JPH03103027A - Power supply - Google Patents

Power supply

Info

Publication number
JPH03103027A
JPH03103027A JP1236875A JP23687589A JPH03103027A JP H03103027 A JPH03103027 A JP H03103027A JP 1236875 A JP1236875 A JP 1236875A JP 23687589 A JP23687589 A JP 23687589A JP H03103027 A JPH03103027 A JP H03103027A
Authority
JP
Japan
Prior art keywords
output
transformer
voltage
inverter
inverter transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1236875A
Other languages
Japanese (ja)
Other versions
JP2791128B2 (en
Inventor
Takashi Nakahara
隆 中原
Kenjiro Hori
謙治郎 堀
Toshio Yoshimoto
善本 敏生
Satoru Akiyama
哲 秋山
Yoshimi Kuramochi
喜美 倉持
Shunichi Masuda
増田 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17007088&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03103027(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1236875A priority Critical patent/JP2791128B2/en
Publication of JPH03103027A publication Critical patent/JPH03103027A/en
Application granted granted Critical
Publication of JP2791128B2 publication Critical patent/JP2791128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Abstract

PURPOSE:To prevent danger such as discharge and to lower the breakdown strength of a transformer by connecting respective outputs from output circuits, connected respectively with the outputs from a plurality of booster transformers, in series thereby controlling the input side of the booster transformer. CONSTITUTION:Inverter transformers T1, T2 are switched respectively by means of transistors Q1, Q2. Bases of the transistors Q1, Q2 are controlled based on a predetermined switching pulse. Capacitors C2-C5 and diodes D3-D6 constitute a halt-wave four fold voltage rectifier at the secondary of the inverter transformer T1. Absolute value of the output voltage on the side of the inverter transformer T1 is set high while that on the side of the inverter transformer T2 is set low thus setting the breakdown strength of the inverter transformer T1 low on the side of the feeder line 11 for a load. Consequently, an inexpensive power supply can be realized by the use of an inexpensive booster transformer having low primary and secondary breakdown strength.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電源装置、特に複数の昇圧トランスの出力にそ
れぞれ接続された出力回路の各出力を直列に接続し負荷
に給電する電源装置に関するものである. [従来の技術J 従来より、複写機の帯電器などのために高電圧を出力す
るD C/D Cインバータなどの電源装置が知られて
いる。この種の装置を使用する場合,種々の値の高電圧
が必要な場合があり、複数のインバータトランスの出力
を直列接続で組み合せて目的の高電圧を形成する方法が
知られている。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a power supply device, and particularly to a power supply device that connects in series each output of an output circuit connected to the output of a plurality of step-up transformers to supply power to a load. It is. [Prior Art J] Power supplies such as DC/DC inverters that output high voltage for use in chargers of copying machines and the like have been known. When using this type of device, high voltages of various values may be required, and a method is known in which the outputs of a plurality of inverter transformers are combined in series to form a desired high voltage.

このような構成で、2つ以上のトランスの出力を重ね合
わせる場合、従来では、使用されるインバータトランス
の1次・2次間絶縁耐圧は回路の出力電圧以上にとって
いた. [発明が解決しようとする課題1 また、一般に1次・2次間の耐圧仕様はトランスのコス
トに比例し、高耐圧のものほど装置の製造コストが増加
する。ところが、上記の従来技術では,比較的低価格で
変圧比の低いインバータトランスを駆使して昇圧回路で
高電圧を発生し、同様に別トランスで発生させた電圧と
重ね合わせて出力する場合、1次・2次間耐圧不足でリ
ーク、放電する恐れがあった。
Conventionally, when the outputs of two or more transformers are superimposed in such a configuration, the insulation voltage between the primary and secondary of the inverter transformer used is set to be higher than the output voltage of the circuit. [Problem to be Solved by the Invention 1] Furthermore, in general, the breakdown voltage specifications between the primary and secondary are proportional to the cost of the transformer, and the higher the breakdown voltage, the higher the manufacturing cost of the device. However, in the above-mentioned conventional technology, when a high voltage is generated in a step-up circuit by making full use of an inverter transformer that is relatively inexpensive and has a low transformation ratio, and is output by superimposing it with a voltage similarly generated by another transformer, There was a risk of leakage and discharge due to insufficient withstand voltage between the secondary and secondary components.

