JPH0310215A - Driving method for liquid crystal display element - Google Patents

Driving method for liquid crystal display element

Info

Publication number
JPH0310215A
JPH0310215A JP14414689A JP14414689A JPH0310215A JP H0310215 A JPH0310215 A JP H0310215A JP 14414689 A JP14414689 A JP 14414689A JP 14414689 A JP14414689 A JP 14414689A JP H0310215 A JPH0310215 A JP H0310215A
Authority
JP
Japan
Prior art keywords
liquid crystal
control layer
light control
crystal material
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14414689A
Other languages
Japanese (ja)
Inventor
Noburu Fujisawa
宣 藤沢
Hiroshi Ogawa
洋 小川
Kazunori Maruyama
和則 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP14414689A priority Critical patent/JPH0310215A/en
Publication of JPH0310215A publication Critical patent/JPH0310215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To make a liquid crystal display which has no irregularity in display light and shade and an excellent contrast ratio by using bipolar high-frequency AC pulse trains whose mean voltage level is zero, and bringing the selection and nonselection of display picture elements under time-division control and driving a liquid crystal element. CONSTITUTION:A driving waveform which contains no DC component and whose mean voltage level is zero is used and a bipolar high-frequency pulse train P1 which allows a liquid crystal material in a dimming layer to be in a saturated response state and bipolar high-frequency pulse trains P2 - P4 which make the liquid crystal material in the dimming layer below a threshold value are applied properly to respective electrodes of the liquid crystal display element on a time-division basis to perform the selection/nonselection control, thereby displaying characters and a graphic form. Namely, the element is driven at a high frequency with the bipolar pulses and then electrostatic charging which causes an offset voltage is precluded to eliminate the irregularity in display light and shade. Consequently, the display of high quality can be made.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、光の散乱および透過を電気的に制御でき、電
極を有する2枚の基板間に、調光層を有し、前記調光層
が液晶材料と透明性固定物質から成り液晶滴をポリマー
中に分散させた液晶表示素子または液晶相中にポリマー
を三次元ネットワーク状に形成させた液晶表示素子の駆
動方法で、特に、時分割駆動方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention is capable of electrically controlling scattering and transmission of light, has a light control layer between two substrates having electrodes, and has a light control layer between two substrates having electrodes. A driving method for a liquid crystal display element in which the layer is composed of a liquid crystal material and a transparent fixing substance, and liquid crystal droplets are dispersed in a polymer, or in which a three-dimensional network of polymers is formed in the liquid crystal phase. This relates to a driving method.

「従来の技術j 現在、液晶表示素子の主流はTN型(ねじれ不マチンク
型)である。TN型は、当初、数字表示素子として実用
化されスタティック駆動方法で素子を駆動していた。そ
の後、情報表示容量を増加させるため必要回路数の問題
から液晶表示素子の駆動方法は、時分割駆動が主流にな
った。特に、ドツトマトリクス型の液晶表示素子では駆
動回路数が多すぎて非現実的となるため、駆動回路数を
減らすことと、時分割駆動時のコントラスト比の改善の
観点から数多くの時分割駆動方法が提案されている。一
般に、時分割駆動方法は、1/2バイアス法、1/3バ
イアス法、最適バイアス法と呼ばれる動作方法がある。
"Conventional Technology Currently, the mainstream of liquid crystal display elements is the TN type (twisted non-machining type).The TN type was first put into practical use as a numeric display element, and the element was driven using a static drive method.After that, Due to the problem of the number of circuits required to increase the information display capacity, time-division driving has become the mainstream driving method for liquid crystal display elements.In particular, for dot matrix type liquid crystal display elements, the number of driving circuits is too large, making it impractical. Therefore, many time-division driving methods have been proposed from the viewpoints of reducing the number of drive circuits and improving the contrast ratio during time-division driving.Generally, time-division driving methods include the 1/2 bias method, There are operating methods called the 1/3 bias method and the optimal bias method.

又、交流駆動とするため一例として一走査周期ごとに極
性反転を行う方法がある。
Furthermore, for AC driving, for example, there is a method of inverting the polarity every scanning period.

しかし、動的散乱型(DS)と異なり、光を散乱または
透過を電界効果で制御しうる液晶表示素子の時分割駆動
方法はまだ実用化されていない。
However, unlike the dynamic scattering type (DS), a time-division driving method for a liquid crystal display element that can control scattering or transmission of light using an electric field effect has not yet been put to practical use.

「発明が解決しようとする課題」 従来のTN型液晶表示素子の時分割駆動方法は、表示面
に多数存在する表示画素、非表示画素のそれぞれにおい
て文字や図形により異なる駆動波形が印加されるが、表
示面の個々の画素に印加される電圧の実効値をそれぞれ
等しくすることにより表示むらを防止している。一方、
液晶滴をポリマー中に分散させた液晶表示素子または、
液晶相中にポリマーを三次元ネットワーク状に形成させ
、電界の存在下でその液晶分子が電界の方向に配列し、
液晶の屈折率n0とポリマーの屈折率npの値が近いと
きには光を透過させ、電界が除かれると液晶分子はラン
ダム配列ムこ戻り光を散乱させる液晶素子を従来のTN
型液晶表示素子の時分割駆動方法で駆動させた場合、電
圧の実効値が等しいのにもかかわらず、表示画素及び非
表示画素それぞれにおいて表示の濃淡むらが生じたり、
コントラスト比が悪くなるなどの問題が起きる。
``Problem to be Solved by the Invention'' In the conventional time-division driving method of a TN type liquid crystal display element, different drive waveforms are applied to each of the display pixels and non-display pixels, which are numerous on the display screen, depending on the characters or graphics. Display unevenness is prevented by equalizing the effective values of the voltages applied to each pixel on the display surface. on the other hand,
A liquid crystal display element in which liquid crystal droplets are dispersed in a polymer, or
The polymer is formed into a three-dimensional network in the liquid crystal phase, and in the presence of an electric field, the liquid crystal molecules align in the direction of the electric field.
When the refractive index n0 of the liquid crystal and the refractive index np of the polymer are close to each other, light is transmitted, and when the electric field is removed, the liquid crystal molecules return to random alignment and scatter the light.
When driving a type liquid crystal display element using a time-division driving method, even though the effective value of the voltage is the same, unevenness in display density may occur in each display pixel and non-display pixel.
Problems such as poor contrast ratio occur.

