JPH0310250B2 - - Google Patents

Info

Publication number
JPH0310250B2
JPH0310250B2 JP3557784A JP3557784A JPH0310250B2 JP H0310250 B2 JPH0310250 B2 JP H0310250B2 JP 3557784 A JP3557784 A JP 3557784A JP 3557784 A JP3557784 A JP 3557784A JP H0310250 B2 JPH0310250 B2 JP H0310250B2
Authority
JP
Japan
Prior art keywords
switch
switching
line
core
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3557784A
Other languages
Japanese (ja)
Other versions
JPS60180223A (en
Inventor
Naohisa Komatsu
Yutaka Shimojo
Taku Takeuchi
Kenji Shimazaki
Naoyuki Atobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3557784A priority Critical patent/JPS60180223A/en
Publication of JPS60180223A publication Critical patent/JPS60180223A/en
Publication of JPH0310250B2 publication Critical patent/JPH0310250B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/74Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for increasing reliability, e.g. using redundant or spare channels or apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、通信線路の切替工事において、切替
の対象とする既設線路の通信に影響を及ぼすこと
なく、複数の通信の経路を既設線路から新設線路
に切替え、かつ当該複数の通信の経路の監視を行
う通信線路の多対連続切替システムに関するもの
である。
[Detailed Description of the Invention] Industrial Application Field The present invention provides a method for converting multiple communication routes from existing lines to new lines without affecting the communication on the existing lines to be switched during communication line switching work. The present invention relates to a multi-to-continuous switching system for communication lines that performs switching between communication lines and monitoring the plurality of communication routes.

従来例の構成とその問題点 従来の心線切替には、切替の対象とする既設心
線が通信中でないことを確認し、当該既設心線を
切断して既設心線と新設心線を接続する第1の手
段と、前記既設心線に新設心線を接続し、両心線
が電気的に導通した後、既設心線を切断する第2
の手段がある。
Conventional configuration and its problems In conventional fiber switching, it is necessary to confirm that the existing fiber to be switched is not in communication, and then disconnect the existing fiber and connect the existing fiber and the new fiber. A first means for connecting the new core wire to the existing core wire, and a second means for cutting the existing core wire after both core wires are electrically connected.
There are means to do so.

前記第1の手段は、通信中の心線に適用できな
いため、前記既設心線の通信が終了するまで、心
線切替は不可能であり、通信が行われていない心
線であつて、切替作業中に通信が開始されると、
当該通信は中断される。
Since the first means cannot be applied to the fibers that are in communication, it is impossible to switch the fibers until the communication of the existing fibers ends. When communication starts during work,
The communication is interrupted.

また、前記第2の手段は、前記既設心線と新設
心線が電気的に導通した時点で瞬間点に伝送信号
のレベルが変動し、当該既設心線を含む通信線路
の平衡が悪化して雑音の影響を受け易くなる。当
該通信線路が電話回線であれば、瞬間的に音声信
号のレベルが変動しても、あるいは多少の雑音が
重量されても通信を続けることが可能である。し
かしながら、通信線路がデータ回線である場合に
は、瞬間的なレベル変動もしくは雑音が通信を途
絶する原因となる。
Further, the second means is such that the level of the transmission signal fluctuates at a moment when the existing core wire and the newly installed core wire are electrically connected, and the balance of the communication line including the existing core wire is deteriorated. Becomes more susceptible to noise. If the communication line is a telephone line, it is possible to continue communication even if the level of the voice signal changes momentarily or even if there is some noise. However, if the communication line is a data line, instantaneous level fluctuations or noise can cause communication to be interrupted.

このため、切替を行う通信線路がデータ回線で
ある場合には、通信を停止してその後に切替を実
施し、かつ切替後の通信線路の状態を監視するべ
く作業標準で定められている。
For this reason, when the communication line to be switched is a data line, the work standard stipulates that communication should be stopped, then the switch should be carried out, and the state of the communication line after the switch should be monitored.

しかしながら、近年データ回線が増加し、かつ
通信線路のデイジタル化が進んでおり、従来の心
線切替技術では切替工事の実施が困難になつてき
た。
However, in recent years, the number of data lines has increased and communication lines have become increasingly digital, making it difficult to carry out switching work using conventional fiber switching techniques.

また、前記第1及び第2の手段は、いずれも1
心線毎に切替を行うものであるため、作業能率が
悪いという問題があつた。
Further, the first and second means are both
Since switching was performed for each core, there was a problem of poor work efficiency.

ところで先行技術として、既設線路の通信に影
響を与えず、当該通信の経路を既設線路から新設
線路に切替え、かつ当該切替が確実に実施された
ことを確認するため切替えの前後及び切替えの
間、前記経路を監視できる通信線路の切替装置が
特願昭58−37011号(第1先願発明という。)、特
願昭58−37012号(第2先願発明という。)として
提案されている。
By the way, as a prior art, in order to switch the communication route from the existing line to the new line without affecting the communication on the existing line, and to confirm that the switch has been reliably carried out, there is a method before, during and after the switch. A communication line switching device capable of monitoring the route has been proposed in Japanese Patent Application No. 58-37011 (referred to as the first prior invention) and Japanese Patent Application No. 58-37012 (referred to as the second prior invention).

特願昭58−37011号を第1図に示す。 The patent application No. 58-37011 is shown in Figure 1.

図において、Mc1は第1の切替回路、Mc2は
第2の切替回路、RT1,RT1′は第1、第2の
抵抗変換部、RT2,RT2′は第3、第4の抵抗
変換部、Rvは信号受信部、Ocは信号送信部、
CT1は第1制御部、CR2は第2制御部、Sは送
信器、Rは受信機、T1,T2,T3は第1のT
1′,T2′,T3′は第2の抵抗変換部に設けら
れた端子、T4,T5,T6は第3の、T4′,
T5′,T6′は第4の抵抗変換部に設けられた端
子、を示す。
In the figure, Mc1 is the first switching circuit, Mc2 is the second switching circuit, RT1 and RT1' are the first and second resistance conversion sections, RT2 and RT2' are the third and fourth resistance conversion sections, and Rv is the signal receiving section, Oc is the signal transmitting section,
CT1 is the first control unit, CR2 is the second control unit, S is the transmitter, R is the receiver, T1, T2, T3 are the first T
1', T2', T3' are terminals provided in the second resistance conversion section, T4, T5, T6 are terminals provided in the third resistance converter, T4',
T5' and T6' indicate terminals provided in the fourth resistance conversion section.

第1先願発明の通信線路の切替装置Kは第1、
第2の切替回路Mc1,Mc2からなり、第1の切
替回路Mc1は第1、第2の抵抗変換部RT1,
RT1′、第1制御部CT1、信号受信部Rvおよび
送信部Sから、第2の切替回路Mc2は第3、第
4の抵抗変換部RT2,RT2′、第2制御部CT
2、信号送信部Ocおよび受信器Rから構成され、
第1制御部CT1と送信器Sで第1回路制御部を、
第2制御部CT2と受信器Rで第2回路制御部、
を構成する。
The communication line switching device K of the first prior invention is the first,
It consists of second switching circuits Mc1 and Mc2, and the first switching circuit Mc1 connects the first and second resistance converters RT1,
RT1', first control unit CT1, signal reception unit Rv and transmission unit S, second switching circuit Mc2 connects third and fourth resistance conversion units RT2, RT2', second control unit CT
2. Consists of a signal transmitter Oc and a receiver R,
The first circuit control unit is configured by the first control unit CT1 and the transmitter S,
A second circuit control unit with the second control unit CT2 and the receiver R;
Configure.

