JPH03102149A - Cooling device and method of controlling operation thereof - Google Patents
Cooling device and method of controlling operation thereofInfo
- Publication number
- JPH03102149A JPH03102149A JP24036589A JP24036589A JPH03102149A JP H03102149 A JPH03102149 A JP H03102149A JP 24036589 A JP24036589 A JP 24036589A JP 24036589 A JP24036589 A JP 24036589A JP H03102149 A JPH03102149 A JP H03102149A
- Authority
- JP
- Japan
- Prior art keywords
- cooler
- refrigerant liquid
- coolers
- cooling
- defrost
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000003507 refrigerant Substances 0.000 claims abstract description 61
- 239000007788 liquid Substances 0.000 claims abstract description 50
- 238000010257 thawing Methods 0.000 claims description 22
- 238000007710 freezing Methods 0.000 abstract description 3
- 230000008014 freezing Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Landscapes
- Defrosting Systems (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野』
本発明は、冷却装置とその動作制御方法に係り、特に蒸
発器として機能する冷却器を少なくとも複数個設けた冷
却装置において、前記冷却器のデフロストと冷却動作を
交互に行う事の出来る冷却装置とその動作制御方法に関
する.
「従来の技術』
従来より冷凍サイクル中に組み込まれた蒸発器のデフロ
スト法として、前記蒸発器内の冷却管に水又は温水を散
水する事により、デフロストを行っていた.
しかしながらかかる従来技術においては、冷却管への水
滴の氷結に加えて特別な散水装置を必要とし、且つその
為の排水管を設備しなければならず、更には配管中の結
氷等の恐れも生じていた.
かかる欠点を解消する為に、凝縮器内に貯溜されている
ホットガス(凝縮液を含む)を利用して該ホットガスを
別異の配管を介して直接(膨張弁を通さずに、)蒸発器
内の熱交換器に導入するようにした技術も存在するが,
かかる従来技術においては前記別異の配管のみならず、
デフロスト後の凝縮液を溜めて蒸発させ、そのガスを圧
縮機に回収する為の再蒸発器やホットガス用の各種戻り
管を必要とし、構戊が煩雑化する.
かかる欠点を解消する為に第4図に示すように、圧縮機
lの液冷媒系を冷却用の低圧冷媒供給管81と、デフロ
スト用の高圧冷媒供給管52とに分岐し、蒸発器として
機能する複数の冷却器4a〜4cの入口に前記低圧冷媒
供給管61と、前記高圧冷媒供給管51とを切り替え可
能に連結するとともに、前記冷却器4a−4cの出口側
に高圧冷媒用戻り管52と低圧冷媒用戻り管θ2とを切
り替え可能に連結し、高圧冷媒用戻り管52の他端を圧
縮機1の吐出ガス配管系53に噴霧または同管系中に配
設された冷却管を介して連結した事を特徴とする冷凍装
置を提案している.(特公昭53−17333号)「発
明が解決しようとする課題」
かかる従来技術によれば高圧受液器53に接続された高
圧冷媒液管54及びデフロスト後の高圧冷媒戻し管55
と、低圧レシーバ63に接続された低圧冷媒供給管S4
及び戻し管65と、更に前記低圧レシーバ83と圧縮機
1吸入側間に接続された過冷却器56等を必要とし,結
果として冷却用の低圧冷媒配管系61〜65と、デフロ
スト用の高圧冷媒配管系51〜5Sが、夫々別異の配管
系として形威されている為に、必然的に配管系が煩雑化
する.
而も前記配管系は冷却若しくはデフロストのみを専用的
に行うものである為に,常にデフロスト用の熱エネルギ
ーが余分に必要とし,省エネルギーにつながらない.