したがって、同じ出力電圧でも放電などの危険なくトラ
ンスの耐圧を低減できればコストダウンの効果を期待で
きる. 本発明の課題は、以上の問題を解決することにある。
Therefore, if the withstand voltage of the transformer can be reduced without the risk of discharge, even with the same output voltage, a cost reduction effect can be expected. An object of the present invention is to solve the above problems.

[課題を解決するための千段] 以上の課題を解決するために、本発明においては、複数
の昇圧トランスの出力にそれぞれ接続された出力回路の
各出力を直列に接続し前記昇圧トランスの入力側を制御
することにより各出力回路からの出力電圧の合成電圧を
負荷に給電する電源装置において、前記負荷の基準電位
と前記昇圧トランス入力の基準電位を等しく設定すると
ともに、各出力回路から構成される直列回路の一端を前
記基準電位に接続したうえ,他端を前記負荷の入力端子
に接続し、さらに、直列接続された出力回路のうち負荷
への出力側に近い回路ほど出力電圧の絶対値を高く、ま
た、前記基準電位に近い回路ほど出力電圧の絶対値を低
く設定した構成を採用した. [作 用J 以上の構成によれば、いずれの出力電圧の組み合せにお
いても、各昇圧トランスの出力側の電位を最も低くでき
るため,各昇圧トランスの1次・2次(入出力)コイル
間の必要な耐圧を低減できる. [実施例1 以下、図面に示す実施例に基づき、本発明を詳細に説明
する. 第1実施例 第1図は本発明の電源装置の第1の実施例を示している
. 図において符号TI.T2はインバータトランスで、そ
れぞれトランジスタQl.Q2でスイッチングされる.
トランジスタQl.Q2のベースは所定のスイッチング
パルスにより制御される.このベース駆動を停止すれば
、各インバータトランスの出力が停止される.また,こ
こでは不図示であるが、トランジスタQl,Q2のスイ
ッチングパルスの波形、周波数を調節する手段を設ける
ことで負荷電流,電圧を所望に制御できるのはいうまで
もない. インバータトランスTI.T2の1次側において,符号
Rl.R2はスイッチング速度を速めるための抵抗器で
ある。抵抗R3、R4はインバータトランスTI,T2
から見てコンデンサC1、C2と対になって積分器を構
成し、インバータトランスTI.T2のスイッチングノ
イズをインバータトランスTI,T2の1次コイル中点
と接続した電源ラインVccに伝えないためのフィルタ
として作用する。ただし、抵抗R3、R4の抵抗値は電
圧降下を無視できるほど小さく設定する。ダイ才一ドD
I.D2はインバータトランスTI.T2のリセット用
のものである.一方,インバータトランスTIの2次側
において、コンデンサC2〜C5とダイオードD3〜D
6は半波4倍電圧整流回路を構成している.また、イン
バータトランスT2の2次側において、コンデンサCI
とダイオードDIは半波整流回路を構成している. 上記各整流出力には、ラインと並列に抵抗R5、R6が
接続されている。また、インバータトランスT2の十側
の出力を接地し、一側の出力をラインlによりインバー
タトランスTlの一側出力と接続し、インバータトラン
スTIの十側から外部負荷Zに給電する.すなわち、イ
ンバークトランスTI.T2の2次側出力は直列に接続
されている。
[Thousand steps to solve the problem] In order to solve the above problems, in the present invention, each output of an output circuit connected to the output of a plurality of step-up transformers is connected in series, and the input of the step-up transformer is connected in series. In a power supply device that supplies a composite voltage of output voltages from each output circuit to a load by controlling the side, the reference potential of the load and the reference potential of the input of the step-up transformer are set equal, and each output circuit is One end of the series circuit is connected to the reference potential, and the other end is connected to the input terminal of the load, and further, among the series-connected output circuits, the closer to the output side to the load the more the absolute value of the output voltage increases. We adopted a configuration in which the absolute value of the output voltage is set to be high, and the absolute value of the output voltage is set to be low for circuits that are closer to the reference potential. [Function J] According to the above configuration, the potential on the output side of each step-up transformer can be made lowest for any combination of output voltages, so that the voltage between the primary and secondary (input and output) coils of each step-up transformer can be The required withstand voltage can be reduced. [Example 1] Hereinafter, the present invention will be explained in detail based on an example shown in the drawings. First Embodiment FIG. 1 shows a first embodiment of the power supply device of the present invention. In the figure, the symbol TI. T2 is an inverter transformer, and transistors Ql. It is switched in Q2.
Transistor Ql. The base of Q2 is controlled by a predetermined switching pulse. When this base drive is stopped, the output of each inverter transformer is stopped. Although not shown here, it goes without saying that the load current and voltage can be controlled as desired by providing means for adjusting the waveforms and frequencies of the switching pulses of the transistors Ql and Q2. Inverter transformer TI. On the primary side of T2, the symbol Rl. R2 is a resistor to increase switching speed. Resistors R3 and R4 are inverter transformers TI and T2
Viewed from above, the capacitors C1 and C2 form a pair to form an integrator, and the inverter transformer TI. It acts as a filter to prevent the switching noise of T2 from being transmitted to the power supply line Vcc connected to the inverter transformer TI and the midpoint of the primary coil of T2. However, the resistance values of the resistors R3 and R4 are set so small that the voltage drop can be ignored. Daisaiichido D
I. D2 is an inverter transformer TI. This is for resetting T2. On the other hand, on the secondary side of the inverter transformer TI, capacitors C2 to C5 and diodes D3 to D
6 constitutes a half-wave quadruple voltage rectifier circuit. Also, on the secondary side of the inverter transformer T2, the capacitor CI
and diode DI constitute a half-wave rectifier circuit. Resistors R5 and R6 are connected to each of the rectified outputs in parallel with the line. Further, the output on the positive side of the inverter transformer T2 is grounded, and the output on one side is connected to the one side output of the inverter transformer Tl through a line 1, and power is supplied to the external load Z from the positive side of the inverter transformer TI. That is, inverter transformer TI. The secondary outputs of T2 are connected in series.

