-olefin
JPH0446929B2 (en)
JPH0678373B2 (en) Method for producing α-olefin
KR920004714B1 (en) Process for preparation of linear alpha-olefine
JPH06104627B2 (en) Method for producing linear α-olefin
JP2000313714A (en) Production of catalyst system, and trimerization, oligomerization and/or polymerization of olefin
JPH07247226A (en) Production of alpha-olefin
PL174335B1 (en) Method of trimerising, oligomerising and/or polymerising olefins
JP2002187902A (en) PROCESS FOR PREPARATION OF LINEAR alpha-OLEFIN
PL173367B1 (en) Method of making a catalytic system
JPH0379365B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12