本発明はかかる従来技術の欠点に鑑み、システム及び配
管系の構成の簡単化とともに、エネルギー効率を高め、
設備費及び運転費のいずれをも減少させる事を目的とす
るものである.「課題を解決する為の手段」
本発明は冷却用の低圧冷媒配管系と,デ7ロスト用の高
圧冷媒配管系を夫々独立して設ける事なく、
前記配管系を冷却器を介して直列接続する事により両者
の配管系を兼用して前記した従来技術の欠点を一挙に解
消せんとするものである.即ち本発明はデフロスト用の
高圧冷媒掖をほぼ全開可能な膨張弁を介して各冷却器に
供給する第1の管路と,一の冷却器の出口側より取り出
された、デフロスト終了後の冷媒液を前記膨張弁を介し
て他の冷却器に導く第2の管路とを設け、所定位置に設
けた一又は複数の弁により前記第1の管路と第2の管路
が各冷却器を介して順次選択的に連結可能に構威した点
にある.
この場合前記第2の管路中に、冷却器のデフロストによ
り過冷却された冷媒液の余剰分を凝縮器に戻す低圧受液
器が介在させるのがよい.「作用」
本発明は第1図に示すように、冷却用の冷媒を直接冷却
器4a〜4cに導入する事なく、前記第1の管路11a
を利用してデフロスト用の高圧冷媒液を一の冷却器4a
に導入してデフロスト動作を行った後,該デフロストに
より過冷却された冷媒液を前記一の冷却器4aの出口側
より第2の管路12a・・・を利用して他の冷却器4b
, 4cに導入して、前記過冷却された冷媒液を利用し
て冷却動作を行う事を特徴とするものであり、そして前
記夫々の管路11a・・・.12a・・・を各冷却器4
aw4c毎に順次切り換える事によりデフロスト動作と
冷却動作を並行して行う事が出来る.
即ち本発明は冷媒液を直接各冷却器4a〜4Cに導入し
て冷却動作を行う事なく、デフロスト動作を行った後の
高圧冷媒液を利用して冷却動作を行うものである為に、
凝縮器2より導かれる一の配管(高圧冷媒液管21)と
、圧縮機l吸入側に導かれる一の戻り配管22(吸入配
管)を除いて前記各配管21.22と冷却器4a−4c
若しくは冷却器4a〜4c相互間を連絡する管路11a
・・・,12a・・・のみで足りる為に,管路構或の単
純化と管路長さの大幅節減が可能となる.
尚木発明において、前記高圧冷媒液の一の冷却器4a〜
4Cへの導入が膨張弁13a・・・を介して行う事によ
り高圧液冷媒液が過冷却されてエンタルピ一の増加とな
る為に、後工程における冷却効率と冷凍効率が一層増大
する.
而も前記膨張弁13a・・・をほぼ全開状態にして行う
事により膨張弁13a・・・を絞った場合に比較して低
減温度小さく十分なる熱エネルギーを保有した状態でデ
フロストを行える為に、円滑なデフロストが可能となる
.
而も前記第1の冷却器4a〜4cに供給する冷媒を供給
する際に、膨張弁13a・・・をほぼ全開状態にして且
つ冷媒を高圧下で供給する為に,後工程で複数の冷却器
4a〜4cを接続した場合においても十分なる余裕をも
って各冷却器4a〜4Cに低圧用冷媒を供給する事が出
来る.
この場合において、前記冷却器4a〜4Cのデフロスト
により過冷却された冷媒液を一旦低圧受液器5に導く事
により、該受液器が緩衝的機能とともに、液化状態にあ
る低圧用冷媒のみを他の冷却器4&〜4cに導く事が可
能となり、冷却動作を一層円滑に行う事が出来る.
「実施例』
以下,図面を参照して本発明の好適な実施例を例示的に
詳しく説明する.ただしこの実施例に記載されている構
或部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく,単なる説明例に過ぎない.
第1図は本発明の実施例に係る冷却装置を示すフローシ
一ト図で、その全体構戊を簡単に説明するに,1は冷媒
圧縮機、2は該圧縮機lよりの吐出ガスを凝縮する凝縮
器、3は圧縮機1吸入側に導かれる戻り冷媒を奪熱して
前記凝縮器2よりの冷媒液を高圧化する高圧受液器、2
1.22は高圧受液器3に接続された一の高圧冷媒液管
21と、圧縮機l吸入側に導かれる一の戻り配管22で
ある.4a〜4cは蒸発器として機能する冷却器4ax
4cで、夫々入口側にほぼ全開可能に構成された膨張弁
13a・・・が取付けられている.尚該膨張弁13a・
・・は自勤制御によって流量を調節しながら開度調整可
能なリニア自動膨張弁13a・・・(特願昭82−32
3404号参照)を使用している.
