JPH03103038A - Charger - Google Patents

Charger

Info

Publication number
JPH03103038A
JPH03103038A JP22425390A JP22425390A JPH03103038A JP H03103038 A JPH03103038 A JP H03103038A JP 22425390 A JP22425390 A JP 22425390A JP 22425390 A JP22425390 A JP 22425390A JP H03103038 A JPH03103038 A JP H03103038A
Authority
JP
Japan
Prior art keywords
current
voltage
charging
storage battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22425390A
Other languages
Japanese (ja)
Inventor
Junichi Yoshida
純一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP22425390A priority Critical patent/JPH03103038A/en
Publication of JPH03103038A publication Critical patent/JPH03103038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To detect completion of charging operation accurately and to prevent overcharge by continuing the charging operation with a large current for a predetermined time after droppage of the terminal voltage of a battery to a predetermined level, which is considerably lower than the voltage level upon finish of charging operation, thereafter carrying the charging operation with a small current. CONSTITUTION:Upon droppage of the terminal voltage Vc of a battery 4 below a predetermined level, a detection signal Q is provided from a voltage detecting section 6 to a counter section 7 while a current increasing signal C1 is provided to a current control section 2 thus bringing the charging current Ic for the battery 4 to a large current level. When the terminal voltage Vc of the battery 4 reaches a predetermined level upon finish of charging operation, no detection signal Qv is provided from the voltage detecting section 6 to the counter section 7, which then starts counting operation. The counting operation finishes when the terminal voltage Vc of the battery 4 approximately reaches the peak level, whereby no current increase signal C1 is provided from the counter section 7 to the current control section 2 and the charging current Ic having small current level is fed to the battery 4.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は過充電を防止する充電装置に関するものである
. [従来技術とその問題点J 従来、このような充電装置は、過充電によって蓄電池が
劣化してしまうのを防ぐため、蓄電池の充電が完了して
過充電状態になると、蓄電池の端子電圧がわずかに相対
的に降下するのを検出して、充電電池を遮断し過充電を
防止するものが知られている. しかしながら、このようなものでは、充電中に機器が使
用されると、電圧降下が起こり、この電圧降下を充電完
了後に生じる電圧降下と誤認して、充電しきっていない
のに充電が打ち切られてしまうという問題があった.ま
た、充電完了後に生じる電圧降下は非常に小さいため、
この電圧降下を検出するためには高い精度の電圧検出器
が必要となり、回路が複雑化するとともに高価になつて
しまうという問題点もあった。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a charging device that prevents overcharging. [Prior art and its problems J] Conventionally, in order to prevent the storage battery from deteriorating due to overcharging, such charging devices have been designed to reduce the terminal voltage of the storage battery by a small amount when the storage battery is fully charged and becomes overcharged. There is a known device that detects a relative drop in the battery and shuts off the rechargeable battery to prevent overcharging. However, with such devices, when the device is used while charging, a voltage drop occurs, and this voltage drop is mistakenly recognized as a voltage drop that occurs after charging is complete, resulting in charging being aborted even though the device is not fully charged. There was a problem. In addition, the voltage drop that occurs after charging is very small, so
In order to detect this voltage drop, a highly accurate voltage detector is required, which poses the problem of complicating the circuit and making it expensive.