なお、抵抗R5、R6は内部負荷抵抗で無負荷時のトラ
ンス出力電圧制限と、電圧の立上り・立下りの応答性を
調整している。
Note that resistors R5 and R6 are internal load resistors that limit the transformer output voltage when no load is applied and adjust the responsiveness of voltage rise and fall.

以上の構成において、トランジスタQ1.Q2のベース
にスイッチングパルスが印加された時、インバータトラ
ンスTI.T2の界圧比を同じとすると、2次側にはV
ccに昇圧比をかけた電圧が誘起される. たとえば、Vccを20V、昇圧比を50とすると、ト
ランス2次側にはl OOOVの電圧が誘起され、内部
負荷抵抗R5の両端電圧Vlは4000V、抵抗R6の
両端電圧V2は1 000Vとなり、外部負荷Zに印加
される電圧VOは4000−1000=3000Vとな
る.トランジスタQ1のベースにのみスイッチングパル
スが印加された場合はVl =4000V、V2=OV
.Lたがッテ、出力vOは4000Vとなる.また、ト
ランジスタQ2のベースにのみスイッチングパルスが印
加された場合、vl=OV.V2 =1000Vとなり
、出力VOは−iooovとなる.ただし、外部負荷Z
に比べて抵抗R5、R6が充分小さいと仮定する.以上
の設定では、インバータトランスTI側の出力電圧の絶
対値を高く,インバータトランスT2側の出力電圧の絶
対値を低く設定している.つまり,負荷への給電ライン
11側の高圧出力部の出力電圧の絶対値を高く、また、
接地側に近い高圧出力部の出力電圧の絶対値を低く設定
している。このような出力電圧設定によれば、以下に示
すように、少なくとも負荷への給電ライン11側のイン
バータトランスTIの耐圧を低く設定できる。
In the above configuration, transistor Q1. When a switching pulse is applied to the base of inverter transformer TI. If the field pressure ratio of T2 is the same, V on the secondary side
A voltage equal to cc multiplied by the boost ratio is induced. For example, when Vcc is 20V and the step-up ratio is 50, a voltage of lOOOV is induced on the secondary side of the transformer, the voltage Vl across the internal load resistor R5 is 4000V, the voltage V2 across the resistor R6 is 1000V, and the external The voltage VO applied to the load Z is 4000-1000=3000V. When the switching pulse is applied only to the base of transistor Q1, Vl = 4000V, V2 = OV
.. If the output voltage is 4000V. Moreover, when a switching pulse is applied only to the base of transistor Q2, vl=OV. V2 = 1000V, and the output VO becomes -iooov. However, external load Z
Assume that resistances R5 and R6 are sufficiently small compared to . In the above settings, the absolute value of the output voltage on the inverter transformer TI side is set high, and the absolute value of the output voltage on the inverter transformer T2 side is set low. In other words, the absolute value of the output voltage of the high voltage output section on the power supply line 11 side to the load is increased, and
The absolute value of the output voltage of the high voltage output section close to the ground side is set low. According to such output voltage setting, the withstand voltage of at least the inverter transformer TI on the power supply line 11 side to the load can be set low, as shown below.