本発明は、表示する図形や文字の違いで起きる表示の濃
淡むらを抑え、品位の高い表示を提供するものである。
The present invention provides a high-quality display by suppressing unevenness in display shading caused by differences in displayed figures and characters.

「課題を解決するための手段」 本発明の駆動方法は、直流成分が含まれない平均電圧し
ヘルがゼロである駆動波形を用い、駆動波形が調光層内
の液晶材料を飽和応答状態にさせる双極の高周波パルス
列と、調光層内の液晶材料をしきい値以下の状態にさせ
る双極の高周波パルス列とであって、これらのパルス列
を時分割的に表示素子の各電極に適宜印加して選択と非
選択の制御を行い文字や図形を表示させる駆動方法であ
る。
"Means for Solving the Problems" The driving method of the present invention uses a driving waveform that does not include a DC component and has an average voltage of zero, and the driving waveform brings the liquid crystal material in the light control layer into a saturated response state. A bipolar high-frequency pulse train that brings the liquid crystal material in the light control layer to a state below the threshold value, and these pulse trains are applied to each electrode of the display element in a time-sharing manner as appropriate. This is a driving method that controls selection and non-selection to display characters and figures.

液晶層をポリマー中に分散させた液晶表示素子、及び、
液晶層中にポリマーを三次元ネットワーク状に形成させ
液晶相が連続相を成している液晶表示素子を従来のTN
型液晶表示素子の時分割駆動方法で駆動させると、表示
面に多数存在する表示画素、非表示画素に於て表示の濃
淡むらが生じたり、コントラスト比が悪くなる。これは
、駆動波形により電荷が2枚の電極間に充電され、電荷
が速やかに放電されず液晶表示素子にオフセット電圧が
発生するためである。外部からの電界が除かれ調光層内
の液晶分子の配向がランダムに戻り光を散乱させる状態
であっても、素子内に内部電界が残り素子内部の電気的
中性点と駆動装置のグランドレベルとの間に電位差が発
生し装置側から見た時分割駆動の動作条件(非選択時は
、調光+A IIのしきい値以下の電位差が非表示画素
に印加され、選択時には調光材料の飽和応答状態にさせ
るのに十分な電位差以上が表示画素に印加させることが
出来る条件)がずれてしまい、非選択時にもかかわらず
しきい値を越える電位差が非表示画素に印加される場合
や、表示画素に飽和応答状態に必要な電位差が印加され
ない場合があり、表示の濃淡むらやコントラスト比の低
下の原因となっている。
A liquid crystal display element in which a liquid crystal layer is dispersed in a polymer, and
The conventional TN liquid crystal display element is a liquid crystal display element in which polymers are formed in a three-dimensional network in the liquid crystal layer and the liquid crystal phase forms a continuous phase.
When a liquid crystal display element is driven using a time-division driving method, unevenness in display density occurs in a large number of display pixels and non-display pixels on a display surface, and the contrast ratio deteriorates. This is because charges are charged between the two electrodes due to the drive waveform, and the charges are not discharged quickly, causing an offset voltage in the liquid crystal display element. Even when the external electric field is removed and the orientation of the liquid crystal molecules in the light control layer returns to a random state and scatters light, an internal electric field remains inside the element and connects the electrical neutral point inside the element and the ground of the drive device. Operating conditions for time-division driving as seen from the device side (when not selected, a potential difference below the dimming +A II threshold is applied to non-display pixels; when selected, the dimming The conditions under which a potential difference greater than the threshold value can be applied to display pixels to bring them into a saturated response state are deviated, and a potential difference that exceeds the threshold value is applied to non-display pixels even when they are not selected. In some cases, a potential difference required for a saturated response state is not applied to display pixels, causing uneven display shading and a decrease in contrast ratio.

このように従来のTN型液晶表示素子の時分割駆動方法
で駆動させようとした場合は、オフセット電圧発生した
オフセット電圧の影響を小さくするために直流バイアス
電圧を時分割駆動波形と共に素子に印加して時分割駆動
の動作条件を成立させる必要がある。また個々に製作し
た素子に必要なオフセット電圧は微妙に違うため一個一
個必要な直流バイアス電圧に調整する煩わしさがあり、
この直流バイアス電圧は液晶の劣化の原因となり、発明
が対象とする液晶表示素子の駆動方法としては不十分で
ある。そこで、表示の濃淡むらなどを防ぎ、素子を長期
的に時分割駆動で安定に動作させるためには、表示素子
内部に電荷が充電されない方法、即ち、液晶表示素子に
印加される平均電圧レベルをゼロに出来るように素子を
駆動する方法にすればよい。
When attempting to drive a conventional TN-type liquid crystal display element using the time-division driving method, a DC bias voltage is applied to the element together with the time-division drive waveform in order to reduce the influence of the generated offset voltage. It is necessary to satisfy the operating conditions for time-division driving. In addition, the offset voltage required for each individually manufactured element differs slightly, so it is troublesome to adjust the DC bias voltage to the required DC bias voltage for each element.
This DC bias voltage causes deterioration of the liquid crystal, and is insufficient as a method for driving a liquid crystal display element, which is the object of the present invention. Therefore, in order to prevent uneven display shading and to operate the device stably over a long period of time by time-division driving, it is necessary to find a method that does not charge the inside of the display device, that is, to reduce the average voltage level applied to the liquid crystal display device. What is necessary is to use a method of driving the element so that it can be made zero.