なお、過充電防止用の回路を全く設けなければ、それだ
け安価にはなるが、充電が終了したか否かをたえず注意
していなくてはならないので、たいへん不便である. [発明の目的] この発明は上述した事情に鑑みてなされたもので、その
目的とするところは、簡単な回路構成で、充電完了を正
確に検出し、過充電を防止することのできる充電装置を
提供することにある.[発明の要点] この発明は上述した目的を達成するために、蓄電池の端
子電圧を、検出の容易な充電完了時の電圧より一段低い
固定した一定電圧で検出し、この一定電圧に達した後の
一定時間が経過するまでは大電流で充電を続け、この一
定時間経過後は小電流で充電するようにしたことを要点
とするものである。従って、蓄電池の端子電圧の検出は
、電圧値の最大ピーク値を検出する時のように、電圧値
がいったん上って下った地点をつかまえるため,電圧値
の変化をたえず追っていく形をとらず、固定した一定電
圧に達するかどうかで行うので、回路構威が箇単となり
、機器の使用による一時的な電圧降下を最大ピーク値へ
の到達と誤認してしまうことがなくなる.また,最大ピ
ーク値を直接検出することをしなかったのは、温度変化
等により回路に設定した検出値がわずかに変動して最大
ピーク値を少しでも越えてしまうと、充電が打ち切られ
な〈なり、過充電となってしまうからである. [実施例1 以下本発明の一実施例につき図面を参照して詳述する. く構 成〉 第1図は充電装置の全体回路を示すもので、図中1は電
源回路であって、この回路lは交流(A C)電源から
の電流を整流するとともに、交流電流の電圧が変動して
もその出力電圧を一定に保つものである。この電源回路
1からの出力電流は、電流制御部2、電流検出部3を介
して蓄電池4に充TL電流工cとして供給される。この
蓄電池4は繰り返し充電することにより反復使用できる
ものである.この蓄電池4の電力はスイッチSを介して
負荷5に供給放電可能となっている.蓄電池4の端子電
圧vcは、電圧検出部6に与えられ、蓄電池4の充電又
は放電によって予め定められた一定電圧V d e t
に達したか否かの検出が行われる。この一定電圧V d
 e tは蓄電池4の充電完了時の最大ピーク電圧V 
I J Kより一段低い電圧値に設定されている.上記
蓄電池4の端子電圧■,が,一定電圧v de t以下
の時は、電圧検出部6より検出信号Qvが出力され、カ
ウンタ部7にリセッ} (R)信号として与えられ、一
定電圧V d e tを越えると、検t11信号QVが
出力されなくなる.この電圧検出部6としては,例えば
OFアンプとツェナーダイオード等からなる比較回路等
を用いることができる. カウンタ部7は、E端子にイネーブル信号が与えられ、
R端子にリセット信号が与えられない時に予め定められ
た一定時間カウントするもので、カウンタのほか、RS
型のフリップノロップも含んだ構成となっており、上記
検出信号Qvが7リップフロップのセット(S)端子及
びカウンタのりセツ} (R)端子に与えられ、カウン
タのキャリ信号がフリップフロップのりセッ} (R)
端子に与えられており、このフリップフロップのQ出力
が上記電流制御部2に電流増大信号CIとして与えられ
るとともに、カウンタのE端子にイネーブル信号として
与えられる. 従って、蓄電池4の端子電圧VCが一定電圧V d e
 tに達して検出信号Qvがカウンタ部7に与えられな
くなると、カウンタ部7はカウントを開始し,そのカウ
ント後のキャリ信号がフリップフびツプのR端子に入力
されて、そのQ出力すなわち電流増大信号CIが出力さ
れなくなる。このQ出力はカウンタ部7のイネーブル信
号でもあるので、カウンタ部7は非イネーブル状慝とな
ってカウントが終了させられる. 上記電流制御部2は、上述のカウンタ部7からの電流増
大信号CIが与えられている間は、電源回路lからの充
電電流Icをそのまま蓄電池4に供給するが、当該電流
Crが与えられなくなると電源回路lからの充電電流I
czからIclのレベルまで落とした小さい電流で蓄電
池4に供給する.この電流制御部2としては、例えば直
流チョッパ回路等を用いることができる.充電電流Ic
の低電流IC!のレベルは蓄電池4の自然放電による電
位降下を防ぐ程度のレベルに設定されている.上記電圧
検出部6の一定電圧V d e t とカウンタ部7の
カウント時間とは、蓄電池4の充電特性によって決まる
ものであるが、一定電圧V d e t としては、充
電完了時の最大ピーク電圧VlaXに近〈、充電特性曲
線の傾きの大きな安定した地点がよく、カウント時間は
この一定電圧V d e tから最大ピーク電圧v w
axまで達する時間に設定するのがよいが、必ずしもこ
れに限られるものではない. 上記電流制御部2からの充電電流Ieは、電流検出部3
で検出され、大電流Ic2のときは電流検出部3より充
電状態表示部8に駆動電流が与えられ、小電流Iclの
ときは、この駆動電流は与えられない、充電状態表示部
8はLED (発光ダイオード)等よりなり、駆動電流
が与えられると点灯して、充電中であることが示され、
駆動電流が与えられないと消灯して、充電が完了したこ
とが示される. く動 作〉 次に本実施例の動作について述べる. 第2図は、第1図の各部の出力レベルのタイムチャート
図を示し、第1の充電装置をAC′¥L源(チャージャ
)に接続すると、蓄電池4に充電電圧がかかり.第2図
TI に示すように、蓄電池4の端子電圧VCが下降し
て、一定電圧V d e tより下降することになる.
従って、電圧検出部6から検出信号Qvがカウンタ部7
に与えられるので,電流制御部2に電流増大信号CIが
与えられて、蓄電池4への充電電流Icが大電流Ic2
のレベルとなる. 充電がすすんで、第2図T2に示すように、蓄電池4の
端子電圧vcが一定電圧V d e tに達すると、電
圧検出部6からの検出信号Qνがカウンタ部7に与えら
れなくなるので、カウンタ部7はカウントを開始する.
蓄電池4の端子電庄vcが最大ピーク電圧V*axにほ
ぼ達したころ、第2図T3に示すようにカウンタ部7の
カウントは終了し、カウンタ部7からの電流増大信号C
Iが電流制882に与えられなくなり,蓄電池4への充
電電流Icが小電流Iclのレベルとなる.こうして、
最大ピーク電圧v waxになるまで、蓄電池4の充電
を正確に行うことができ、充電完了後は、蓄電池4の自
然放電を補う程度の小電流Iclが蓄電池4に供給され
るので、蓄電池4の電位降下を防ぐとともに、蓄電池4
の過充電も防止することができる. 第2図T4〜T7は上述のTI”T3 と全く同じ動作
となっているので,その説明は省略する.そして、充電
装置をAC電源(チャージャ)に接続したまま、スイッ
チSをオンして負荷5に蓄電池4から電力を供給放電す
ると、蓄電池4の端子電圧VCは下降し、一定電圧V 
d e tより下がると、第2図T8に示すように、電
圧検出部6よりカウンタ部7に検出信号Qvが再び出力
され、カウンタ部7より電流制御部2に電流増大信号C
Iが与えられて、大電流Ic2による充電が再開される
ことになる. この充電によって、一定電圧V d e tまで回復す
れば、上述のT2〜T3と同じくカウンタ部7でカウン
トが行われて、最大ピーク電圧v waxまでの充電が
なされ(第2図T9〜Too).以後小電流Iclによ
る自然放電を補うだけのトリクル充電が行われる(第2
図T+o”T++).こうして、充電完了後、AC電源
(チャージャ)に充電装置を接続したまま、負荷5に電
力を供給してもそれを補うようにして自動的に誤りなく
充電を再開させることができる. なお、本発明は上記実施例に限定されるものではな〈、
発明の趣旨を逸脱しない範囲で種々変形可能である. [発明の効果] この発明は以上詳細に説明したように、蓄電池の端子電
圧を、検出の容易な充電完了時の電圧より一段低い固定
した一定電圧で検出し、この一定電圧に達した後の一定
時間が経過するまでは大電流で充電を続け、この一定時
間経過後は小電流で充電するようにしたから、蓄電池の
端子電圧の検出は、電圧値の最大ピーク値を検出する時
のように、電圧値がいったん上って下った地点をつかま
えるため、電圧値の変化をたえず追っていく形をとらず
、固定した一定電圧に達するかどうかで行うので、回路
構威が簡単となり,機器の使用による一時的な電圧降下
を最大ピーク値への到達と誤認してしまうことがなくな
って、充電完了を正確に検出することができるほか、最
大ピーク電圧より一段低い電圧で電圧検出を行うため,
温度変化等により回路に設定した検出値がわずかに変動
して最大ピーク値を少しでも越えてしまって、充電が打
ち切られなくなるといったこともな〈なり、過充電を防
止することができる等の効果を奏する.
It should be noted that if no overcharging prevention circuit is provided, the cost will be lower, but it will be very inconvenient as you will have to constantly check whether charging has finished or not. [Object of the Invention] This invention was made in view of the above-mentioned circumstances, and its purpose is to provide a charging device that can accurately detect the completion of charging and prevent overcharging with a simple circuit configuration. The goal is to provide the following. [Summary of the Invention] In order to achieve the above-mentioned object, the present invention detects the terminal voltage of a storage battery at a fixed constant voltage that is one step lower than the voltage at the completion of charging, which is easy to detect, and then The key point is that charging is continued with a large current until a certain period of time has elapsed, and after this period of time, charging is performed with a small current. Therefore, the detection of the terminal voltage of a storage