まず、上記構成によれば、インバータトランスT2のみ
駆動した場合v2にIOOOVが誘起され、ラインlを
介してインバータトランスTIの2次コイルに印加され
る。したがって、インバータトランスTIの1次コイル
と2次コイルの間には約tooovの電位差が生じるた
め,インバータトランスTIの1次・2次間耐圧は少な
くとも1 000V必要である. 一方、インバータトランスTIのみ駆動した場合にはV
1=4000Vが誘起されて外部負荷抵抗Zに印加され
るが、インバータトランスT2の2次コイルは接地レベ
ルであるので、この動作状態では1次・2次耐圧に40
00Vは必要ない。
First, according to the above configuration, when only the inverter transformer T2 is driven, IOOOV is induced in v2, and is applied to the secondary coil of the inverter transformer TI via the line l. Therefore, since there is a potential difference of about tooov between the primary and secondary coils of the inverter transformer TI, the withstand voltage between the primary and secondary coils of the inverter transformer TI must be at least 1000V. On the other hand, when only the inverter transformer TI is driven, V
1 = 4000V is induced and applied to the external load resistance Z, but since the secondary coil of the inverter transformer T2 is at ground level, the primary and secondary withstand voltages are 40V in this operating state.
00V is not necessary.

したがって、インバータトランスTIは1 000Vの
電圧に耐え得る1次・2次間コイル耐圧をもてばよく、
またインバータトランスT2はインバータトランスTI
,T2をいずれも駆動した場合に備え同じ<tooov
の1次・2次耐圧をもてばよいことがわかる. このことをより明確にするために、第2図に異なる接続
構造を示す.インバータトランスTI、T2の2次側出
力の直列接続の順序を逆にし、インバータ.トランスT
I側の一端を接地し、インバータトランスT2側から外
部負荷抵抗Zに出力するようにしたものである。
Therefore, the inverter transformer TI only needs to have a coil breakdown voltage between the primary and secondary coils that can withstand a voltage of 1,000V.
In addition, inverter transformer T2 is inverter transformer TI
, T2, the same <tooov
It can be seen that it is sufficient to have primary and secondary breakdown voltages of . To make this more clear, Figure 2 shows different connection structures. The order of series connection of the secondary side outputs of inverter transformers TI and T2 is reversed, and the inverter transformers TI and T2 are connected in series. transformer T
One end of the I side is grounded, and the output is output from the inverter transformer T2 side to the external load resistor Z.

そして、インバータトランスTI.T2の2次側の整流
回路の構成は第1図と同じであるから、第2図では,出
力端に遠い(接地側の)トランスTIの昇圧出力の絶対
値のほうが大きくなっている.しかし、第1図の例と同
じ入力条件では、外部負荷抵抗Zに印加される電圧は第
1図の例と等しい.つまり、電源全体を見た場合、同様
の機能の電源と考えられる. ここで、第1図と同一の条件でインバータトランスTI
のみ駆動した場合を考えると、V1=4 0’0 0 
Vが誘起され、抵抗R6を介して外部負荷抵抗Zに40
00Vが印加されることになる.したがって,インバー
タトランスT2の2次コイルには4000Vが印加され
、インバータトランスT2の1次・2次間の耐圧は少な
くとも4000V以上必要となる。
And inverter transformer TI. Since the configuration of the rectifier circuit on the secondary side of T2 is the same as in Figure 1, in Figure 2, the absolute value of the boosted output of the transformer TI that is far from the output end (on the ground side) is larger. However, under the same input conditions as in the example of FIG. 1, the voltage applied to the external load resistor Z is the same as in the example of FIG. In other words, when looking at the power supplies as a whole, they can be considered to have similar functions. Here, under the same conditions as in Fig. 1, inverter transformer TI
Considering the case where only is driven, V1=4 0'0 0
V is induced into the external load resistance Z through the resistor R6.
00V will be applied. Therefore, 4000V is applied to the secondary coil of the inverter transformer T2, and the withstand voltage between the primary and secondary of the inverter transformer T2 must be at least 4000V or more.