Ci(i=1〜6)は導電クリツプであり、既設
線路Poもしくは新設線路PNと第1、第2切替回
路Mc1,Mc2との間の電気的な導通を図る機能
を持ち、電気的な導通が得られるコードHcによ
つて第1(第2)抵抗変換部RT1(RT1′)及
び第3(第4)抵抗変換部RT2(RT2′)の端
子T1〜T6(T1′〜T6′)に接続されてい
る。第1、第2および第3、第4抵抗変換部RT
1,RT1′及びRT2,RT2′は機械的接点と抵
抗器群から構成され、それぞれの抵抗変換部の前
記端子間における抵抗値は時間的に変化する。
Ci (i = 1 to 6) is a conductive clip that has the function of establishing electrical continuity between the existing line Po or the new line P N and the first and second switching circuits Mc1 and Mc2. The terminals T1 to T6 (T1' to T6') of the first (second) resistance conversion section RT1 (RT1') and the third (fourth) resistance conversion section RT2 (RT2') are connected by the code Hc that provides continuity. It is connected to the. 1st, 2nd, 3rd and 4th resistance converter RT
1, RT1' and RT2, RT2' are composed of mechanical contacts and a group of resistors, and the resistance value between the terminals of each resistance converting section changes over time.

先行技術の第1出願発明の通信線路の切替装置
の動作は、本発明の動作とほとんど同じであるの
で、本発明において説明することで省略する。
The operation of the communication line switching device according to the prior art invention of the first application is almost the same as the operation of the present invention, so a description thereof will be omitted in the present invention.

先行技術の第1、第2先願発明は自動的に切替
えることのできない欠点があつた。
The prior art inventions of the first and second prior applications had the drawback that they could not be automatically switched.

発明の目的 本発明は先願発明の欠点を除去し、通信線路の
切替を自動的に実施すると共に、作業性、信頼性
の向上をはかることを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to eliminate the drawbacks of the prior invention, to automatically switch communication lines, and to improve workability and reliability.

発明の構成 本発明は、第1の切替回路と第2の切替回路を
設け両切替回路を空路回路で接続し、前記第1の
切替回路には第1、第2の心線切替部を、前記第
2の切替回路には第3、第4の心線切替部を設
け、通信線路の切替を実施する箇所において、前
記第1、第2と第3、第4のそれぞれの心線切替
部には既設線路に接続する端子群(T1,T2)、
(T1′,T2′)と(T5,T6)、(T5′,T6′)と新設線
路に接続する端子群(T3、T′3)と(T4)、(T′4
を設け、前記端子群(T1,T′1)、(T2,T′2)と
(T5,T′5)、(T6,T′6)を既設通信線路の切替箇
所の両側に、前記端子群(T3,T′3)、(T4,T′4
を新設線路の両端に接続し、前記第3、第4の心
線切替部、既設、新設通信線および前記第1、第
2の心線切替部を経て、また前記信号送信部より
の参照信号を前記空路回路を経て、前記信号受信
部に接続し、前記第1制御部と第2制御部を動作
し、既設線路と新設線路を切替える通信線路の切
替装置において、各前記心線切替部を、前記既設
線路の複数の心線対より1心線対を選択する第1
スイツチ、第2スイツチと前記新設線路の複数の
心線対より1心線対を選択する第3スイツチ、一
方前記既設線路の切替点間に任意の1心線対の短
絡(ON)もしくは開放(OFF)できる第4スイ
ツチと前記既設線路と新設線路間に任意の1心線
対の短絡(ON)もしくは開放(OFF)ができる
第5スイツチ、更に前記第2スイツチまたは第3
スイツチに切換える第6スイツチ、外部回路の信
号を前記第1スイツチと第6スイツチに切換える
第7スイツチおよび第1スイツチと第6スイツチ
間に高い抵抗値から低い抵抗値に減少できる抵抗
変換部を設けて構成し、前記第4のスイツチを短
絡し、かつ第5のスイツチを開放し、前記既設線
路及び新設線路から任意の1心線対を選択した前
記第1のスイツチと第3のスイツチの間に挿入さ
れた前記抵抗変換部を高い抵抗値から低い抵抗値
に減少し、しかる後、前記第5のスイツチにおい
て、前記任意の1心線対と電気的導通をとつた接
点を短絡し、第4のスイツチにおいて、前記任意
の1心線対と電気的導通をとつた接点を開放し、
前記任意の1心線対を選択した第1のスイツチ及
び第2のスイツチの間に挿入された前記抵抗変換
部を低い抵抗値から高い抵抗値に増加し、前記第
1スイツチを第2もしくは第3のスイツチのいず
れかに接続した状態で前記スイツチで電気的導通
をとつた1心線対に前記信号送信部より交流信号
を送出し、前記交流信号と前記信号送信部からの
参照信号を用い前記信号受信部の同期検波器で同
期検波し、前記検波出力を表示器で表示し、前記
選択された1心線対の監視を行うと共に前記検波
出力を前記第1制御部に入力し、前記既設線路及
び新設線路の複数の心線対につき、前記の制御を
実施し、通信線路の複数の心線対の切替を自動的
に行い、かつ当該複数の心線対の切替前後及び切
替の間、前記通信線路を監視できるよう構成した
ことを特徴とする。
Structure of the Invention The present invention provides a first switching circuit and a second switching circuit, and connects both switching circuits with an air circuit, and the first switching circuit has first and second core switching parts, The second switching circuit is provided with third and fourth core switching units, and each of the first, second, third, and fourth core switching units is provided at a location where communication line switching is performed. is a group of terminals (T 1 , T 2 ) connected to the existing line,
(T 1 ′, T 2 ′), (T 5 , T 6 ), (T 5 ′, T 6 ′), terminal group (T 3 , T′ 3 ), (T 4 ), ( T'4 )
and connect the terminal groups (T 1 , T' 1 ), (T 2 , T' 2 ), (T 5 , T' 5 ), (T 6 , T' 6 ) on both sides of the switching point of the existing communication line. , the terminal group (T 3 , T′ 3 ), (T 4 , T′ 4 )
are connected to both ends of the newly installed line, and the reference signal from the signal transmission unit is transmitted through the third and fourth core switching units, the existing and newly installed communication lines, and the first and second core switching units. is connected to the signal receiving section through the air circuit, operates the first control section and the second control section, and switches between the existing line and the new line, wherein each of the core wire switching sections , a first step of selecting one core pair from a plurality of core pairs of the existing line;
switch, a second switch and a third switch that selects one fiber pair from a plurality of fiber pairs on the new line, and a short circuit (ON) or an open (open) of any one fiber pair between the switching point of the existing line. OFF), a fifth switch that can short-circuit (ON) or open (OFF) any one fiber pair between the existing line and the new line, and further the second switch or the third switch.
A sixth switch that switches the external circuit to the first switch and the sixth switch, a seventh switch that switches the external circuit signal to the first switch and the sixth switch, and a resistance converter that can reduce the resistance from a high resistance value to a low resistance value between the first switch and the sixth switch. between the first switch and the third switch, configured to short-circuit the fourth switch, open the fifth switch, and select any one fiber pair from the existing line and the new line. The resistance converter inserted in the switch is reduced from a high resistance value to a low resistance value, and then, in the fifth switch, the contact point that is electrically connected to the arbitrary one-core wire pair is short-circuited, and the fifth switch is connected to the fifth switch. In the switch No. 4, open the contact that has electrical continuity with the arbitrary one-core wire pair,
The resistance converter inserted between the first switch and the second switch that selected the arbitrary one-core wire pair is increased from a low resistance value to a high resistance value, and the first switch is changed to a second or second switch. The signal transmitter sends out an alternating current signal to one core wire pair that is electrically connected to the switch when the switch is connected to one of the three switches, and the alternating current signal and the reference signal from the signal transmitter are used. synchronously detecting the signal with a synchronous detector of the signal receiving section, displaying the detected output on a display, monitoring the selected single fiber pair, and inputting the detected output to the first control section; The above control is carried out for the plurality of core pairs of the existing line and the new line, and the plurality of core pairs of the communication line are automatically switched, and the plurality of core pairs of the communication line are automatically switched before, during and after switching. , characterized in that the communication line is configured to be able to be monitored.