battery does not involve constantly tracking changes in the voltage value in order to detect the point where the voltage value rises and then falls, as when detecting the maximum peak value of the voltage value. Since this is done based on whether a fixed voltage has been reached, the circuit structure is simple and a temporary voltage drop due to equipment use will not be misinterpreted as reaching the maximum peak value. Also, the reason why we did not directly detect the maximum peak value is that if the detection value set in the circuit changes slightly due to temperature changes and exceeds the maximum peak value even slightly, charging will not be terminated. This is because the battery will become overcharged. [Example 1] An example of the present invention will be described in detail below with reference to the drawings. Figure 1 shows the overall circuit of the charging device. In the figure, 1 is a power supply circuit, and this circuit 1 rectifies the current from an alternating current (AC) power source, and also adjusts the voltage of the alternating current. This is to keep the output voltage constant even if the voltage fluctuates. The output current from the power supply circuit 1 is supplied to the storage battery 4 via the current control section 2 and the current detection section 3 as a charging TL current flow c. This storage battery 4 can be used repeatedly by repeatedly charging it. Electric power from this storage battery 4 can be supplied to and discharged from a load 5 via a switch S. The terminal voltage vc of the storage battery 4 is given to the voltage detection unit 6, and is a constant voltage V d e t determined in advance by charging or discharging the storage battery 4.
Detection is made as to whether or not this has been reached. This constant voltage V d
e t is the maximum peak voltage V when charging of the storage battery 4 is completed
The voltage value is set one step lower than IJK. When the terminal voltage ■, of the storage battery 4 is less than the constant voltage V de t, the voltage detection section 6 outputs a detection signal Qv, which is given to the counter section 7 as a reset} (R) signal, and the constant voltage V d When e t is exceeded, the test t11 signal QV is no longer output. As this voltage detection section 6, for example, a comparator circuit consisting of an OF amplifier, a Zener diode, etc. can be used. The counter section 7 receives an enable signal at the E terminal,
It counts for a predetermined period of time when a reset signal is not given to the R terminal.
The configuration also includes a flip-flop type flip-flop, and the detection signal Qv is applied to the set (S) terminal of the 7 flip-flops and the counter set (R) terminal, and the carry signal of the counter is applied to the set (S) terminal of the 7 flip-flops. } (R)
The Q output of this flip-flop is supplied to the current control section 2 as a current increase signal CI, and is also supplied to the E terminal of the counter as an enable signal. Therefore, the terminal voltage VC of the storage battery 4 is a constant voltage V de
When time t is reached and the detection signal Qv is no longer given to the counter section 7, the counter section 7 starts counting, and the carry signal after counting is input to the R terminal of the flip-flip, and its Q output, that is, the current The increased signal CI is no longer output. Since this Q output is also an enable signal for the counter section 7, the counter section 7 is placed in a non-enabled state and the counting is terminated. The current control unit 2 supplies the charging current Ic from the power supply circuit l to the storage battery 4 as is while the current increase signal CI from the counter unit 7 is applied, but the current Cr is no longer applied. and charging current I from power supply circuit l
A small current dropped from cz to Icl level is supplied to the storage battery 4. As this current control section 2, for example, a DC chopper circuit or the like can be used. Charging current Ic
Low current IC! The level of is set to a level that prevents potential drop due to natural discharge of the storage battery 4. The constant voltage V d e t of the voltage detection section 6 and the count time of the counter section 7 are determined by the charging characteristics of the storage battery 4, but the constant voltage V d e t is determined by the maximum peak voltage at the completion of charging. A stable point with a large slope of the charging characteristic curve is best, close to Vla
It is preferable to set the time to reach ax, but it is not necessarily limited to this. The charging current Ie from the current control section 2 is transmitted to the current detection section 3.