したがって、第2図のような構成をとらず、第1図の構
成を用いることにより、インバータトランスTIの耐圧
を従来必要とされた4000VからIOOOVに大幅に
低減でき、リーク、放電などの危険なく、装置の製造コ
ストを低減することができる. 第2実施例 第3図に本発明の第2の実施例として、より一般化され
た電源装置の構成を示す。
Therefore, by using the configuration shown in Figure 1 instead of the configuration shown in Figure 2, the withstand voltage of the inverter transformer TI can be significantly reduced from the conventionally required 4000V to IOOOV, without the risk of leakage or discharge. , the manufacturing cost of the device can be reduced. Second Embodiment FIG. 3 shows the configuration of a more generalized power supply device as a second embodiment of the present invention.

ここでは,インバータトランスTl−T3の3つを使用
し、各々の1次側を一次駆動回路3l〜33でスイッチ
ングし,一方、各2次側に昇圧整流回路41〜43をそ
れぞれ接続し、整流出力を抵抗Rll−Rl3を介して
直列接続している。ここでは、昇圧整流回路4lの方が
出力側に、昇圧整流回路43の方が接地側に接続してあ
る。
Here, three inverter transformers Tl-T3 are used, and the primary side of each is switched by primary drive circuits 3l to 33, while step-up rectifier circuits 41 to 43 are connected to each secondary side to perform rectification. The outputs are connected in series via resistors Rll-Rl3. Here, the boost rectifier circuit 4l is connected to the output side, and the boost rectifier circuit 43 is connected to the ground side.

ここで、インバータトランスT3の昇圧整流回路41の
出力をV3、インバータトランスT4の昇圧整流回路4
2の出力をv4、インバータトランスT5の昇圧整流回
路43の出力をv5とする6各整流回路41〜43は、
第1図のような倍電圧整流回路などから構成される。ま
た1次側の1次駆動回路31〜33の構成も第1図と同
様である。
Here, the output of the step-up rectifier circuit 41 of the inverter transformer T3 is set to V3, and the step-up rectifier circuit 4 of the inverter transformer T4 is set to V3.
Each of the six rectifier circuits 41 to 43 has the output of step-up rectifier circuit 43 of inverter transformer T5 as v4, and the output of step-up rectifier circuit 43 of inverter transformer T5 as v5.
It consists of a voltage doubler rectifier circuit as shown in FIG. Further, the configuration of the primary drive circuits 31 to 33 on the primary side is also the same as that in FIG. 1.

このような構成では、3つの高圧出力の組み合せによっ
て、より多くの電圧値を出力できる.たとえば、外部負
荷抵抗Zに+4000V.+2000V,OV.−20
00V.−4000Vの5種類の電圧を印加する場合、
V3=4000V.V4 =−2000V.V5 =−
2000Vに設定し、l次駆動回路31〜33を駆動/
非駆動に制御してこれらの電圧を組み合わせることによ
って実現できる。
With such a configuration, more voltage values can be output by combining three high voltage outputs. For example, if the external load resistance Z is +4000V. +2000V, OV. -20
00V. When applying 5 types of voltages of -4000V,
V3=4000V. V4 = -2000V. V5=-
Set to 2000V and drive the l-order drive circuits 31 to 33.
This can be achieved by controlling these voltages in a non-driving manner and combining them.