実施例の説明 第2図は本発明の通信線路の多対連続切替シス
テムの一実施例のブロツク図を示す。
DESCRIPTION OF THE EMBODIMENTS FIG. 2 shows a block diagram of an embodiment of the multiple-pair continuous switching system for communication lines of the present invention.

図において、第1図と第一符号は同一部品、同
一部分、対応部品を示す。
In the drawings, FIG. 1 and the first reference numerals indicate the same parts, the same portions, and corresponding parts.

図において、Hgj(j=1〜6)は導通用プロ
ーブであり、既設線路Poもしくは新設線路PN
複数の心線対と切替装置Mc1,Mc2との間の電
気的導通が得られる機能を持ち、電気的導通が得
られるコードHcによつて、心線切替部RT1
(RT1′)及びRT2(RT2′)の端子群T1〜T6
(T1′〜T6′)に接続されている。
In the figure, Hgj (j = 1 to 6) is a continuity probe, which has the function of providing electrical continuity between multiple core pairs of the existing line Po or the new line P N and the switching devices Mc1 and Mc2. The core switching section RT1 is
(RT1') and RT2 (RT2') terminal group T 1 to T 6
(T 1 ′ to T 6 ′).

本発明においては、通信線路との電気的導通を
外部から取出すことが可能な構造を有するコネク
タを用い、当該コネクタを通信線路に装着し、前
記導通用プローブを当該コネクタと接続すること
で、当該通信線からコネクタを介して電気的導通
を得る方法も用いる。
In the present invention, a connector having a structure that allows electrical continuity with a communication line to be taken out from the outside is used, the connector is attached to the communication line, and the continuity probe is connected to the connector. A method of obtaining electrical continuity from a communication line through a connector is also used.

前記導電用プローブは、針もしくは刃の部分を
有する構成とし、当該針もしくは刃に通信線路被
覆を貫通して当該通信線路から直接電気的導通を
得る方法を用いることも可能である。しかし、本
発明の方法の方が作業性、信頼性が向上する。
It is also possible to use a method in which the conductive probe has a needle or blade portion, and the needle or blade penetrates the communication line coating to obtain direct electrical continuity from the communication line. However, the method of the present invention has improved workability and reliability.

ここで端子群T1〜T6及びT1′〜T6′は、複数の
心線との電気的導通を図ることが可能であり、
TjとT′j(j=1〜6)で対を構成する。
Here, the terminal groups T 1 to T 6 and T 1 ′ to T 6 ′ can be electrically connected to a plurality of core wires,
Tj and T′j (j=1 to 6) constitute a pair.

本実施例においては、前記導通用プローブHgj
(j=1〜6)はn対の心線と電気的導通を得る
ことが可能で、端子群Tj(j=1〜6)は、それ
ぞれn個の端子から構成されている。
In this embodiment, the continuity probe Hgj
(j=1 to 6) can obtain electrical continuity with n pairs of core wires, and each terminal group Tj (j=1 to 6) is composed of n terminals.

心線切替部RT1,RT1′及びRT2,RT2′
は機械的接点と抵抗値を制御する抵抗変換部より
構成され、それぞれの心線切替部の前記端子群間
における抵抗値は時間的に変化する。
Core switching parts RT1, RT1' and RT2, RT2'
is composed of a mechanical contact and a resistance conversion section that controls the resistance value, and the resistance value between the terminal groups of each core wire switching section changes over time.

切替を行うには、まず既設線路Poの切替点X
をはさんで2箇所において導通用プローブHgj
(j=1〜4)により既設線路Poと電気的導通を
図り、かつ導通用プローブHgj(j=5、6)に
より新設線路PNと電気的導通を図る。
To perform switching, first select the switching point X of the existing line Po.
Connect the continuity probe Hgj at two locations across the
(j = 1 to 4) to establish electrical continuity with the existing line Po, and conduction probe Hgj (j = 5, 6) to establish electrical continuity with the new line P N.

切替装置Mc2において、信号送信部Ocは一般
の発信器であり、交流信号Acと同期検波用の参
照信号RFの平衡出力する。交流信号Acのレベル
は、既設線路Poの通信に影響を及ぼさないため
にできる限り小さいことが望ましいが、実行上は
−50dBm程度とすれば十分である。
In the switching device Mc2, the signal transmitting unit Oc is a general oscillator, and outputs an AC signal Ac and a reference signal RF for synchronous detection in a balanced manner. It is desirable that the level of the AC signal Ac is as low as possible so as not to affect communication on the existing line Po, but a level of about -50 dBm is sufficient in practice.

切替に先立ち、切替点間で当該交流信号Acの
送受信を行い、通信線路の電気的導通及び極性を
確認することが望ましく、一例として交流信号
Acの送受信の経路が心線切替部RT2,RT2′→
端子群T6,T6′→導通用プローブHg4→導通用
プローブHg1→端子群T1,T1′→心線切替部RT
1,RT1′→信号受信部Rvとなる場合につき説
明する。
Prior to switching, it is desirable to transmit and receive the AC signal Ac between the switching points and check the electrical continuity and polarity of the communication line.
The AC transmission/reception route is the core switching section RT2, RT2'→
Terminal group T 6 , T 6 ′ → Continuity probe Hg 4 → Continuity probe Hg 1 → Terminal group T 1 , T 1 ′ → Core wire switching section RT
1, RT1'→signal receiving section Rv will be explained.

前記交流信号Acは、既設線路Poの1心線対を
選定して送受信され、当該送受信を複数の心線対
につき繰返す。交流信号Acを送受信する心線対
の選定及び繰返しは心線切替部RT1,RT1′及
びRT2,RT2′にて行われ、当該心線切替部
は、制御部CT1,CT2が出力した駆動信号Sc
によつて制御される。ここで、切替装置Mc1の
制御部CT1は、駆動信号Scを出力する際に、制
御信号CRも出力し、制御信号CRは送信器Sを介
して空線路Pvに送出され、切替装置Mc2では送
信部Sよりの制御信号CR′を受信器Rで受信し、
制御部CT2に制御信号CRで入力される。ここで
空線路Pvでは、当該制御信号CR′とともに前記参
照信号RFも送受信されるため、受信器Rは、制
御信号CR′のみを受信する機能を持つ必要があ
る。但し、制御信号CR′と参照信号RFを別々の空
線路にて送受信する場合はこの限りでない。
The AC signal Ac is transmitted and received by selecting one fiber pair of the existing line Po, and the transmission and reception is repeated for a plurality of fiber pairs. The selection and repetition of the core wire pairs for transmitting and receiving the AC signal Ac are performed by the core switching units RT1, RT1' and RT2, RT2', and the core switching units are configured to select and repeat the selection and repetition of the core pair that transmits and receives the AC signal Ac.
controlled by. Here, when the control unit CT1 of the switching device Mc1 outputs the drive signal Sc, it also outputs the control signal CR , and the control signal CR is sent to the empty line Pv via the transmitter S, and the control unit CT1 of the switching device Mc2 outputs the control signal CR. Then, the control signal C R ' from the transmitter S is received by the receiver R,
A control signal CR is input to the control unit CT2. Here, on the empty line Pv, the reference signal RF is also transmitted and received along with the control signal C R ', so the receiver R needs to have a function of receiving only the control signal C R '. However, this does not apply when the control signal C R ′ and the reference signal RF are transmitted and received on separate empty lines.