When the current Ic2 is large, the current detection section 3 applies a driving current to the charging state display section 8, and when the current Icl is small, this driving current is not applied. It consists of a light emitting diode (light emitting diode), etc., and lights up when a driving current is applied to indicate that it is being charged.
If no drive current is applied, the light will turn off, indicating that charging is complete. Operation> Next, the operation of this embodiment will be described. FIG. 2 shows a time chart of the output levels of each part in FIG. 1. When the first charging device is connected to an AC source (charger), a charging voltage is applied to the storage battery 4. As shown in FIG. 2 TI, the terminal voltage VC of the storage battery 4 falls below the constant voltage V d e t.
Therefore, the detection signal Qv from the voltage detection section 6 is sent to the counter section 7.
Therefore, the current increase signal CI is given to the current control unit 2, and the charging current Ic to the storage battery 4 becomes the large current Ic2.
The level of As charging progresses and the terminal voltage vc of the storage battery 4 reaches a constant voltage V de t as shown in FIG. The counter section 7 starts counting.
When the terminal voltage VC of the storage battery 4 almost reaches the maximum peak voltage V*ax, the counter section 7 finishes counting as shown in FIG. 2 T3, and the current increase signal C from the counter section 7 is
I is no longer applied to the current control 882, and the charging current Ic to the storage battery 4 becomes the level of the small current Icl. thus,
The storage battery 4 can be charged accurately until the maximum peak voltage v wax is reached, and after charging is completed, a small current Icl that is sufficient to compensate for the natural discharge of the storage battery 4 is supplied to the storage battery 4. In addition to preventing potential drop, storage battery 4
It can also prevent overcharging. T4 to T7 in Figure 2 operate exactly the same as TI''T3 above, so their explanation will be omitted. Then, while the charging device is connected to the AC power source (charger), switch S is turned on to load the load. When power is supplied and discharged from the storage battery 4 to the storage battery 4, the terminal voltage VC of the storage battery 4 decreases and becomes a constant voltage V.
When the voltage drops below d e t, as shown in T8 in FIG.
I is applied, and charging by the large current Ic2 is restarted. When the constant voltage V det is recovered by this charging, counting is performed in the counter section 7 in the same way as T2 to T3 described above, and charging is performed to the maximum peak voltage v wax (T9 to Too in FIG. 2). .. Thereafter, trickle charging is performed to compensate for the natural discharge due to the small current Icl (second
In this way, after charging is completed, even if power is supplied to the load 5 while the charging device is connected to the AC power source (charger), charging is automatically restarted without error by supplementing the power supplied to the load 5. It should be noted that the present invention is not limited to the above embodiments.
Various modifications can be made without departing from the spirit of the invention. [Effects of the Invention] As explained in detail above, the present invention detects the terminal voltage of the storage battery at a fixed constant voltage that is one step lower than the voltage at the completion of charging, which is easy to detect, and detects the terminal voltage of the storage battery after reaching this constant voltage. Since charging is continued with a large current until a certain period of time has elapsed, and after this period of time has elapsed, charging with a small current is performed, so detecting the terminal voltage of the storage battery is similar to detecting the maximum peak value of the voltage value. In order to detect the point at which the voltage value once rises and falls, the circuit structure is simplified and the equipment is This eliminates the possibility of misinterpreting a temporary voltage drop due to use as reaching the maximum peak value, making it possible to accurately detect charging completion. In addition, voltage detection is performed at a voltage one step lower than the maximum peak voltage.
The detection value set in the circuit changes slightly due to temperature changes and exceeds the maximum peak value even slightly, which prevents charging from being terminated.This has the effect of preventing overcharging. Play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は充電装置の全体回路図、第2図は第1図の各部
の出力レベルの状悪を示すタイムチャート図である.
Fig. 1 is an overall circuit diagram of the charging device, and Fig. 2 is a time chart showing the state of the output level of each part in Fig. 1.