双極のパルスでかつ高周波で駆動させればオフセット電
圧の原因となる電荷の充電を防ぎ、表示の濃淡むらを無
くすことが出来る。双極のパルスの周波数は、画素を表
示させる選択時間に対応する周波数の2倍以上の整数倍
で上限は素子に使用する液晶材料の誘電緩和周波数まで
か、その液晶材料の誘電異方性が正を示す周波数範囲の
上限までが好ましい。
By driving with bipolar pulses and high frequency, it is possible to prevent charging of charges that cause offset voltage and eliminate unevenness in display density. The frequency of the bipolar pulse is an integral multiple of twice or more of the frequency corresponding to the selected time for displaying the pixel, and the upper limit is the dielectric relaxation frequency of the liquid crystal material used in the element, or the dielectric anisotropy of the liquid crystal material is positive. The upper limit of the frequency range showing .

双極の高周波パルス列は二枚の基板上の電極間の交点に
於て発生する電位差によるもので、交差する電極間に双
極の高周波パルス列の電位差が発生するように一方の電
極と他方の電極に各々独立した波形を印加すれば良い。
A bipolar high-frequency pulse train is caused by a potential difference that occurs at the intersection between the electrodes on two substrates. It is sufficient to apply independent waveforms.

所望の表示に従い電極に加わる波形は変化させ、所望の
双極高周波パルス列が発生するように一方の電極と他方
の電極に加わる各々独立した波形の組合せを変えて各々
の電極に印加して画素の選択、非選択の制御を行い、文
字や図形を表示させる。選択された画素は、調光層内の
液晶材料が飽和応答状態にさせる双極高周波パルス列の
電位差の発生により調光層内の液晶分子を電界方向に配
向させ表示画素となる。
The waveform applied to the electrodes is changed according to the desired display, and the combination of independent waveforms applied to one electrode and the other electrode is changed and applied to each electrode to select pixels so as to generate the desired bipolar high-frequency pulse train. , controls non-selection and displays characters and figures. The selected pixel becomes a display pixel by aligning the liquid crystal molecules in the light control layer in the direction of the electric field due to the generation of a potential difference of the bipolar high-frequency pulse train that brings the liquid crystal material in the light control layer into a saturated response state.

表示画素の双極高周波パルス列の波高値は飽和電圧を越
えることが好ましい。非選択の場合は、調光層内の液晶
材料をしきい値以下の状態にさせる双極高周波パルス列
の電位差を非表示画素部に発生させる。この波形が印加
されても調光層内の液晶分子は電界方向に関係なく分子
の方向がランダムな状態である。非選択の場合の波高値
は調光層のしきい値電圧以下にすることが好ましい。
It is preferable that the peak value of the bipolar high-frequency pulse train of the display pixel exceeds the saturation voltage. In the case of non-selection, a potential difference of a bipolar high-frequency pulse train is generated in the non-display pixel portion to bring the liquid crystal material in the light control layer into a state below the threshold value. Even when this waveform is applied, the liquid crystal molecules in the light control layer are in a random direction regardless of the direction of the electric field. It is preferable that the peak value in the case of non-selection is equal to or lower than the threshold voltage of the light control layer.

液晶表示素子の電極としては、走査電極列と信号電極列
との組み合わせ、セグメント電極群と共通電極との組み
合わせ等を挙げることができる。
Examples of the electrodes of the liquid crystal display element include a combination of a scanning electrode row and a signal electrode row, a combination of a segment electrode group and a common electrode, and the like.

この様に本発明の駆動方法は、平均電圧レヘル0 がゼロである駆動波形を用いることで時分割駆動の動作
点のずれの原因となる電荷の充電を抑制し、表示の濃淡
むらを防ぎコントラスト比を向上させることが出来る。
As described above, the driving method of the present invention uses a driving waveform in which the average voltage level 0 is zero, thereby suppressing the charging of electric charge that causes a shift in the operating point of time-division driving, and preventing uneven display shading and contrast. It is possible to improve the ratio.

駆動波形が調光層内の液晶材料を飽和応答状態にさせる
双極高周波パルス列と調光層内の液晶材料をしきい値以
下の状態にさせる双極高周波パルス列であることを特徴
とし、これらのパルス列を時分割的に表示素子に適宜印
加して選択と非選択の制御を行い文字や図形を表示させ
る駆動方法である。調光層が液晶材料と透明性固体物質
から成る液晶表示素子の時分割駆動方法として優れた方
法である。
The driving waveform is a bipolar high-frequency pulse train that brings the liquid crystal material in the light control layer into a saturated response state, and a bipolar high-frequency pulse train that brings the liquid crystal material in the light control layer into a state below a threshold value. This is a driving method in which characters and figures are displayed by appropriately applying voltage to display elements in a time-division manner to control selection and non-selection. This is an excellent method for time-division driving of a liquid crystal display element whose light control layer is made of a liquid crystal material and a transparent solid substance.