さらに、前記交流信号Acは端子群T5,T5′→導
通用プローブHg3→導通用プローブHg2→端子
群T2,T2′及び端子群T4,T4′→導通用プローブ
Hg6→導通用プローブHg5→端子群T3,T3′と
いう経路につき、前記と同様に切替装置Mc1と
Mc2間で送受信される。
Further, the AC signal Ac is transmitted through the terminal group T 5 , T 5 ′ → continuity probe Hg 3 → continuity probe Hg 2 → terminal group T 2 , T 2 ′ and terminal group T 4 , T 4 ′ → continuity probe
For the path Hg6 → continuity probe Hg5 → terminal group T 3 , T 3 ′, switch device Mc1 and
It is sent and received between Mc2.

交流信号Acが信号受信部Rvに入力されると、
信号受信部Rvでは、空線路PQを介して入力され
た参照信号RFをもとに交流信号Acを後述の第5
図の同期検波器SDで同期検波し、検波出力信号
Otを出力する。例えば、交流信号Acを複数の心
線対につき自動的に送受信させる制御は、検波出
力信号Otを制御部CT1に入力することで可能と
なる。制御部CT1に検波出力信号Otを出さず手
動で行うことができる。
When AC signal Ac is input to signal receiver Rv,
The signal receiving section Rv converts the AC signal Ac into the fifth
Synchronous detection is performed using the synchronous detector SD shown in the figure, and the detection output signal
Output Ot. For example, control for automatically transmitting and receiving the alternating current signal Ac for a plurality of core pairs is possible by inputting the detection output signal Ot to the control unit CT1. This can be done manually without outputting the detection output signal Ot to the control unit CT1.

ここで交流信号Acの送受信の経路は任意に設
定することが可能であり、効果は変わらない。
Here, the route for transmitting and receiving the AC signal Ac can be set arbitrarily, and the effect remains the same.

しかる後、前記端子群T1,T2,T1′〜T2′,T5
〜T6,T5′〜T6′間は短絡(ON)、T1〜T3
T1′〜T3′,T4〜T6,T4′〜T6′間は開放(OFF)
状態になるよう、心線切替部RT1,RT1′,
RT2,RT2′を制御する。その後、前記切替点
Xにおいて、既設線路Poの電気的導通を遮断す
る。電気的導通の遮断に際しては、通信線路より
電気的導通を得るため前記の後者針もしくは刃を
有する導電用プローブにより導通を得る方法を用
いた場合は、通信線路の工事で一般的に用いられ
ている心線切断工具を用いることが可能であり、
本発明の方法を用いた場合は前記コネクタ内部の
電気的導通が前記切替点Xにおける当該コネクタ
の分離もしくはかん合に伴いそれぞれオンもしく
はオフ状態となる構造とすることで当該コネクタ
を分離することにより実現可能である。
After that, the terminal groups T 1 , T 2 , T 1 ′ to T 2 ′, T 5
~ T 6 , T 5 ′ ~ T 6 ′ is shorted (ON), T 1 ~ T 3 ,
Open (OFF) between T 1 ′ to T 3 ′, T 4 to T 6 , and T 4 ′ to T 6
The core switching units RT1, RT1',
Controls RT2 and RT2'. Thereafter, at the switching point X, electrical continuity of the existing line Po is interrupted. When electrical continuity is interrupted, if the latter method described above is used to obtain electrical continuity from the communication line using a conductive probe with a needle or blade, it is generally used in the construction of communication lines. It is possible to use a core wire cutting tool that
When the method of the present invention is used, electrical continuity inside the connector is turned on or off as the connector is separated or mated at the switching point X, thereby separating the connector. It is possible.

ここで既設線路Po上を伝送信号がAからBに
流れているとすると、当該伝送信号の流れは、A
→導通用プローブHg1→端子群T1,T1′→心線
切替部RT1,RT1′→端子群T2,T2′→導通用
プローブHg2→導通用プローブHg3→端子群
T5,T5′→心線切替部RT2,RT2′→端子群
T6,T6′→導通用プローブHg4→Bとなる。
If the transmission signal is flowing from A to B on the existing line Po, the flow of the transmission signal is A.
→ Continuity probe Hg1 → Terminal group T 1 , T 1 ′ → Core wire switching section RT1, RT1′ → Terminal group T 2 , T 2 ′ → Continuity probe Hg2 → Continuity probe Hg3 → Terminal group
T 5 , T 5 ′ → Core switching section RT2, RT2′ → Terminal group
T 6 , T 6 '→continuity probe Hg4→B.

しかる後、心線切替部RT1,RT1′,RT2,
RT2′を動作させる。各心線切替部RT1,RT
1′,RT2,RT2′の動作は既設線路Poの平衡
度を悪化させないように同一とする必要がある。
当該各心線切替部RT1,RT1′,RT2,RT
2′の動作終了後における前記伝送信号の流れは、
A→導通用プローブHg1→端子群T1,T1′→心
線切替部RT1,RT1′→端子部T3,T3′→導通
用プローブHg5→導通用プローブHg6→端子群
T4,T4′→心線切替部RT2,RT2′→端子群
T6,T6′→導通用プローブHg4→Bとなる。
After that, the core switching parts RT1, RT1', RT2,
Operate RT2'. Each core switching section RT1, RT
1', RT2, and RT2' must be the same so as not to deteriorate the balance of the existing line Po.
Each core switching section RT1, RT1', RT2, RT
The flow of the transmission signal after the operation of 2' is as follows:
A → Continuity probe Hg1 → Terminal group T 1 , T 1 ′ → Core wire switching section RT1, RT1' → Terminal section T 3 , T 3 ′ → Continuity probe Hg5 → Continuity probe Hg6 → Terminal group
T 4 , T 4 ′ → Core switching section RT2, RT2′ → Terminal group
T 6 , T 6 '→continuity probe Hg4→B.

当該心線切替は、1心線対ずつ実施され、前記
対照信号Acの送受信と同様の制御により、切替
を行う心線対の選定と複数の心線対についての繰
返しが自動的に順次実施される。
The fiber switching is carried out one fiber pair at a time, and the selection of the fiber pair to be switched and the repetition for a plurality of fiber pairs are automatically and sequentially carried out under the same control as the transmission and reception of the control signal Ac. Ru.

また、前記心線切替部の動作中及び動作終了後
においても、前記交流信号Acは伝送信号と同一
の経路で送受信されるため、前記信号受信部Rv
の検波出力信号Otにより、当該伝送信号の経路
を監視することが可能である。
Furthermore, even during and after the operation of the core switching section, the AC signal Ac is transmitted and received through the same route as the transmission signal, so the signal receiving section Rv
It is possible to monitor the path of the transmission signal using the detected output signal Ot.