Claims (1)

【特許請求の範囲】 繰り返し充電することにより反復使用できる蓄電池と、 この蓄電池の端子電圧が充電又は放電により予め定めら
れた充電完了時の電圧より低い一定電圧に達したか否か
を検出する電圧検出手段と、この電圧検出手段の検出結
果に基づいて、上記一定電圧に達した時点より予め定め
られた一定時間をカウントするカウント手段と、 このカウント手段がカウント動作を終了するまでは比較
的大きい電流を上記蓄電池に供給し、カウント動作終了
以降は比較的小さい電流を上記蓄電池に供給する電流制
御手段とを有することを特徴とする充電装置。
[Claims] A storage battery that can be used repeatedly by being repeatedly charged, and a voltage that detects whether the terminal voltage of this storage battery has reached a constant voltage lower than a predetermined voltage at the completion of charging due to charging or discharging. a detection means, a counting means for counting a predetermined fixed time from the time when the constant voltage is reached based on the detection result of the voltage detecting means, and a relatively long period of time until the counting means finishes the counting operation. A charging device comprising current control means for supplying current to the storage battery and supplying a relatively small current to the storage battery after the count operation ends.
JP22425390A 1990-08-28 1990-08-28 Charger Pending JPH03103038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22425390A JPH03103038A (en) 1990-08-28 1990-08-28 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22425390A JPH03103038A (en) 1990-08-28 1990-08-28 Charger