「実施例」 実施例1 液晶組成物(A) 組成 1 転移温度       68.5°c(N−1)〈−2
5°c  (C−N) 屈折率     n。−1,787 no =1.533 Δn=0.254 しきい値電圧(vth)     1. ]、 5 V
20°Cの粘度      59c、p。
"Example" Example 1 Liquid crystal composition (A) Composition 1 Transition temperature 68.5°c (N-1) <-2
5°c (C-N) Refractive index n. -1,787 no =1.533 Δn=0.254 Threshold voltage (vth) 1. ], 5V
Viscosity at 20°C 59c, p.

誘電率異方性      Δε−26.9液晶材料とし
て液晶組成物(A)  (、i;マチック相等方性液体
転移点TN、:68.5°C1しきい値■い:1.15
■r□5、複屈折率: 0.254、常屈折率n。:1
.533、誘電率異方性Δε:26.9)80重量%、
重合開始剤として2−ヒドロキシ2−メチル−1−フェ
ニル−プロパン−1−オン0.4%、重合性化合物とし
てカプロラクトン変性2 ヒドロキシパビリン酸エステルネオペンチルグリコール
シアクリレート19.6重量%を混合した。
Dielectric constant anisotropy Δε-26.9 Liquid crystal composition (A) as liquid crystal material
■r□5, birefringence: 0.254, ordinary refractive index n. :1
.. 533, dielectric anisotropy Δε: 26.9) 80% by weight,
0.4% of 2-hydroxy 2-methyl-1-phenyl-propan-1-one as a polymerization initiator and 19.6% by weight of caprolactone-modified 2-hydroxypavirate neopentyl glycol cyacrylate as a polymerizable compound were mixed. .

この溶液を示差型熱量計を用いてネマチック相等方液体
相転移温度を調べたところ32°Cであった。従って、
この転移温度より8°C高い40°Cに試料を加熱し紫
外線硬化温度とした。スペーサとして平均粒径10μm
のガラスファイバーの微粉を小量添加し、20cmX2
0cmの2枚のITOガラス板の間に挿入し、ITOガ
ラス全体を40°Cに加熱して、40mW/c[の強度
の紫外線を、ITOガラス板全面に同時に均一に照射し
、液晶表示素子を作製した。与えたエルネギ−は400
mJ/CTMに相当する。液晶表示素子の電極間隔は1
1μmである。紫外線照射により液晶表示素子は、IT
Oガラス板全面に均一に白濁不透明状態になった。
The nematic phase isotropic liquid phase transition temperature of this solution was examined using a differential calorimeter and was found to be 32°C. Therefore,
The sample was heated to 40°C, which is 8°C higher than this transition temperature, to provide the ultraviolet curing temperature. Average particle size 10μm as a spacer
Add a small amount of glass fiber fine powder to 20cm x 2
The ITO glass was inserted between two 0 cm ITO glass plates, the entire ITO glass was heated to 40°C, and the entire surface of the ITO glass plate was uniformly irradiated with ultraviolet rays with an intensity of 40 mW/c [to produce a liquid crystal display element. did. The energy given was 400
Corresponds to mJ/CTM. The electrode spacing of a liquid crystal display element is 1
It is 1 μm. The liquid crystal display element becomes IT when irradiated with ultraviolet rays.
The entire surface of the glass plate became cloudy and opaque.

この液晶表示素子を調べたところ、しきい値電圧V t
h−7,8’ V r’ms 、飽和電圧V’s−t 
−17,8V、、、、無電圧印加時の透過率カ月、6%
、透過率の最大値が85%であった。
When this liquid crystal display element was investigated, the threshold voltage V t
h-7,8' V r'ms, saturation voltage V's-t
-17.8V, ... Transmittance when no voltage is applied, 6%
, the maximum transmittance was 85%.

2枚のガラス基板の間に形成された調光層の断面を走査
型電子顕微鏡で観察したところ、1〜1.3μmの大き
さの均一なネットの3次元ネントワークが認められた。
When the cross section of the light control layer formed between two glass substrates was observed with a scanning electron microscope, a three-dimensional network of uniform nets with a size of 1 to 1.3 μm was observed.

第1図に、本発明の実施例における液晶素子及び駆動回
路の構成の一例の略図を示す。第2図は、本発明の駆動
方法における具体的な駆動波形の一例を示したものであ
る。第1図及び第2図において、走査信号回路1からは
走査信号Sが走査電極部X1〜X8へ順次供給されてお
り、X8へ走査信号Sの供給が終了すると再びXlから
順次走査信号が供給される。選択信号回路2からは所望
する表示に従い信号電極部Y1〜Y5の所望する電極へ
選択信号RCまたは非選択信号Cを供給する。
FIG. 1 shows a schematic diagram of an example of the configuration of a liquid crystal element and a drive circuit in an embodiment of the present invention. FIG. 2 shows an example of a specific drive waveform in the drive method of the present invention. In FIGS. 1 and 2, the scanning signal S is sequentially supplied from the scanning signal circuit 1 to the scanning electrode sections X1 to X8, and when the supply of the scanning signal S to X8 is finished, the scanning signal is sequentially supplied from Xl again. be done. The selection signal circuit 2 supplies a selection signal RC or a non-selection signal C to a desired electrode of the signal electrode portions Y1 to Y5 in accordance with a desired display.