そして一の高圧冷媒液管21と前記膨張弁13a・・・
間は開閉弁14a・・・を介して第1の管路11a・・
・が,又前記冷却器4a・・・と低圧受液器5間には、
開閉弁15a・・・,18a・・・と切換弁17a・・
・を介して第2の配管が連結されている.又前記第2の
配管は前記切換弁17a・・・を介して分岐されてZ5
却器4ax 4cの出口側と接続されている.
低圧受液器5は第3図に示すように中仕切り31とオー
バーフロー管32が設けられ、デフロスト終了後の過冷
却された冷媒液の余剰分がオーバーフロー管32を通っ
て受液器5の下部に溜り、液ボンプによって凝縮器2へ
戻入可能に構成されている.これにより冷却器4a〜4
cのデフロストに必要な高温冷媒液が不足することがな
い.
次にかかる実施例の動作を説明する.
先ず冷却器4aのデフロスト動作と並行して他の冷却器
4b,4cの冷却動作を行う場合には、開閉弁14a、
膨張弁13a、開閉弁18a及び15aを閉じ、開閉弁
111faを開いた後開閉弁14aを開き,次に膨張弁
13aを徐々に開いて全開とする.その時、冷却器4b
, 4cの弁14b , 18b , 14c , 1
8cを閉じ、弁18b . 15b , 18c ,
15cを開き、膨張弁13b,13Cは自動M御によっ
て流量をa!I節しながら開く.これにより冷却器4a
のデフロストにより過冷却された高圧冷媒液はエンタル
ピー増加となって低圧受液器5を介して開閉弁15bと
膨張弁13b及び15Cと膨張弁13cを通って夫々の
冷却器4b, 4cに入る.
そして冷却器4b, 4c冷却後のガス化された冷媒液
は戻り管22を通って高圧受液器3により更に過熱一蒸
発されて圧縮器1に吸入される.以下前記動作を繰り返
す.
次に冷却器4bをデフロストして、冷却器4a, 4c
を過冷却する場合は、又冷却器4Cをデフロストして,
冷却器4b、4Cを過冷却する場合は、夫々上記の手順
に準じて各種弁の切り替え動作を行なう.
「発明の効果」
以上記載の如く、本発明によれば開閉弁等の切換え動作
によりデフロスト動作と冷却動作を並行して行う事が出
来るとともに、システム及び配管系の構成の簡単化と節
減につながり、それに伴う設備費の大幅節減につながる
.
又木発明によれば、独立した冷媒を用いてデフロスト動
作を行う事なく、デフロスト動作により効果的にエンタ
ルピーを増加させた冷媒液を用いて冷却動作を行う為に
、デフロスト用に余分なエネルギーを費やす事がないの
みならず、直接冷却器に低圧冷媒液を導入する場合に比
して更に一層冷却効率と冷凍効率が増大する.
この結果冷却能力が増大し運転コストの低減につながる
.
等の種々の著効を有す.DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling device and a method for controlling its operation, and particularly relates to a cooling device provided with at least a plurality of coolers functioning as evaporators. This invention relates to a cooling device that can perform defrosting and cooling operations alternately, and its operation control method. ``Prior art'' As a defrosting method for an evaporator conventionally incorporated in a refrigeration cycle, water is supplied to a cooling pipe in the evaporator. Alternatively, defrosting was performed by sprinkling hot water. However, in this conventional technology, in addition to freezing water droplets on the cooling pipe, a special water spraying device was required, and a drain pipe for that purpose was not installed. In addition, there was a risk of ice formation in the pipes.In order to eliminate this drawback, the hot gas (including condensate) stored in the condenser was used to separate the hot gas. There is also a technology in which the heat exchanger in the evaporator is introduced directly (without passing through an expansion valve) through a different pipe.