このように、直列接続されたトランス出力回路のうち出
力側に近い回路ほど出力電圧の絶対値を高く,また、接
地側に近い回路ほど出力電圧の絶対値を低く設定するこ
とにより、前述の実施例同様にトランスの1次・2次間
の耐圧を低減できる。第3図の場合には,全てのトラン
スに2000V耐圧のものを使用できる. 第3図で上記のように電圧設定を行なわないとすると、
同じ電源出力を得る方法としては、v3=−2000V
,V4 =−2000V%V5 =+4000Vとなる
ようにそれぞれの昇圧整流回路を構成することが考えら
れるが、この構成では第2図の場合と同様にインバータ
トランスT3、T4の耐圧を4000Vにしなければな
らない。
In this way, among transformer output circuits connected in series, the circuit closer to the output side is set to have a higher absolute value of the output voltage, and the circuit closer to the ground side is set to have a lower absolute value of the output voltage. Similarly to the example, the withstand voltage between the primary and secondary of the transformer can be reduced. In the case of Figure 3, 2000V withstand voltage can be used for all transformers. If you do not set the voltage as shown above in Figure 3,
To obtain the same power output, v3=-2000V
, V4 = -2000V%V5 = +4000V, but in this configuration, the withstand voltage of inverter transformers T3 and T4 must be set to 4000V as in the case of Fig. 2. No.

以上に示したように、3つのトランス出力を組み合せる
場合でも直列接続されたトランス出力回路のうち出力側
に近い回路ほど出力電圧の絶対値を高く、また、接地側
に近い回路ほど出力電圧の絶対値を低く設定することに
より,各トランスについて最も1次・2次耐圧の低い耐
圧の組み合せを実現でき、リーク、放電などの危険なく
簡単安価な電源装置を提供できる。
As shown above, even when three transformer outputs are combined, the circuit closer to the output side of the transformer output circuits connected in series has a higher absolute value of the output voltage, and the circuit closer to the ground side has a higher absolute value of the output voltage. By setting the absolute value low, it is possible to achieve the combination of the lowest primary and secondary withstand voltages for each transformer, and it is possible to provide a simple and inexpensive power supply device without risks such as leakage and discharge.

[発明の効果] 以上から明らかなように、本発明によれば、複数の昇圧
トランスの出力にそれぞれ接続された出力回路の各出力
を直列に接続し前記昇圧トランスの入力側を制御するこ
とにより各出力回路からの出力電圧の合成電圧を負荷に
給電する電源装置において、前記負荷の基準電位と前記
昇圧トランス入力の基準電位を等しく設定するとともに
,各出力回路から構成される直列回路の一端を前記基準
電位に接続したうえ、他端を前記負荷の入力端子に接続
し、さらに、直列接続された出力回路のうち負荷への出
力側に近い回路ほど出力電圧の絶対値を高く、また、前
記基準電位に近い回路ほど出力電圧の絶対値を低く設定
した構成を採用しているので、いずれの出力電圧の組み
合せにおいても、各界圧トランスの出力側の電位を最ち
低くできるため、各界圧トランスの1次・2次(入出力
)コイル間の必要な耐圧を低減でき、リーク,放電など
の危険なく、より1次・2次耐圧の低い安価な昇圧トラ
ンスを用いて簡単安価な電源装置を実現できる.
[Effects of the Invention] As is clear from the above, according to the present invention, each output of the output circuit connected to the output of a plurality of step-up transformers is connected in series, and the input side of the step-up transformer is controlled. In a power supply device that supplies a composite voltage of output voltages from each output circuit to a load, the reference potential of the load and the reference potential of the input of the step-up transformer are set equal, and one end of the series circuit composed of each output circuit is set to be equal to the reference potential of the load. The circuit is connected to the reference potential and the other end is connected to the input terminal of the load, and further, among the output circuits connected in series, the circuit closer to the output side to the load has a higher absolute value of the output voltage. Since we have adopted a configuration in which the absolute value of the output voltage is set lower for the circuit closer to the reference potential, in any combination of output voltages, the potential on the output side of each field voltage transformer can be lowest. The required withstand voltage between the primary and secondary (input and output) coils can be reduced, and an inexpensive step-up transformer with lower primary and secondary withstand voltages can be used to create a simple and inexpensive power supply without the risk of leakage or discharge. realizable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電源装置の第l実施例の主要部の
回路図、第2図は第1図の構成における作用を示すため
の回路図、第3図は本発明の第2実施例の回路図である
. Rl−R6、Rll−R工l3・・・抵抗DI−D6・
・・ダイオード Ql,Q2・・・トランジスタ TI,T2・・・インバータトランス 2 −・一外部負荷抵抗 31〜33・・・l次駆動回路 4l〜4 3 −・・昇圧整流回路
FIG. 1 is a circuit diagram of the main parts of a first embodiment of a power supply device according to the present invention, FIG. 2 is a circuit diagram showing the operation of the configuration of FIG. 1, and FIG. 3 is a circuit diagram of a second embodiment of the present invention. This is the circuit diagram. Rl-R6, Rll-R engineering l3...Resistance DI-D6.
...Diodes Ql, Q2...Transistors TI, T2...Inverter transformer 2 -.External load resistors 31 to 33...L-order drive circuits 4l to 4 3 -.Step-up rectifier circuit