直交する走査電極部と信号電極部の各交点において、選
択信号RCと走査信号Sが供給されると選択信号RCの
位相が走査信号の位相と反転しているため±3H(Hは
任意の電位を示す)の電位差の高周波交流パルス列P1
が発現して調光層内の液晶分子を飽和応答状態にさせ光
が透過して表示画素となる。非選択信号Cと走査信号S
が供給さ3 4 れた場合には、非選択信号Cの位相と走査信号Sの位相
が同相であるので±Hの電位差の高周波交流パルス列P
2が発生して調光層内の液晶分子をしきい値以下の状態
にさせ光の散乱が起こり非表示画素となる。非走査時に
は選択信号RCまたは非選択信号Cと一致した±Hの電
位差の高周波パルス列P3.P4が発生して調光層内の
液晶分子がしきい値以下の状態になり非表示画素となる
When the selection signal RC and the scanning signal S are supplied at each intersection of the orthogonal scanning electrode section and the signal electrode section, the phase of the selection signal RC is inverted to the phase of the scanning signal, so ±3H (H is an arbitrary potential A high-frequency AC pulse train P1 with a potential difference of
is expressed, causing the liquid crystal molecules in the light control layer to enter a saturated response state, allowing light to pass through and become display pixels. Non-selection signal C and scanning signal S
When 3 4 is supplied, the phase of the non-selection signal C and the phase of the scanning signal S are in phase, so a high-frequency AC pulse train P with a potential difference of ±H is generated.
2 is generated, causing the liquid crystal molecules in the light control layer to be in a state below the threshold value, causing light scattering, resulting in a non-display pixel. During non-scanning, a high-frequency pulse train P3. When P4 occurs, the liquid crystal molecules in the light control layer become lower than the threshold value, and the pixel becomes a non-display pixel.

先に作製した液晶表示素子に於いて、第1図に示す7ト
リツクス電極に前記の駆動波形を印加させて1/8デユ
ーテイで時分割駆動した。
In the previously prepared liquid crystal display element, the above drive waveform was applied to the 7-trix electrodes shown in FIG. 1, and the drive was time-divisionally driven at 1/8 duty.

第2図に示すHの値を8ボルトに設定して時分割駆動さ
せたところ何れの画素も選択時の透過率が82%非選択
時の透過率が7%で表示の濃淡むらは発生しなかった。
When the value of H shown in Fig. 2 was set to 8 volts and time-division driving was performed, the transmittance of each pixel when selected was 82%, and when not selected, the transmittance was 7%, and unevenness in display density did not occur. There wasn't.

一方、上記の液晶素子を一般的なTN型液晶表示素子の
駆動方法1/3バイアス法1/8デユーテイで駆動した
ところ選択時の透過率が65%から76%の間で変動し
、非選択時の透過率も7%から16%のあいだで変動し
ており表示の濃淡むらが起きた。また、各駆動波5 形印加後の電極間の電位差を測定したところ、本発明の
駆動波形では27mVであった。−船釣なTN型液晶表
示素子の駆動波形では、1.7■を示した。
On the other hand, when the above liquid crystal element was driven with a 1/3 bias method and 1/8 duty, which is the driving method for a general TN type liquid crystal display element, the transmittance when selected varied between 65% and 76%, and when not selected. The transmittance also varied between 7% and 16%, resulting in uneven display shading. Further, when the potential difference between the electrodes after applying each drive waveform of 5 was measured, it was 27 mV with the drive waveform of the present invention. - The driving waveform of a TN type liquid crystal display element used in a boat showed 1.7 .

このように前記した駆動方法により調光層内の液晶分子
を飽和応答状態させる双極パルス列P1と調光層内の液
晶分子をしきい値以下の状態させる双極パルス列P2.
P3.P4を直交する電極の各交点に適宜発生させるこ
とにより所望の文字や図形をドラ1〜で表示することが
出来た。異なる画素表示間でのコントラスト比は表示内
容によらず一定であり濃淡の無い表示を得ることが出来
た。
As described above, the driving method described above produces a bipolar pulse train P1 that brings the liquid crystal molecules in the light control layer into a saturated response state, and a bipolar pulse train P2 that brings the liquid crystal molecules in the light control layer into a state below a threshold value.
P3. By appropriately generating P4 at each intersection of orthogonal electrodes, desired characters and figures could be displayed using the dots 1 to 1. The contrast ratio between different pixel displays was constant regardless of the display content, and a display without shading could be obtained.

Hは、3Hが調光層内の液晶分子が飽和応答状態に、H
が調光層内の液晶分子がしきい値以下の状態にそれぞれ
成るように調整するのが好ましい。
H is 3H, when the liquid crystal molecules in the light control layer are in a saturated response state,
It is preferable to adjust so that the liquid crystal molecules in the light control layer are in a state below a threshold value.

各パルス列の周波数は1ktlzで行ったがこの周波数
に限定するものではない。
Although the frequency of each pulse train was set to 1 ktlz, it is not limited to this frequency.