第3図は、心線切替部RT1の一実施例であ
る。但し、心線切替部RT1,RT1′,RT2,
RT2′の構成及び動作はすべて同一であるため、
以下心線切替部RT1を例にとり説明する。
FIG. 3 shows an embodiment of the core switching section RT1. However, the core switching parts RT1, RT1', RT2,
Since the configuration and operation of RT2′ are all the same,
The explanation will be given below by taking the core switching unit RT1 as an example.

第3図においてSRは端子であり、切替装置Mc
1においては、信号受信部Rvに、切替装置Mc2
においては信号送信部Ocに接続される。
In Figure 3, SR is a terminal, and the switching device Mc
1, the signal receiving unit Rv includes a switching device Mc2.
is connected to the signal transmitter Oc.

切替を行う前において、前記対照信号Acの送
受信を行う場合は、スイツチSW4,SW5の各
接点を開放する。例えば、端子T1の端子t1iによ
り交流信号Acの受信を行う場合は、端子t1i→ス
イツチSW1(i)→スイツチSW7(i)→端子SRの経
路が選定される。ここでスイツチSW1の接点を
1からnまで変化させることにより、n通りの経
路が選択できる。同様に端子群T2の端子t2iの場
合には、端子t2i→スイツチSW2(i)→スイツチ
SW6(1)→スイツチSW7(2)→端子SRまた端子群
T3の端子t3iの場合には、端子t3i→スイツチSW3
(i)→スイツチSW6(2)→SW7(2)の経路が選択さ
れる。ここで、スイツチSWj(j=1〜4)は、
一般のリレーで構成することが可能である。
Before switching, when transmitting and receiving the reference signal Ac, each contact of the switches SW4 and SW5 is opened. For example, when receiving the alternating current signal Ac by the terminal t 1 i of the terminal T 1 , the path from the terminal t 1 i to the switch SW1(i) to the switch SW7(i) to the terminal SR is selected. By changing the contact point of the switch SW1 from 1 to n, n routes can be selected. Similarly, in the case of terminal t 2 i of terminal group T 2 , terminal t 2 i → switch SW2(i) → switch
SW6(1) → Switch SW7(2) → Terminal SR or terminal group
In the case of terminal t 3 i of T 3 , terminal t 3 i → switch SW3
The path (i)→switch SW6(2)→SW7(2) is selected. Here, the switch SWj (j=1 to 4) is
It can be configured with general relays.

以上の経路を選定することにより、前記通信線
路、導電クリツプ及び切替装置内において伝送信
号が流れる経路につき、電気的導通及び極性を確
認することが可能である。但し、本確認動作は、
心線切替の信頼性を高めるための動作であり、省
略することは可能である。
By selecting the above-mentioned routes, it is possible to check the electrical continuity and polarity of the route through which the transmission signal flows within the communication line, conductive clip, and switching device. However, this confirmation operation is
This operation is to improve the reliability of fiber switching, and can be omitted.

当該確認動作が終了した後、端子群T1と端子
群T2間における既設線路の電気的導通を遮断す
る。この際、スイツチSW4の接点はすべて短絡
(ON)され、またスイツチSW5の接点はすべて
開放(OFF)されており、かつ抵抗変換部RCに
おけるa〜b間は第3図のように開放状態である
ため、既設線路上を流れる伝送信号の経路は、端
子群T1→スイツチSW4→端子群T2である。以
下当該端子群のi番目の端子に接続された通信線
路の切替につき説明する。
After the confirmation operation is completed, electrical continuity of the existing line between the terminal group T 1 and the terminal group T 2 is cut off. At this time, all contacts of switch SW4 are short-circuited (ON), all contacts of switch SW5 are open (OFF), and the connection between a and b in the resistance converter RC is in an open state as shown in Figure 3. Therefore, the path of the transmission signal flowing on the existing line is terminal group T 1 → switch SW4 → terminal group T 2 . The switching of the communication line connected to the i-th terminal of the terminal group will be explained below.

当該切替の開始以前におけるスイツチの接点の
状態につき述べる。スイツチSW4は#1〜#i
−1が開放(OFF)、接点#i〜#nが短絡
(ON)であり、スイツチSW5は、接点#1〜
#i−1が短絡(ON)、接点#i〜#nが開放
(OFF)である。また、スイツチSW1,SW2及
びSW3の接点は、iに設定され、スイツチSW
6の接点は2に設定される。抵抗変換部RCのa
〜b間は現時点では開放状態であるため、伝送信
号の経路は端子t1i→スイツチSW4(#1)→端
子t2iとなる。
The state of the switch contacts before the start of the switching will be described. Switch SW4 is #1 to #i
-1 is open (OFF), contacts #i to #n are short-circuited (ON), and switch SW5 has contacts #1 to #n short-circuited (ON).
#i-1 is shorted (ON) and contacts #i to #n are open (OFF). In addition, the contacts of switches SW1, SW2, and SW3 are set to i, and the contacts of switches SW1, SW2, and SW3 are set to i.
Contact point 6 is set to 2. a of resistance converter RC
.about.b is currently open, so the transmission signal path is from terminal t 1 i to switch SW4 (#1) to terminal t 2 i.

その後、後述のように抵抗変換部RCのa〜b
間の抵抗値が無限大から0Ω近傍まで減少し、当
該抵抗値の変化後、スイツチSW5の接点#iが
短絡(ON)する。その後スイツチSW6の接点
は1に設定され、しかる後、スイツチSW4の接
点#1が開放される。この時、抵抗変換部RCの
a〜b間の抵抗値は0Ω近傍であり、スイツチ
SW4の動作終了後、無限大まで増加する。ここ
で当該a〜b間の抵抗値の減少及び増加は、伝送
信号に及ぼす影響を少なくするため、連続的に変
化することが望ましい。
After that, a to b of the resistance converter RC as described later.
The resistance value between them decreases from infinity to near 0Ω, and after the resistance value changes, the contact #i of the switch SW5 is short-circuited (ON). Thereafter, the contact of switch SW6 is set to 1, and then contact #1 of switch SW4 is opened. At this time, the resistance value between a and b of the resistance converter RC is near 0Ω, and the switch
After the operation of SW4 is completed, it increases to infinity. Here, it is desirable that the decrease and increase in the resistance value between a and b change continuously in order to reduce the influence on the transmission signal.

この結果、前記心線切替部RT1の動作前に既
設線路Po→端子t1i→スイツチSW4(#1)→端
子t2iの経路をとつていた伝送信号は、既設線路
Po→端子t1i→スイツチSW5(#1)→端子t3i
→新設線路PNの経路に切替えられる。
As a result, the transmission signal that took the route of the existing line Po → terminal t 1 i → switch SW4 (#1) → terminal t 2 i before the operation of the core wire switching unit RT1 is transferred to the existing line Po → terminal t 1 i → switch SW4 (#1) → terminal t 2 i.
Po → terminal t 1 i → switch SW5 (#1) → terminal t 3 i
→The route will be switched to the new line P N.

さらに、抵抗変換部RCの動作中、SW7の接
点を1に設定しておけば、常時前記対照信号Ac
の受信が可能であるため、切替の対象とする通信
線路に対し、電気的導通及び極性の監視を行うこ
とが可能である。
Furthermore, if the contact of SW7 is set to 1 while the resistance converter RC is in operation, the reference signal Ac is always
Therefore, it is possible to monitor the electrical continuity and polarity of the communication line to be switched.

第4図は、抵抗変換部RCの一実施例である。 FIG. 4 shows an embodiment of the resistance conversion section RC.

