JPH0310304B2 - - Google Patents

Info

Publication number
JPH0310304B2
JPH0310304B2 JP14318783A JP14318783A JPH0310304B2 JP H0310304 B2 JPH0310304 B2 JP H0310304B2 JP 14318783 A JP14318783 A JP 14318783A JP 14318783 A JP14318783 A JP 14318783A JP H0310304 B2 JPH0310304 B2 JP H0310304B2
Authority
JP
Japan
Prior art keywords
layer
electrophotographic photoreceptor
charge generation
charge transport
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14318783A
Other languages
Japanese (ja)
Other versions
JPS6033561A (en
Inventor
Yosha Takeda
Kazumi Sadamatsu
Eiichiro Tanaka
Shinji Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14318783A priority Critical patent/JPS6033561A/en
Publication of JPS6033561A publication Critical patent/JPS6033561A/en
Publication of JPH0310304B2 publication Critical patent/JPH0310304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子写真感光体、特に可視光から近赤
外光領域にまで感度を有する電子写真感光体の構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrophotographic photoreceptor, particularly to the structure of an electrophotographic photoreceptor having sensitivity from visible light to near-infrared light.

従来例の構成とその問題点 従来の電子写真感光体の分光感度は、非晶質水
素化シリコンを用いた感光体を除いて、可視光全
領域で高感度である訳ではない。ところで、最近
は高速で高解像を特徴とするレーザプリンタ用の
感光体の開発が盛んである。このレーザプリタの
小型化をはかるためには、光源として用いられる
半導体レーザーの発振波長である800nm前後の近
赤外光領域に高い感度を有する電子写真感光体の
開発が待たれている。しかし、可視光に対しては
高感度な電子写真感光体も、この近赤外光領域で
はかなりの感度低下が有る。このため、Se系の
感光体はTeの導入、非晶質水素化シリコンにお
いては、Geの導入によつて長波長の感度向上を
はかつているが、赤外光に対する感度を上げると
帯電電位の低下があり、十分な特性をもつ感光体
が得られていないのが現状である。
Structure of conventional example and its problems The spectral sensitivity of conventional electrophotographic photoreceptors is not high in the entire visible light range, except for photoreceptors using amorphous hydrogenated silicon. Incidentally, recently, there has been active development of photoreceptors for laser printers that are characterized by high speed and high resolution. In order to miniaturize this laser printer, it is necessary to develop an electrophotographic photoreceptor that has high sensitivity in the near-infrared light region of around 800 nm, which is the oscillation wavelength of the semiconductor laser used as the light source. However, even electrophotographic photoreceptors that are highly sensitive to visible light have a considerable decrease in sensitivity in this near-infrared light region. For this reason, long-wavelength sensitivity has been improved by introducing Te into Se-based photoreceptors and Ge into amorphous hydrogenated silicon, but increasing the sensitivity to infrared light reduces the charging potential. At present, photoreceptors with sufficient characteristics have not been obtained.

発明の目的 本発明の目的は、可視光から近赤外領域におい
て高感度な感光体を提供するもので、特に近赤外
領域でも高感度であるため半導体レーザを用いた
レーザプリンタに適した電子写真感光体を提供す
ることである。
Purpose of the Invention The purpose of the present invention is to provide a photoconductor that is highly sensitive in the visible light to near-infrared region, and is particularly sensitive in the near-infrared region, making it suitable for use in laser printers using semiconductor lasers. An object of the present invention is to provide a photographic photoreceptor.

発明の構成 本発明によれば、導電性支持体上に形成された
電荷発生層と、電荷輸送層とを備えた機能分離型
の電子写真感光体が構成され、この電荷発生層が
(CdxZn1-xTe)1-y(In2Te3y(O≦x≦1,O≦
y≦0)を主体とする光導電体であり、電荷輸送
層は電荷発生層より大きいか同じか電子親和力を
もつ層により構成される。
Structure of the Invention According to the present invention, a functionally separated electrophotographic photoreceptor is constructed which includes a charge generation layer and a charge transport layer formed on a conductive support, and the charge generation layer (Cd x Zn 1-x Te) 1-y (In 2 Te 3 ) y (O≦x≦1, O≦
y≦0), and the charge transport layer is composed of a layer having an electron affinity greater than or equal to that of the charge generation layer.

この電荷発生層、(CdxZn1-xTe)1-y(In2Te3y
は、可視光領域から赤外光領域まで感度を有する
光導電体である。
This charge generation layer, (Cd x Zn 1-x Te) 1-y (In 2 Te 3 ) y
is a photoconductor that has sensitivity from the visible light region to the infrared light region.