Claims (1)

【特許請求の範囲】 1)複数の昇圧トランスの出力にそれぞれ接続された出
力回路の各出力を直列に接続し前記昇圧トランスの入力
側を制御することにより各出力回路からの出力電圧の合
成電圧を負荷に給電する電源装置において、 前記負荷の基準電位と前記昇圧トランス入力の基準電位
を等しく設定するとともに、 各出力回路から構成される直列回路の一端を前記基準電
位に接続したうえ、他端を前記負荷の入力端子に接続し
、 さらに、直列接続された出力回路のうち負荷への出力側
に近い回路ほど出力電圧の絶対値を高く、また、前記基
準電位に近い回路ほど出力電圧の絶対値を低く設定した
ことを特徴とする電源装置。
[Claims] 1) A composite voltage of output voltages from each output circuit by connecting in series the outputs of output circuits respectively connected to the outputs of a plurality of step-up transformers and controlling the input side of the step-up transformers. In a power supply device that supplies power to a load, the reference potential of the load and the reference potential of the step-up transformer input are set equal, one end of a series circuit composed of each output circuit is connected to the reference potential, and the other end is connected to the reference potential. is connected to the input terminal of the load, and further, among the output circuits connected in series, the circuit closer to the output side to the load has a higher absolute value of the output voltage, and the circuit closer to the reference potential has a higher absolute value of the output voltage. A power supply device characterized by setting a low value.
JP1236875A 1989-09-14 1989-09-14 Power supply Expired - Lifetime JP2791128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236875A JP2791128B2 (en) 1989-09-14 1989-09-14 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236875A JP2791128B2 (en) 1989-09-14 1989-09-14 Power supply

Publications (2)

Publication Number Publication Date
JPH03103027A true JPH03103027A (en) 1991-04-30
JP2791128B2 JP2791128B2 (en) 1998-08-27

Family

ID=17007088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236875A Expired - Lifetime JP2791128B2 (en) 1989-09-14 1989-09-14 Power supply

Country Status (1)

Country Link
JP (1) JP2791128B2 (en)

Also Published As

Publication number Publication date
JP2791128B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US6567278B2 (en) Electrical power supply suitable in particular for DC plasma processing
US4184197A (en) DC-to-DC switching converter
US9729063B2 (en) Voltage adjustment system and method for parallel-stage power converter
US6963497B1 (en) Power converter with an inductor input and switched capacitor outputs
CN100472921C (en) Active common mode EMI filter
WO2003094330A1 (en) Active common mode emi filters
US4855891A (en) Power supply design
WO1986001048A1 (en) Switch-mode power supply
US4910653A (en) Power converter with cascaded output transformers
US20030222504A1 (en) Input power sharing
US8891265B2 (en) Overvoltage limitation in a switch-mode converter
US4771373A (en) DC power supply with electronically controlled power dissipation
JPH03103027A (en) Power supply
JPH0549257A (en) Switching power supply
US4912447A (en) Transformer with channels in bobbin
JPH04364358A (en) Dc-dc converter
KR100705856B1 (en) Rectifier with midpoint feed
US5315215A (en) High-voltage switching circuit
JP3349081B2 (en) Self-excited resonance type power supply
JP3378493B2 (en) Self-excited resonance power supply
US6157550A (en) Switching power supply circuit
JP3490327B2 (en) Switching power supply
JP3258620B2 (en) Switching power supply
JP3492779B2 (en) Power supply
JP3571959B2 (en) Switching power supply

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12