第4図においてPCはフオトカプラであり、入
力側の発光ダイオードLEDに電流を流して発光
させ、当該光線が出力側のCdSに当たることによ
り、CdSの抵抗値が変化する。PSは定電圧源で
あり、常時、定電圧VBを供給する。またVSは電
圧発生器であり、抵抗器Rsに電圧Esを与える。
当該電圧発生器VSは、カウンタ回路もしくは
ROM回路で構成することが可能である。
In FIG. 4, PC is a photocoupler, which causes a current to flow through the light emitting diode LED on the input side to emit light, and when the light beam hits the CdS on the output side, the resistance value of the CdS changes. PS is a constant voltage source and always supplies constant voltage V B. Also, VS is a voltage generator that provides voltage Es to resistor Rs.
The voltage generator VS is a counter circuit or
It can be configured with a ROM circuit.

フオトカプラは発光ダイオードLEDに流れる
電流値とCdSの抵抗値との関係が素子毎に異なる
ため制御が必要とされる。
Photocoupler requires control because the relationship between the current value flowing through the light emitting diode LED and the resistance value of CdS differs from element to element.

まず、制御を行うためには、スイツチSW8及
びスイツチSW9の接点を1とする。X点は演算
増幅器OPの仮想設置点でxOVであるため、
CdSに流れる電流値をIsとし、CdS及び抵抗器Rs
の抵抗値をそれぞれRON,rsとすると、RONは、 RON=VB/|Is|=VB/|ES|/rS =VB・rS・1/|ES| で表わされる。よつて前記フオトカプラPCの出
力側の抵抗値RONは電圧ESによつて完全に制御で
きる。
First, in order to perform control, the contact points of switch SW8 and switch SW9 are set to 1. Since point X is the virtual installation point of operational amplifier OP and is xOV,
The current value flowing through CdS is Is, and CdS and resistor Rs
Let the resistance values of R ON and rs be R ON = V B / | Is | = V B / | E S |/r S = V B・r S・1/ | E S | expressed. Therefore, the resistance value R ON on the output side of the photocoupler PC can be completely controlled by the voltage ES .

第4図で示した回路において、ES<OVとなる
と、オペアンプOPの出力が正電圧となる。トラ
ンジスタTrは電流増強用であり、オペアンプOP
の出力が正になると、エミツタ電圧Voが正方向
に増加する。ここで当該電圧Voは抵抗器Rfの抵
抗値をrf、発光ダイオードLEDに流れる電流をIf
及び発光ダイオードLEDの順方向電圧をvoとす
ると、Vo=If・rf+voで示され、電圧Voで示さ
れ、電圧値Voはメモリ回路MRに書込まれる。
メモリ回路MRはRAM回路で構成することが可
能である。
In the circuit shown in FIG. 4, when E S <OV, the output of the operational amplifier OP becomes a positive voltage. The transistor Tr is for current enhancement, and the operational amplifier OP
When the output of becomes positive, the emitter voltage Vo increases in the positive direction. Here, the voltage Vo is the resistance value of the resistor Rf is rf, and the current flowing through the light emitting diode LED is If
If the forward voltage of the light emitting diode LED is vo, it is expressed as Vo=If·rf+vo, which is expressed by the voltage Vo, and the voltage value Vo is written into the memory circuit MR.
Memory circuit MR can be configured with a RAM circuit.

以上示したように、電圧値ESによりフオトカプ
ラPCの出力側の抵抗値RON及びフオトカプラPC
の入力側に流れる電流値Ifが一通りに定まる。
As shown above, depending on the voltage value E S , the resistance value R ON on the output side of the photocoupler PC and the photocoupler PC
The current value If flowing to the input side of is determined in one way.

当該制御終了後、スイツチSW8及びSW9の
接点を2とし、メモリ回路MRから電圧値Voを
続出す。この結果、フオトカプラPCの入力側に
電流Ifが流れ、出力側の抵抗値は前記制御時に設
定したとおり変化する。当該抵抗値RONの変化
は、前記電圧値Esの与え方により任意に設定す
ることが可能である。
After the control is completed, the contacts of switches SW8 and SW9 are set to 2, and the voltage value Vo is continuously outputted from the memory circuit MR. As a result, a current If flows to the input side of the photocoupler PC, and the resistance value on the output side changes as set during the control. The change in the resistance value R ON can be arbitrarily set depending on how the voltage value Es is applied.

第5図は、信号受信部Rvの一実施例を示す。
第5図においてDAは差動増幅器であり、0から
は前記参照信号RFが入力され、Pからは前記交
流信号Acが入力される。BFは帯域ろ波器であ
る。参照信号RFが入力される帯域ろ波器BFは前
記制御信号CR′を分離するためのものである。ま
た、Fsは移相器であり、当該移相器Fsは同期検
波器SDの検波出力が最大となるように調整する
ことが望ましい。LFは低域ろ波器であり、MT
表示器であり、表示器MTは同期検波器SDの波器
出力を表示する。ここで当該検波出力を表示する
必要がない場合は、表示器MTを省略することが
可能である。
FIG. 5 shows an embodiment of the signal receiving section Rv.
In FIG. 5, DA is a differential amplifier, the reference signal RF is input from 0, and the AC signal Ac is input from P. BF is a bandpass filter. The bandpass filter BF to which the reference signal RF is input is for separating the control signal CR '. Further, Fs is a phase shifter, and it is desirable that the phase shifter Fs be adjusted so that the detection output of the synchronous detector SD becomes maximum. LF is a low-pass filter, M T is a display device, and display device M T displays the wave detector output of the synchronous detector SD. If there is no need to display the detected output, the display M T can be omitted.

本実施例において、交流信号Ac及び参照信号
RFの周波数を3300Hzから3500Hzの間に設定し、
交流信号Ac及び参照信号RFの送出レベルをそれ
ぞれ−60dBm、−50dBmとして当該交流信号Ac
を通信線路上の信号速度が200kb/Sであるデイ
ジタル信号が流れている既設線路Po上に送出し
たところ、心線切替部RT1,RT1′,RT2,
RT2′の動作前後及びその間でデイジタル信号
の経路を監視できることを確認した。
In this embodiment, the AC signal Ac and the reference signal
Set the frequency of R F between 3300Hz and 3500Hz,
The output level of AC signal Ac and reference signal R F is −60 dBm and −50 dBm, respectively, and the AC signal Ac is
When transmitted onto the existing line Po where a digital signal with a signal speed of 200 kb/s is flowing on the communication line, the core switching units RT1, RT1', RT2,
We have confirmed that the digital signal path can be monitored before, during and after RT2' operation.

第6図は、心線切替部RT1の動作タイミング
の一例を示した図である。第5図においてRON
フオトカプラPCの出力側の抵抗値、SWj(j=1
〜9)は前記スイツチであり、横軸にはフオトカ
プラPCの出力側の抵抗値の変化及びスイツチ
SWj(j=1〜9)の接点の状態を示している。
ここでは前記端子群Tj(j=1〜3)のi番目の
端子に接続された通信線路の切替を行う場合につ
き説明する。
FIG. 6 is a diagram showing an example of the operation timing of the fiber switching unit RT1. In Figure 5, R ON is the resistance value on the output side of the photocoupler PC, SWj (j = 1
~9) is the switch, and the horizontal axis shows the change in resistance value on the output side of the photocoupler PC and the switch.
The state of the contact of SWj (j=1 to 9) is shown.
Here, a case will be described in which the communication line connected to the i-th terminal of the terminal group Tj (j=1 to 3) is switched.