実施例の説明 本発明の基本構成は第1図に示す断面図のよう
に、導電性支持体1上に電荷発生層である(Cdx
Zn1-xTe)1-y(In2Te3y層2を、続いて、電荷輸
送層3を形成したものである。第2図に第1図の
構成におけるバンド図を示す。第2図aは平衡状
態、同図bは正帯電時のものである。光は(Cdx
Zn1-xTe)1-y(In2Te3y層2で吸収され、電子正
孔対が発生し、正孔は支持体1へ、電子は電荷輸
送層3を走行し表面の正の電荷を中和して表面電
位を低下させる、このように電荷発生層(Cdx
Zn1-xTe)1-y(In2Te3y層2から電荷輸送層3へ
効率良く電子が注入されるためには(CdxZn1-x
Te)1-y(In2Te3yより電荷輸送層3の物質の方が
電子親和力が同じか大きい必要がある。
DESCRIPTION OF EMBODIMENTS The basic structure of the present invention is a charge generation layer (Cd x
A Zn 1-x Te) 1-y (In 2 Te 3 ) y layer 2 was formed, followed by a charge transport layer 3. FIG. 2 shows a band diagram for the configuration of FIG. 1. FIG. 2a shows the state in equilibrium, and FIG. 2b shows the state in positive charging. The light is (Cd x
Zn 1-x Te) 1-y (In 2 Te 3 ) is absorbed in the y layer 2, and electron-hole pairs are generated. The holes travel to the support 1 and the electrons travel through the charge transport layer 3, and the In this way, the charge generation layer (Cd x
( Cd x Zn 1 - x
Te) 1-y (In 2 Te 3 ) y The material of the charge transport layer 3 needs to have the same or larger electron affinity than y.

第1図では電荷の注入阻止層を特に設けていな
いが、さらに電子写真感光体の帯電電位を上昇さ
せるため、第3図に示すように第1図の構成の
(CdxZn1-xTe)1-y(In2Te3y層2と支持体1の間
に電子の注入阻止層4を、電荷輸送層3の表面に
正孔の注入阻止層5を設けると初期帯電電位、暗
減衰特性の改善がある。
Although no charge injection blocking layer is provided in FIG . 1, in order to further increase the charging potential of the electrophotographic photoreceptor, as shown in FIG. ) 1-y (In 2 Te 3 ) When an electron injection blocking layer 4 is provided between the y layer 2 and the support 1 and a hole injection blocking layer 5 is provided on the surface of the charge transport layer 3, the initial charging potential and dark There is an improvement in damping characteristics.

第1図,第3図は正帯電の電子写真感光体の例
を示した。第1図における電荷発生層(Cdx
Zn1-xTe)1-y(In2Te3yと電荷輸送層を逆にした
構成、即ち、第4図に示すように、導電性支持体
6上に電荷輸送層7を設け、続いて(CdxZn1-x
Te)1-y(In2Te3y層8を形成する構成にすると、
負帯電特性の電子写真感光体が得られる。この場
合も第5図に示すように電荷発生層(CdxZn1-x
Te)1-y(In2Te3y層8の表面に正孔注入阻止層1
0を、電荷輸送層7と支持体6の間に電子注入阻
止層9を設けると、第4図の構成の電子写真感光
体に比較して初期帯電電位、暗減衰特性の改善さ
れた負帯電の電子写真感光体が得られる。
FIGS. 1 and 3 show examples of positively charged electrophotographic photoreceptors. The charge generation layer (Cd x
Zn 1-x Te) 1-y (In 2 Te 3 ) y has a structure in which the charge transport layer is reversed, that is, as shown in FIG. 4, a charge transport layer 7 is provided on a conductive support 6, Then (Cd x Zn 1-x
Te) 1-y (In 2 Te 3 ) y layer 8 is formed.
An electrophotographic photoreceptor with negative charging characteristics is obtained. In this case as well, the charge generation layer (Cd x Zn 1-x
Te) 1-y (In 2 Te 3 ) Hole injection blocking layer 1 on the surface of the y layer 8
0, and when an electron injection blocking layer 9 is provided between the charge transport layer 7 and the support 6, negative charging is achieved with improved initial charging potential and dark decay characteristics compared to the electrophotographic photoreceptor having the structure shown in FIG. An electrophotographic photoreceptor is obtained.

なお、(CdxZn1-xTe)1-y(In2Te3yにおいてy
>0.1で暗抵抗が小さくなり良好な光導電特性は
示さなくなる。
In addition, (Cd x Zn 1-x Te) 1-y (In 2 Te 3 ) y
When it is >0.1, the dark resistance becomes small and good photoconductive properties are no longer exhibited.