実施例2 第3図に、本発明の実施例における具体的な駆動波形の
一例を示す。第1図及び第3図において、走査信号回路
1からは走査時には走査信号Sが走6 査電極群XI〜X8へ順次供給されており、X8へ走査
信号Sの供給が終了すると再びXlから順次走査信号が
供給される。非走査時には、非走査信号NSが供給され
、非走査信号は走査信号Sの位相と反転している。選択
信号回路2がらは所望する表示に従い信号電極群Y1〜
Y5の所望する電極へ選択信号RCを供給する。直交す
る走査電極群と信号電極群の各交点において、選択信号
RCと走査信号Sが供給されると走査信号Sの位相が選
択信号RCの位相と反転しているため±3H(Hは任意
の電位を示す)の電位差の高周波交流パルス列P1が発
現して調光層内の液晶分子を飽和応答状態させ光が透過
して表示画素となる。非走査信号NSと選択信号RCが
供給された場合は、非走査信号NSの位相と選択信号R
Cの位相が同相であるので±Hの電位差の高周波交流パ
ルス列P3が発生し・て調光層内の液晶分子をしきい値
以下の状態にさせ光の散乱が起こり非表示画素となる。
Embodiment 2 FIG. 3 shows an example of a specific drive waveform in an embodiment of the present invention. In FIGS. 1 and 3, during scanning, the scanning signal S is sequentially supplied from the scanning signal circuit 1 to the scanning electrode groups XI to X8, and when the supply of the scanning signal S to X8 is completed, the scanning signal S is sequentially supplied from the scanning signal circuit 1 to the scanning electrode groups XI to X8. A scanning signal is provided. During non-scanning, a non-scanning signal NS is supplied, and the non-scanning signal is inverted in phase to the scanning signal S. The selection signal circuit 2 selects signal electrode groups Y1~ according to the desired display.
A selection signal RC is supplied to a desired electrode of Y5. At each intersection of the orthogonal scanning electrode group and signal electrode group, when the selection signal RC and the scanning signal S are supplied, the phase of the scanning signal S is inverted to the phase of the selection signal RC, so ±3H (H is an arbitrary value) A high-frequency alternating current pulse train P1 with a potential difference (indicating the potential) is developed to bring the liquid crystal molecules in the light control layer into a saturated response state, allowing light to pass through and form display pixels. When the non-scanning signal NS and the selection signal RC are supplied, the phase of the non-scanning signal NS and the selection signal R
Since the phases of C are in the same phase, a high frequency AC pulse train P3 with a potential difference of ±H is generated, causing the liquid crystal molecules in the light control layer to be in a state below the threshold value, causing light scattering and becoming a non-display pixel.

非選択時には走査信号Sまたは非走査信号NSと一致し
た士■の電位差の高周波パルス列P2゜P4が発生して
調光層内の液晶分子がしきい値以下の状態になり非表示
画素となる。
When not selected, a high-frequency pulse train P2 to P4 with a potential difference between 1 and 2 that coincides with the scanning signal S or non-scanning signal NS is generated, and the liquid crystal molecules in the light control layer are brought into a state below the threshold value, thereby becoming a non-display pixel.

上記で述べた具体的な駆動波形を実際に第1図に示すマ
トリックス電極型の液晶表示素子に印加させて1/8デ
ユーテイで時分割駆動した。各パルス列の周波数は1k
llzで行った。液晶材料にピリジン系液晶組成物(T
N+= 68.3°C1しきい値VTR= 1.15 
V、、、、 、複屈折率−0,254、誘電異方性−2
6,3)と透明性固体物質としてジアクリル系の紫外線
硬化性樹脂を使用して、調光層として液晶相中に三次元
ネットワーク状の網目を形成させた液晶表示素子を用い
た。この素子のしきい値は7.6 V、ffi、 、飽
和電圧は17.8 V、msである。第3図に示すHの
値を8ボルトに設定して時分割駆動させたところ何れの
画素も選択時の透過率が82%非選択時の透過率が7%
で表示の濃淡むらは発生しなかった。異なる画素表示間
でのコントラスト比は表示内容によらず一定であり濃淡
の無い表示を得ることができた。
The specific driving waveform described above was actually applied to the matrix electrode type liquid crystal display element shown in FIG. 1, and time division driving was performed at 1/8 duty. The frequency of each pulse train is 1k
I went with llz. A pyridine-based liquid crystal composition (T
N+= 68.3°C1 threshold VTR= 1.15
V, , , birefringence -0,254, dielectric anisotropy -2
6, 3) and a liquid crystal display element in which a diacrylic ultraviolet curable resin was used as the transparent solid material and a three-dimensional network was formed in the liquid crystal phase as the light control layer. The threshold value of this device is 7.6 V, ffi, and the saturation voltage is 17.8 V, ms. When the value of H shown in Figure 3 was set to 8 volts and time-division driving was performed, the transmittance of each pixel when selected was 82%, and when not selected, the transmittance was 7%.
No unevenness of shading occurred in the display. The contrast ratio between different pixel displays was constant regardless of the display content, and a display without shading could be obtained.

7 8 「発明の効果」 本発明によれば、液晶小滴をポリマー中に分散させた液
晶表示素子、または、液晶相中にポリマーを三次元ネッ
トワーク状に形成させ液晶相が連続相を成している液晶
表示素子を、平均電圧レベルがゼロの双極の高周波交流
パルス列を用いて表示画素の選択、非選択を時分割的に
制御して液晶素子を駆動するため表示品位の高い時分割
駆動を実現している。双極の高周波交流パルス列を素子
に印加するので液晶の劣化を防ぎ、異なる画素間でのコ
ントラスト比は表示内容によらず一定にすることが出来
、表示の濃淡むらのないコントラスト比の良好な液晶表
示を提供するものである。従来、上記に示すタイプの液
晶表示素子は時分割駆動出来ないとされていたが、素子
のしきい値が急峻であれば本発明の駆動方法で上記液晶
素子のオフセン1−電圧発生による不都合が解消でき、
駆動させれば時分割駆動が可能となり、情報表示容量が
大きい液晶表示素子では大幅に駆動回路数を減らすこと
が出来るなど、その効果は絶大である。
7 8 "Effects of the Invention" According to the present invention, there is provided a liquid crystal display element in which liquid crystal droplets are dispersed in a polymer, or in which a polymer is formed in a three-dimensional network in a liquid crystal phase so that the liquid crystal phase forms a continuous phase. This technology uses a bipolar high-frequency alternating current pulse train with an average voltage level of zero to control the selection and non-selection of display pixels in a time-division manner to drive the liquid crystal display elements, allowing for time-division driving with high display quality. It has been realized. By applying a bipolar high-frequency AC pulse train to the element, deterioration of the liquid crystal is prevented, and the contrast ratio between different pixels can be kept constant regardless of the displayed content, resulting in a liquid crystal display with a good contrast ratio without uneven display shading. It provides: Conventionally, it has been thought that the above-mentioned type of liquid crystal display element cannot be driven in a time-division manner, but if the threshold of the element is steep, the driving method of the present invention can eliminate the inconvenience caused by off-sensing voltage generation in the liquid crystal element. It can be resolved,
If driven, time-division driving becomes possible, and its effects are enormous, such as the ability to significantly reduce the number of drive circuits for liquid crystal display elements with a large information display capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は液晶表示素子の一例を示した説明図、第2図及
び第3図は本発明を具体的にするだめの駆動波形の例を
示した説明図である。 X1〜x8・・・走査電極群、Y1〜Y5・・・信号電
極群、S・・・走査信号群、NS・・非走査信号、RC
・・・選択信号、C・・・非選択信号、P1〜P4・・
・パルス列。
FIG. 1 is an explanatory diagram showing an example of a liquid crystal display element, and FIGS. 2 and 3 are explanatory diagrams showing examples of driving waveforms for making the present invention concrete. X1 to x8...Scanning electrode group, Y1 to Y5...Signal electrode group, S...Scanning signal group, NS...Non-scanning signal, RC
...Selection signal, C...Non-selection signal, P1 to P4...
・Pulse train.