第5図で示したRONの曲線1及び3は、フオト
カプラPCの制御時における抵抗値の変化であり、
2及び4は通信線路の切替時における抵抗値の変
化である。ここでRmaxは1MΩ以上であること
が望ましく、Rminは10Ω以下であることが望ま
しい。
Curves 1 and 3 of R ON shown in FIG. 5 are the changes in resistance value when controlling the photocoupler PC,
2 and 4 are changes in resistance value when switching communication lines. Here, Rmax is preferably 1 MΩ or more, and Rmin is preferably 10Ω or less.

本動作タイミングの一例において、t1=t2
500msec、t3=t6=20msec、t4=t5=10msec、t7
=30msecとして、既設線路を新設線路に切替え
たところ、当該既設線路の通信に影響を及ぼすこ
となく、複数の通信の経路を既設線路から新設線
路に移すことができた。
In this example of operation timing, t 1 = t 2 =
500msec, t3 = t6 = 20msec, t4 = t5 = 10msec, t7
= 30 msec, and when the existing line was switched to the new line, multiple communication routes could be transferred from the existing line to the new line without affecting communication on the existing line.

但し、t1〜t7の値については、t1=t2、t3=t6
t4=t5である必要性はなく、本発明による装置に
用いたフオトカプラ及びスイツチの動作特性を考
慮して他の値に設定することも可能である。また
フオトカプラの制御を各心線対毎の切替に対して
実行する場合につき示したが、前記複数心線対の
切替前に1回のみ実行すれば作業時間が短縮でき
る制御方法となる。
However, for the values of t 1 to t 7 , t 1 = t 2 , t 3 = t 6 ,
It is not necessary that t 4 =t 5 , and it is possible to set it to other values taking into account the operating characteristics of the photocoupler and switch used in the device according to the invention. Furthermore, although the case where the control of the photocoupler is executed for each fiber pair switching is shown, the control method can shorten the working time by executing the photocoupler control only once before switching the plurality of fiber pairs.

本実施例においては、抵抗変換部の構成をフオ
カプラを用いた場合につき説明したが、リレーと
固定抵抗器を用いることも可能であり、ポテンシ
ヨメータもしくはボリユーム可変抵抗器を用いる
ことも可能である。
In this embodiment, the configuration of the resistance converter is explained using a photocoupler, but it is also possible to use a relay and a fixed resistor, and it is also possible to use a potentiometer or a volume variable resistor. .

また、一方の切替装置に信号送信部を内蔵し、
他方の切替装置に信号受信部を内蔵する構成につ
き説明したが、両切替装置に信号送信部を内蔵さ
せ、信号受信部を分離した構成とすることも可能
であり、効果は変わらない。
In addition, one switching device has a built-in signal transmitter,
Although a configuration has been described in which the other switching device has a built-in signal receiving section, it is also possible to have a configuration in which both switching devices have a built-in signal transmitting section and the signal receiving section is separated, and the effect remains the same.