以下に、具体的な実施例を示す。 Specific examples are shown below.

実施例 1 第6図に示すような電子写真感光体を作成し
た。まず光学研磨をしたガラス基板11上に
In2O3層12を、基板温度250℃、酸素雰囲気中で
の蒸着法により1000Åの厚さに形成した。この基
板を真空蒸着装置中に設置した。基板温度を200
℃にしてZnTe層13を2μm、の厚さに形成し、
続いてCd0.3Zn0.7Te)0.95(In2Te30.05層14を
3μmの厚さに形成し真空中550℃で15〜60分熱処
理をし、電荷発生層16を形成した。この電荷発
生層の表面の電子親和力はKelvin法によると約
3.8eVであつた。この電荷発生層16を有する基
板をマグネトロンスパツタ装置に設置し、1×
10-6Torr以下に排気した後、Ar分圧7.3mTorr、
H2分圧0.7mTorr中で99.999%の純度のSi多結晶
をターゲツトとし、放電電力300Wで非晶質水素
化シリコン層15を5μm形成した。このとき同時
に形成した非晶質水素化シリコン上に真空蒸着法
によりAu薄膜を200Å形成し、そのバリアの高さ
から、この非晶質水素化シリコンの電子親和力は
4.0〜4.3eVと求められた。このようにして形成し
たZnTe−(Cd0.3Zn0.7Te)0.95(In2Te30.05層を電
荷発生層16とし、これにより電子親和力の大き
い非晶質水素化シリコン15を電荷輸送層とした
電子写真感光体をコロナ帯電器で正帯電させて用
いた。この電子写真感光体の分光感度を第9図に
示す、比較の為非晶質水素化シリコンの分光感度
も示す。第9図から明らかなように、本発明によ
れば可視光から赤外光まで高感度な電子写真感光
体が得られる。
Example 1 An electrophotographic photoreceptor as shown in FIG. 6 was prepared. First, on a glass substrate 11 that has been optically polished.
The In 2 O 3 layer 12 was formed to a thickness of 1000 Å by vapor deposition at a substrate temperature of 250° C. in an oxygen atmosphere. This substrate was placed in a vacuum evaporation apparatus. Set the board temperature to 200
℃ to form a ZnTe layer 13 with a thickness of 2 μm,
Next, add Cd 0.3 Zn 0.7 Te) 0.95 (In 2 Te 3 ) 0.05 layer 14.
The charge generation layer 16 was formed to a thickness of 3 μm and heat-treated in vacuum at 550° C. for 15 to 60 minutes. According to the Kelvin method, the electron affinity of the surface of this charge generation layer is approximately
It was 3.8eV. The substrate having this charge generation layer 16 was placed in a magnetron sputtering device, and
After exhausting to below 10 -6 Torr, Ar partial pressure was 7.3mTorr,
A 5 μm thick amorphous hydrogenated silicon layer 15 was formed using a 99.999% purity Si polycrystal as a target under a H 2 partial pressure of 0.7 mTorr and using a discharge power of 300 W. At this time, a thin Au film of 200 Å was formed by vacuum evaporation on the amorphous hydrogenated silicon formed at the same time, and from the height of the barrier, the electron affinity of this amorphous silicon hydride was
It was determined to be 4.0-4.3eV. The ZnTe-(Cd 0.3 Zn 0.7 Te) 0.95 (In 2 Te 3 ) 0.05 layer thus formed was used as the charge generation layer 16, and thereby the amorphous hydrogenated silicon 15 with high electron affinity was used as the charge transport layer. An electrophotographic photoreceptor was used after being positively charged with a corona charger. The spectral sensitivity of this electrophotographic photoreceptor is shown in FIG. 9. For comparison, the spectral sensitivity of amorphous hydrogenated silicon is also shown. As is clear from FIG. 9, according to the present invention, an electrophotographic photoreceptor having high sensitivity from visible light to infrared light can be obtained.

実施例 2 第7図に示すように、Si単結晶ウエーバー21
上にMo層22を電子ビーム蒸着法で800Åの厚
さに形成した基板上に、SiNx層23を600Å形成
した。続いて実施例1の14,15の層と同一条
件で(Cd0.3Zn0.7Te)0.95(In2Te30.05層24、非
晶質水素化シリコン層25を形成した。
Example 2 As shown in FIG. 7, Si single crystal Weber 21
A SiNx layer 23 was formed to a thickness of 600 Å on a substrate on which a Mo layer 22 was formed to a thickness of 800 Å by electron beam evaporation. Subsequently, a (Cd 0.3 Zn 0.7 Te) 0.95 (In 2 Te 3 ) 0.05 layer 24 and an amorphous hydrogenated silicon layer 25 were formed under the same conditions as layers 14 and 15 of Example 1.