Claims (5)

【特許請求の範囲】[Claims] 1.電極を有する2枚の基板間に、調光層を有し、前記
調光層が液晶材料と透明性固体物質から成り、一方の基
板に走査電極列が配列され、他方の基板に前記走査電極
列と交差して信号電極列が配列され、これらの電極列が
マトリックス状に配置されており、光の透過散乱を電気
的に制御できる液晶表示素子の駆動方法であって、前記
走査電極群には順次走査信号を供給し、前記信号電極群
には所望表示に従う信号を供給し、前記所望の信号と前
記走査信号との電位差によって前記調光層内の液晶材料
を飽和応答状態にする双極のパルス列と、前記所望の信
号と前記走査信号または前記走査信号の非供給時との電
位差により前記調光層内の液晶材料を前記液晶材料のし
きい値以下の状態にする双極のパルス列とを時分割的に
印加し、前記調光層に加わる駆動波形の平均電圧レベル
をゼロにすることを特徴とする液晶表示素子の駆動方法
1. A light control layer is provided between two substrates having electrodes, the light control layer is made of a liquid crystal material and a transparent solid material, scanning electrode arrays are arranged on one substrate, and the scanning electrodes are arranged on the other substrate. A method for driving a liquid crystal display element, in which signal electrode rows are arranged to intersect with the scanning electrode groups, and these electrode rows are arranged in a matrix, and transmission and scattering of light can be electrically controlled. sequentially supplies scanning signals, supplies a signal according to a desired display to the signal electrode group, and brings the liquid crystal material in the light control layer into a saturated response state by a potential difference between the desired signal and the scanning signal. a pulse train, and a bipolar pulse train that brings the liquid crystal material in the light control layer into a state below a threshold value of the liquid crystal material due to a potential difference between the desired signal and the scanning signal or when the scanning signal is not supplied. A method for driving a liquid crystal display element, characterized in that the voltage is applied in parts to make the average voltage level of a driving waveform applied to the light control layer zero.
2.電極を有する2枚の基板間に、調光層を有し、前記
調光層が液晶材料と透明性固体物質から成り、前記液晶
材料が連続相を形成し、前記透明性固体物質が液晶材料
中に三次元ネットワーク状に分散しており、一方の基板
に走査電極列が配列され、他方の基板に前記走査電極列
と交差して信号電極列が配列され、これらの電極列がマ
トリックス状に配置されている液晶表示素子を駆動する
ことを特徴とする特許請求の範囲第1項の駆動方法。
2. A light control layer is provided between two substrates having electrodes, the light control layer is made of a liquid crystal material and a transparent solid material, the liquid crystal material forms a continuous phase, and the transparent solid material is a liquid crystal material. A scanning electrode array is arranged on one substrate, a signal electrode array is arranged across the scanning electrode array on the other substrate, and these electrode arrays are arranged in a matrix. 2. The driving method according to claim 1, further comprising driving a liquid crystal display element arranged.
3.前記所望の信号に前記走査信号との電位差による前
記調光層内の液晶材料を飽和応答状態にする双極のパル
ス列と、前記所望の信号と前記走査信号または前記走査
信号の非供給時との電位差により前記調光層内の前記液
晶材料のしきい値以下の状態にする双極のパルス列との
周波数域で誘電異方性が正を示す液晶材料を使用した液
晶表示素子を駆動することを特徴とする特許請求の範囲
第1項または第2項の液晶表示素子の駆動方法。
3. A bipolar pulse train that brings the liquid crystal material in the light control layer into a saturated response state due to a potential difference between the desired signal and the scanning signal, and a potential difference between the desired signal and the scanning signal or when the scanning signal is not supplied. drive a liquid crystal display element using a liquid crystal material exhibiting positive dielectric anisotropy in a frequency range with a bipolar pulse train that brings the liquid crystal material in the light control layer into a state below a threshold value. A method for driving a liquid crystal display element according to claim 1 or 2.
4.電極を有する2枚の基板間に、調光層を有し、前記
調光層が液晶材料と透明性固体物質から成り、一方の基
板にセグメント電極群が配置され、他方の基板に分割さ
れた共通電極が配置された構造を有する液晶表示素子に
於て、光の透過散乱を電気的に制御できる液晶表示素子
の駆動方法であって、前記分割された共通電極群には順
次走査信号を供給し、前記セグメント電極群には所望の
表示に従う信号を供給し、前記所望の信号と前記走査信
号との電位差によって前記調光層内の液晶材料を飽和応
答状態にする双極のパルス列と、前記所望の信号と前記
走査信号または前記走査信号の非供給時との電位差によ
り前記調光層内の液晶材料を前記液晶材料のしきい値以
下の状態にする双極のパルス列とを時分割的に印加し、
調光層に加わる駆動波形の平均電圧レベルをゼロにする
ことを特徴とする液晶表示素子の駆動方法。
4. A light control layer is provided between two substrates having electrodes, the light control layer is made of a liquid crystal material and a transparent solid substance, and a segment electrode group is arranged on one substrate and divided into the other substrate. A method for driving a liquid crystal display element in which transmission and scattering of light can be electrically controlled in a liquid crystal display element having a structure in which a common electrode is arranged, wherein scanning signals are sequentially supplied to the divided common electrode group. a bipolar pulse train for supplying a signal according to a desired display to the segment electrode group and bringing the liquid crystal material in the light control layer into a saturated response state by a potential difference between the desired signal and the scanning signal; time-divisionally applying a bipolar pulse train that brings the liquid crystal material in the light control layer into a state below a threshold value of the liquid crystal material due to the potential difference between the signal and the scanning signal or when the scanning signal is not supplied. ,
A method for driving a liquid crystal display element, characterized by reducing the average voltage level of a driving waveform applied to a light control layer to zero.
5.電極を有する2枚の基板間に、調光層を有し、前記
調光層が液晶材料と透明性固体物質から成り、前記液晶
材料が連続相を形成し、前記透明性固体物質が液晶材料
中に三次元ネットワーク状に分散しており、前記液晶材
料が連続相を形成し、前記透明性固体物質が液晶材料中
に三次元ネットワーク状に分散しており、一方の基板に
セグメント電極群が配置され、他方の基板に分割された
共通電極が配置された構造を有する液晶表示素子を駆動
することを特徴とする特許請求の範囲第4項の駆動方法
5. A light control layer is provided between two substrates having electrodes, the light control layer is made of a liquid crystal material and a transparent solid material, the liquid crystal material forms a continuous phase, and the transparent solid material is a liquid crystal material. The liquid crystal material forms a continuous phase, the transparent solid material is dispersed in the liquid crystal material in a three-dimensional network, and one substrate has a group of segment electrodes. 5. The driving method according to claim 4, further comprising driving a liquid crystal display element having a structure in which a common electrode is arranged and divided on the other substrate.
JP14414689A 1989-06-08 1989-06-08 Driving method for liquid crystal display element Pending JPH0310215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14414689A JPH0310215A (en) 1989-06-08 1989-06-08 Driving method for liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14414689A JPH0310215A (en) 1989-06-08 1989-06-08 Driving method for liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH0310215A true JPH0310215A (en) 1991-01-17