発明の効果 以上説明したように、本発明による装置は、通
信線路の切替を実施する箇所において、既設線路
の複数の通信の経路を当該通信に及ぼさずに新設
線路に自動的に又は必要に応じて手動で移し、か
つ当該経路を監視することができるため、通信線
路の切替工事期間中、通信を停止する必要がなく
なり、当該切替工事の信頼性を向上すると共に作
業能率を著しく高めることができた。
Effects of the Invention As explained above, the device according to the present invention automatically or as needed switches multiple communication routes on an existing line to a new line without affecting the communication at a location where communication lines are to be switched. Since it is possible to manually move the line and monitor the route, there is no need to stop communications during the communication line switching work, which improves the reliability of the switchover work and significantly increases work efficiency. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特願昭58−37011号の一実施例の構成
図、第2図は本発明装置の一実施例の構成図、第
3図は第2図の既設新設通信線路の切替後の心線
切替部の構成図、第4図は第3図の抵抗変換部の
一実施例、第5図は第2図の信号受信部の構成
図、第6図は本発明装置の動作タイミングの一実
施例、を示す。 Hgj(j=1〜6):導通用プローブ、Tj,T′j
(j=1〜6):端子群、RT1,RT1′,RT2,
RT2′:心線切替部、Hc:コード、CT1,CT
2:制御部、Sc:駆動信号、CR,CR′:制御信
号、S:送信器、R:受信器、Oc:信号送信部、
Rv:信号受信部、Ot:検波出力信号、Ac:交流
信号、RF:参照信号、Mc1,Mc2:切替装置、
Po:既設線路、PN:新設線路、Pv:空線路、
t1j,t2j,t3j(j=1〜n):端子、SWj(j=1〜
9):スイツチ、SR:端子、RC:抵抗変換部、
PS:定電圧源、PC:フオトカプラ、OP:オペ
アンプ、Tr:トランジスタ、Rs,Rf:抵抗器、
VS:電圧発生器、MR:メモリ回路、DA:差動
増幅器、BF:帯域ろ波器、Fs:移相器、SD:同
期検波器、LF:低域ろ波器、MT:表示器。
Fig. 1 is a block diagram of an embodiment of the patent application No. 58-37011, Fig. 2 is a block diagram of an embodiment of the device of the present invention, and Fig. 3 is a diagram after switching the existing and new communication line shown in Fig. 2. FIG. 4 is an example of the resistance conversion section shown in FIG. 3, FIG. 5 is a block diagram of the signal receiving section shown in FIG. 2, and FIG. 6 is a diagram showing the operation timing of the device of the present invention. An example is shown. Hgj (j=1 to 6): Continuity probe, Tj, T′j
(j=1 to 6): terminal group, RT1, RT1', RT2,
RT2': Core switching section, Hc: Cord, CT1, CT
2: Control unit, Sc: Drive signal, C R , CR : Control signal, S: Transmitter, R: Receiver, Oc: Signal transmitter,
Rv: Signal receiver, Ot: Detection output signal, Ac: AC signal, R F : Reference signal, Mc1, Mc2: Switching device,
Po: Existing line, P N : New line, Pv: Empty line,
t 1 j, t 2 j, t 3 j (j = 1 to n): terminal, SWj (j = 1 to
9): Switch, SR: Terminal, RC: Resistance converter,
PS: constant voltage source, PC: photocoupler, OP: operational amplifier, Tr: transistor, Rs, Rf: resistor,
VS: Voltage generator, MR: Memory circuit, DA: Differential amplifier, BF: Bandpass filter, Fs: Phase shifter, SD: Synchronous detector, LF: Low-pass filter, M T : Display.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の切替回路と第2の切替回路を設け両切
替回路を空路回路で接続し、前記第1の切替回路
には第1、第2の心線切替部を、前記第2の切替
回路には第3、第4の心線切替部を設け、通信線
路の切替を実施する箇所において、前記第1、第
2と第3、第4のそれぞれの心線切替部には既接
線路に接続する端子郡(T1,T2)、(T′1,T′2
と(T5,T6)、(T′5,T′6)と新設線路に接続す
る端子群T3,T′3とT4,T′4を設け、前記端子群
(T1,T′1)、(T2,T′2)と(T5,T′5)、(T6
T′6)を既設通信線路の切替箇所の両側に、前記
端子群(T3,T′3)、(T4,T′4)を新設線路の両
端に接続し、前記第3、第4の心線切替部、既
設、新設通信線および前記第1、第2の心線切替
部を経て、また前記信号送信部よりの参照信号を
前記空路回路を経て、前記信号受信部に接続し、
前記第1制御部と第2制御部を動作し、既設線路
と新設線路を切替える通信線路の切替装置におい
て、各前記心線切替部を、前記既設線路の複数の
心線対より1心線対を選択する第1スイツチ、第
2スイツチと前記新設線路の複数の心線対より1
心線対を選択する第3スイツチ、一方前記既接線
路の切替点間に任意の1心線対の短絡(ON)も
しくは開放(OFF)できる第4スイツチと前記
既設線路と新設線路間に任意の1心線対の短絡
(ON)もしくは開放(OFF)ができる第5スイ
ツチ、更に前記第2スイツチまたは第3スイツチ
に切替える第6スイツチ、外部回路の信号を前記
第1スイツチと第6スイツチに切換える第7スイ
ツチおよび前記第1スイツチと第6スイツチ間に
高い抵抗値から低い抵抗値に減少できる抵抗変換
部に設けて構成し、前記第4のスイツチを短絡
し、かつ第5のスイツチを開放し、前記既設線路
及び新設線路から任意の1心線対を選択した前記
第1のスイツチと第3のスイツチの間に挿入され
た前記抵抗変換部を高い抵抗値から低い抵抗値に
減少し、しかる後、前記第5のスイツチにおいて
前記任意の1心線対と電気的導通をとつた接点を
短絡し、第4のスイツチにおいて、前記任意の1
心線対と電気的導通をとつた接点を開放し、前記
任意の1心線対を選択した第1のスイツチ及び第
2のスイツチの間に挿入された前記抵抗変換部を
低い抵抗値から高い抵抗値に増加し、前記第1ス
イツチを第2もしくは第3のスイツチのいずれか
に接続した状態で、前記スイツチで電気的導通を
とつた1心線対に前記信号送信部より交流信号を
送出し、前記交流信号と前記信号送信部からの参
照信号を用い、前記信号受信部の同期検波器で同
期検波し、前記検波出力を表示器で表示し、前記
選択された1心線対の監視を行うと共に前記検波
出力を前記第1制御部に入力し、前記既設線路及
び新設線路の複数の心線対につき、前記の制御を
実施し、通信線路の複数の心線対の切替を自動的
に行い、かつ当該複数の心線対の切替前後及び切
替の間、前記通信線路を監視できるよう構成した
ことを特徴とする通信線路の多対連続切替システ
ム。
1 A first switching circuit and a second switching circuit are provided, both switching circuits are connected by an air circuit, and the first switching circuit is connected to the first and second core switching sections, and the second switching circuit is connected to the first switching circuit and the second switching circuit. is provided with a third and fourth core switching section, and at a location where communication line switching is performed, each of the first, second and third and fourth core switching sections is provided with a wire connected to the existing line. Group of terminals to be connected (T 1 , T 2 ), (T′ 1 , T′ 2 )
(T 5 , T 6 ), (T′ 5 , T′ 6 ) and terminal groups T 3 , T′ 3 and T 4 , T′ 4 to be connected to the new line, and the terminal group (T 1 , T ′ 1 ), (T 2 , T′ 2 ) and (T 5 , T′ 5 ), (T 6 ,
T' 6 ) are connected to both sides of the switching point of the existing communication line, and the terminal groups (T 3 , T' 3 ) and (T 4 , T' 4 ) are connected to both ends of the new line, and the third and fourth connecting the reference signal from the signal transmitting section to the signal receiving section through the fiber switching section, the existing and newly installed communication lines, and the first and second fiber switching sections, and via the air circuit;
In the communication line switching device that operates the first control unit and the second control unit to switch between an existing line and a new line, each of the core wire switching units switches one core pair from the plurality of core pairs of the existing line. 1 from the plurality of core pairs of the newly installed line.
A third switch for selecting a fiber pair, a fourth switch that can short-circuit (ON) or open (OFF) any one fiber pair between the switching point of the existing line, and an arbitrary switch between the existing line and the new line. A fifth switch that can short-circuit (ON) or open (OFF) one core pair of wires, and a sixth switch that switches to the second or third switch, and a signal from an external circuit to the first switch and the sixth switch. A seventh switch is provided between the first switch and the sixth switch to reduce the resistance from a high resistance value to a low resistance value, and the fourth switch is short-circuited and the fifth switch is opened. and reducing the resistance value of the resistance converter inserted between the first switch and the third switch that selects an arbitrary one-core wire pair from the existing line and the new line from a high resistance value to a low resistance value, Thereafter, the fifth switch short-circuits the contacts that are electrically connected to the arbitrary one core pair, and the fourth switch
The contact point that has electrical continuity with the core wire pair is opened, and the resistance converter inserted between the first switch and the second switch that selected the arbitrary one core wire pair is changed from a low resistance value to a high resistance value. the signal transmitter sends an alternating current signal to the single core wire pair electrically connected by the switch with the first switch connected to either a second or third switch; Then, using the alternating current signal and the reference signal from the signal transmitter, perform synchronous detection with a synchronous detector of the signal receiver, display the detection output on a display, and monitor the selected single fiber pair. At the same time, the detection output is input to the first control unit, and the control described above is carried out for the plurality of core pairs of the existing line and the new line, and the plurality of core pairs of the communication line are automatically switched. 1. A multi-pair continuous switching system for a communication line, characterized in that the communication line is configured to be able to monitor the communication line before, after and during the switching of the plurality of core wire pairs.
JP3557784A 1984-02-27 1984-02-27 Multi-pair continuous changeover system of communication line Granted JPS60180223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3557784A JPS60180223A (en) 1984-02-27 1984-02-27 Multi-pair continuous changeover system of communication line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3557784A JPS60180223A (en) 1984-02-27 1984-02-27 Multi-pair continuous changeover system of communication line

Publications (2)

Publication Number Publication Date
JPS60180223A JPS60180223A (en) 1985-09-14
JPH0310250B2 true JPH0310250B2 (en) 1991-02-13

Family

ID=12445614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3557784A Granted JPS60180223A (en) 1984-02-27 1984-02-27 Multi-pair continuous changeover system of communication line

Country Status (1)

Country Link
JP (1) JPS60180223A (en)

Also Published As

Publication number Publication date
JPS60180223A (en) 1985-09-14

Similar Documents

Publication Publication Date Title
JPH05219146A (en) Intelligent interconnection and data transmission method for wide-band optical network
WO2015025518A1 (en) Power feed line switching circuit, branching device, submarine cable system, and power feed line switching method
WO1998028883B1 (en) Network including multi-protocol cross-connect switch
CN111711552B (en) Terminal resistor access circuit, servo driver and control system
US3860769A (en) Method and apparatus for testing the operation of a communication system
JPH0310250B2 (en)
US6163084A (en) Cable branching unit
JP3255961B2 (en) Information acquisition equipment for information wiring equipment
JPH1056660A (en) Circuit device for coupling analog transmission line to digital transmission line
JPH0250659B2 (en)
US7366369B2 (en) Transmission of measured values in high-voltage supply units for electrofilters
JP3275960B2 (en) LAN analyzer connection method and apparatus in LAN connection apparatus
JPS6345133B2 (en)
US5544197A (en) Cutover apparatus and methods for switching a signal between two transmission media
JPH05260056A (en) Local area network
JP3435560B2 (en) Termination device
JP2003143144A (en) Transmission system and method for detecting delay amount of signal propagation
JPH0319557A (en) Pcm lead line monitor system
JPS647708B2 (en)
JPH021631A (en) Optical cable communication system
JPH0380398B2 (en)
JP3000689B2 (en) Network concentrator and network configuration method using the same
JP2560853B2 (en) Relay device
JPS5844827A (en) Switching method for communication line
JPS62104233A (en) Signal transmission equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term