さらに非晶質水素化シリコン層25の上にその
層より水素含有量の大きい第2の非晶質水素化シ
リコン26を0.2μm形成した。SiNx層23はSi
をターゲツトとし、Ar分圧2mTorr,N2圧力4
mTorr、基板温度250℃として放電電力500Wで
形成した。第2の非晶質水素化シリコン層24
は、H2分圧,1.4mTorr,Ar分圧6.7mTorrとし
た以外は実施例1の非晶質シリコン層15と同一
条件で形成した。
Further, on the amorphous silicon hydride layer 25, a second amorphous silicon hydride 26 having a higher hydrogen content than that layer was formed to a thickness of 0.2 μm. The SiNx layer 23 is Si
as a target, Ar partial pressure 2mTorr, N2 pressure 4
It was formed with a discharge power of 500 W at mTorr and a substrate temperature of 250°C. Second amorphous hydrogenated silicon layer 24
was formed under the same conditions as the amorphous silicon layer 15 of Example 1 except that the H 2 partial pressure was 1.4 mTorr and the Ar partial pressure was 6.7 mTorr.

この構成にして正帯電すると、分光感度は実施
例1と同一のままで初期帯電電位が約400Vとな
り帯電電位が上昇した。
When this configuration was positively charged, the spectral sensitivity remained the same as in Example 1, but the initial charging potential was approximately 400 V, and the charging potential increased.

実施例 3 第8図に一部のみを断面で示したように、表面
を鏡面研磨したアルミ円筒基板25を回転式のプ
ラズマCVD装置中に配置した。基板温度を250℃
に保ち、基板25を50rpmで回転させる。この中
にB2H6/SiH4=10-4,O2/SiH4=10-4の流量比
となるようそれらのガスを反応室内に導入し、全
圧力1Torrとして放電パワー5KWにより非晶質
水素化シリコン層26を20μm形成した。これを
マグネトロンスパツタ装置内に設置しArの放電
により表面清浄化した後、Cd0.4Zn0.6Te層27
を、同材料をターゲツトとしArガス圧5×10-3
Torr中放電電力200Wで4μm形成した。この上に
先のプラズマCVD装置中で基板温度200℃とし、
N2/SiH4=5 全圧力4Torr、放電電力1KWで
SiNx層28を0.1μm形成した。この構成にする
と初期帯電電位が−350Vとなり、負帯電可能な
電子写真感光体となる。
Example 3 As only a portion is shown in cross section in FIG. 8, an aluminum cylindrical substrate 25 with a mirror-polished surface was placed in a rotary plasma CVD apparatus. Substrate temperature to 250℃
The substrate 25 is rotated at 50 rpm. These gases were introduced into the reaction chamber at a flow rate ratio of B 2 H 6 /SiH 4 = 10 -4 and O 2 /SiH 4 = 10 -4 , and the total pressure was 1 Torr and the discharge power was 5 KW to amorphous. A hydrogenated silicon layer 26 having a thickness of 20 μm was formed. After installing this in a magnetron sputtering device and cleaning the surface by Ar discharge, the Cd 0.4 Zn 0.6 Te layer 27
The same material was targeted and the Ar gas pressure was 5×10 -3.
A 4 μm thick film was formed with a discharge power of 200 W in Torr. On top of this, the substrate temperature was set to 200°C in the plasma CVD equipment described above.
N 2 /SiH 4 = 5 Total pressure 4Torr, discharge power 1KW
A SiNx layer 28 was formed to a thickness of 0.1 μm. With this configuration, the initial charging potential becomes -350V, resulting in an electrophotographic photoreceptor that can be negatively charged.

以上の実施例では(CdxZn1-xTe)1-y(In2Te3
yに対する電荷輸送層として非晶質水素化シリコ
ンを例を示したが、(CdxZn1-xTe)1-y(In2Te3y
より電子親和力が大きく、電子の走行しやすい材
料であれば他の材料でも良い。
In the above example (Cd x Zn 1-x Te) 1-y (In 2 Te 3 )
We have shown an example of amorphous hydrogenated silicon as a charge transport layer for y , but (Cd x Zn 1-x Te) 1-y (In 2 Te 3 ) y
Other materials may be used as long as they have a higher electron affinity and allow electrons to travel more easily.