Publications (1)

Publication Number Publication Date
JPH03103038A true JPH03103038A (en) 1991-04-30

Family

ID=16810884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22425390A Pending JPH03103038A (en) 1990-08-28 1990-08-28 Charger

Country Status (1)

Country Link
JP (1) JPH03103038A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342098A (en) * 1976-09-29 1978-04-17 Takamisawa Cybernetics Method of operating instrument with tester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342098A (en) * 1976-09-29 1978-04-17 Takamisawa Cybernetics Method of operating instrument with tester

Similar Documents

Publication Publication Date Title
KR100286882B1 (en) Battery Charging System with Algebraic Analog Digital Converter to Automatically Convert Analog Signals
JP3048755B2 (en) Rechargeable battery charger
JP2740652B2 (en) Battery powered electrical devices
JP2776834B2 (en) Battery operated device
EP0580351B1 (en) Battery charging apparatus
KR940027251A (en) A method of monitoring the charge of sealed nickel storage cells and a charger using the method
JPH097641A (en) Charging method of secondary battery
US4855663A (en) Charging control apparatus
JPH08126222A (en) Charger
JPH08103032A (en) Charging for secondary battery
US5568040A (en) Charging arrangement for the time-controlled charging of at least one rechargeable cell
JPH03103038A (en) Charger
JPH06121466A (en) Charging method for object to be charged
JP2658063B2 (en) Secondary battery charge control circuit
JP3601032B2 (en) Charge control device, charger, and battery pack
JPH07312231A (en) Charging device for secondary battery
JP2679392B2 (en) Secondary battery charge control circuit
JP2506652Y2 (en) Charge current control device for charger
JPH0714261B2 (en) Charger
JPH0789719B2 (en) Secondary battery charge control circuit
JP2647146B2 (en) Secondary battery charge control device
JP3445825B2 (en) Rechargeable battery charger
JP3426616B2 (en) Battery charger
JPH08322157A (en) Charger
JPH01268430A (en) Charger