Family

ID=15355290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14414689A Pending JPH0310215A (en) 1989-06-08 1989-06-08 Driving method for liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0310215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548423A (en) * 1992-12-15 1996-08-20 Citizen Watch Co., Ltd. Color liquid-crystal shutter array having unique pixel arrangement and method of driving the same
JP2008286890A (en) * 2007-05-15 2008-11-27 Nec Electronics Corp Lcd controller
JP2013083674A (en) * 2011-10-05 2013-05-09 Sony Corp Display unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548423A (en) * 1992-12-15 1996-08-20 Citizen Watch Co., Ltd. Color liquid-crystal shutter array having unique pixel arrangement and method of driving the same
JP2008286890A (en) * 2007-05-15 2008-11-27 Nec Electronics Corp Lcd controller
JP2013083674A (en) * 2011-10-05 2013-05-09 Sony Corp Display unit

Similar Documents

Publication Publication Date Title
US7161573B1 (en) Liquid crystal display unit and method for driving the same
KR20080023705A (en) Method of driving liquid crystal display device
JPS6186732A (en) Liquid crystal element for time division drive
Maltese et al. Addressing cycles for fast settling grey shades in ferroelectric liquid crystal matrices
JPH0310215A (en) Driving method for liquid crystal display element
JP2009116173A (en) Driving method of liquid crystal display device
EP0087232B1 (en) Liquid crystal displays
EP0762377A2 (en) Method of driving a liquid crystal device
JP2013503367A (en) Rapid migration of large area cholesteric displays
JP4715012B2 (en) Driving method and driving apparatus for memory cholesteric liquid crystal display device
Reinhart et al. Addressing of ferroelectric liquid crystal matrices and electrooptical characterization
JP4924760B2 (en) Driving method of memory cholesteric liquid crystal display device
JP2002014324A (en) Method and device for driving memory type cholesteric liquid crystal display device
JP2009115968A (en) Method of driving liquid crystal display device
JPS62273513A (en) Driving method for liquid-crystal electrooptic element
US8487856B2 (en) Addressing method for a bistable nematic liquid crystal matrix screen with regulated average quadratic voltage
JPH07248485A (en) Liquid crystal display device and method of driving it
JPH1144871A (en) Method for driving liquid crystal element
JP4048895B2 (en) Driving method of transparent display device
JPH0833537B2 (en) Liquid crystal device and driving method thereof
JPS636875B2 (en)
Pagano-Stauffer et al. Ferroelectric Liquid Crystal Spatial Light Modulator: Materials and Addressing
JPS61163325A (en) Driving method of liquid crystal element
JPH0830800B2 (en) Liquid crystal device and driving method thereof
JPH08101371A (en) Liquid crystal display device driving method and liquid crystal display device