発明の効果 本発明によれば、可視光から近赤外光領域にお
いて高感度の電子写真感光体を得ることができ
る。特に従来の電子写真感光体に比べて近赤外領
域でも十分に感度を有し、半導体レーザを用いた
レーザプリンタ用の感光体として適しており、レ
ーザプリンタの高速化に大きく寄与できるもので
ある。
Effects of the Invention According to the present invention, an electrophotographic photoreceptor having high sensitivity in the visible light to near-infrared light region can be obtained. In particular, it has sufficient sensitivity in the near-infrared region compared to conventional electrophotographic photoreceptors, making it suitable as a photoreceptor for laser printers that use semiconductor lasers, and can greatly contribute to speeding up laser printers. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第3図,第4図及び第5図は本発明の
電子写真感光体の基本的構成を示す断面図、第2
図は第1図の電子写真感光体のバンド図でありa
は平衡状態をbは正帯電時を示し、第6図,第7
図,第8図はそれぞれ、本発明の具体的実施例に
おける電子写真感光体の断面図、第9図は第6図
の実施例の電子写真感光体の分光感度を示すグラ
フである。 1……導電性支持体、2……(CdxZn1-xTe)1-
(In2Te3y層、3……電荷輸送層。
1, 3, 4, and 5 are cross-sectional views showing the basic structure of the electrophotographic photoreceptor of the present invention, and FIG.
The figure is a band diagram of the electrophotographic photoreceptor shown in Figure 1.
b indicates the state of equilibrium, and b indicates the state of positive charging. Figures 6 and 7
8 are sectional views of an electrophotographic photoreceptor according to a specific example of the present invention, and FIG. 9 is a graph showing the spectral sensitivity of the electrophotographic photoreceptor according to the example of FIG. 6. 1... Conductive support, 2... (Cd x Zn 1-x Te) 1-
y (In 2 Te 3 ) y layer, 3...charge transport layer.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも表面が導電性である支持体と、電
荷発生層と、電荷輸送層とを備え、前記電荷発生
層が(CdxZn1-xTe)1-y(In2Te3y(O≦x≦1,
O≦y≦0.1)を含む光導電体であり、前記電荷
輸送層が前記電荷発生層と同じか又はより大きい
電子親和力を有する物質からなることを特徴とす
る電子写真感光体。
1 comprises a support having at least a conductive surface, a charge generation layer, and a charge transport layer, wherein the charge generation layer is (Cd x Zn 1-x Te) 1-y (In 2 Te 3 ) y (O ≦x≦1,
O≦y≦0.1), wherein the charge transport layer is made of a substance having an electron affinity equal to or greater than that of the charge generation layer.
JP14318783A 1983-08-04 1983-08-04 Electrophotographic sensitive body Granted JPS6033561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14318783A JPS6033561A (en) 1983-08-04 1983-08-04 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14318783A JPS6033561A (en) 1983-08-04 1983-08-04 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS6033561A JPS6033561A (en) 1985-02-20
JPH0310304B2 true JPH0310304B2 (en) 1991-02-13

Family

ID=15332895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14318783A Granted JPS6033561A (en) 1983-08-04 1983-08-04 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS6033561A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205457A (en) * 1984-03-29 1985-10-17 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS6033561A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
US4378417A (en) Electrophotographic member with α-Si layers
US4557987A (en) Photoconductive member having barrier layer and amorphous silicon charge generation and charge transport layers
JPH0373859B2 (en)
US4672015A (en) Electrophotographic member having multilayered amorphous silicon photosensitive member
US4882252A (en) Electrophotographic sensitive member with amorphous silicon carbide
JPH0310304B2 (en)
JPH0426106B2 (en)
US4704343A (en) Electrophotographic photosensitive member containing amorphous silicon and doped microcrystalline silicon layers
JPS6194048A (en) Photosensitive body
JPS6194049A (en) Electrophotographic sensitive body
JPS63233574A (en) Optoelectronic transducer
JPS59109057A (en) Electrophotographic sensitive body
JPS60178459A (en) Electrophotographic sensitive body
JPH11305471A (en) Electrophotographic photoreceptor
JPS6261056A (en) Photoconductor
JPS616654A (en) Electrophotographic sensitive body and its manufacture
JPS60205457A (en) Electrophotographic sensitive body
JPS60249228A (en) Image pick-up target
JPS63202756A (en) Electrophotographic sensitive body
JPS63165860A (en) Electrophotographic sensitive body
JPH06194856A (en) Electrophotographic photoreceptor
JPH0481349B2 (en)
JPS61116361A (en) Electrophotographic sensitive body
JPS6159340A (en) Photoreceptor for electrophotography
JPH0715584B2 (en) Electrophotographic photoreceptor