In such conventional technology, not only the above-mentioned different piping, but also
A re-evaporator and various return pipes for hot gas are required to collect and evaporate the condensate after defrosting and recover the gas to the compressor, making the structure complicated. In order to eliminate this drawback, as shown in FIG. 4, the liquid refrigerant system of the compressor 1 is branched into a low-pressure refrigerant supply pipe 81 for cooling and a high-pressure refrigerant supply pipe 52 for defrosting, which function as an evaporator. The low pressure refrigerant supply pipe 61 and the high pressure refrigerant supply pipe 51 are switchably connected to the inlets of the plurality of coolers 4a to 4c, and a high pressure refrigerant return pipe 52 is connected to the outlet side of the coolers 4a to 4c. and a low-pressure refrigerant return pipe θ2 are switchably connected, and the other end of the high-pressure refrigerant return pipe 52 is sprayed into the discharge gas piping system 53 of the compressor 1 or via a cooling pipe arranged in the piping system. We are proposing a refrigeration system that is characterized by being connected to each other. (Japanese Patent Publication No. 53-17333) "Problems to be Solved by the Invention" According to this prior art, the high-pressure refrigerant liquid pipe 54 connected to the high-pressure liquid receiver 53 and the high-pressure refrigerant return pipe 55 after defrosting
and a low pressure refrigerant supply pipe S4 connected to the low pressure receiver 63
and a return pipe 65, and also a supercooler 56 connected between the low pressure receiver 83 and the suction side of the compressor 1, and as a result, low pressure refrigerant piping systems 61 to 65 for cooling and high pressure refrigerant for defrosting are required. Since the piping systems 51 to 5S are each formed as a separate piping system, the piping system inevitably becomes complicated. However, since the piping system described above is used exclusively for cooling or defrosting, it always requires extra thermal energy for defrosting, which does not lead to energy savings. In view of the drawbacks of the prior art, the present invention simplifies the configuration of the system and piping system, improves energy efficiency,
The purpose is to reduce both equipment costs and operating costs. "Means for Solving the Problems" The present invention does not require separate installation of a low-pressure refrigerant piping system for cooling and a high-pressure refrigerant piping system for de7rost, but connects the piping systems in series via a cooler. By doing so, the piping systems for both can be used in common, and the above-mentioned drawbacks of the conventional technology can be solved all at once. That is, the present invention includes a first pipe line that supplies a high-pressure refrigerant tank for defrosting to each cooler via an expansion valve that can be opened almost fully, and a refrigerant pipe taken out from the outlet side of the first cooler after defrosting. a second pipe line for guiding the liquid to another cooler through the expansion valve, and one or more valves provided at predetermined positions connect the first pipe line and the second pipe line to each cooler. The point is that it is possible to connect sequentially and selectively via the . In this case, it is preferable that a low-pressure liquid receiver be interposed in the second pipe line to return the surplus of the refrigerant liquid supercooled by the defrost of the cooler to the condenser. "Function" As shown in FIG. 1, the present invention provides a cooling method for the first pipe line 11a without directly introducing the cooling refrigerant into the coolers 4a to 4c.
The high-pressure refrigerant liquid for defrosting is transferred to the first cooler 4a using
After performing a defrost operation, the refrigerant liquid supercooled by the defrost is transferred from the outlet side of the first cooler 4a to the other cooler 4b using the second pipe line 12a...
, 4c to perform a cooling operation using the supercooled refrigerant liquid, and the respective pipes 11a . 12a... for each cooler 4
Defrost operation and cooling operation can be performed in parallel by switching sequentially for each aw4c. That is, the present invention does not directly introduce refrigerant liquid into each of the coolers 4a to 4C to perform the cooling operation, but uses the high-pressure refrigerant liquid after performing the defrost operation to perform the cooling operation.
Each of the pipes 21, 22 and coolers 4a-4c, except for one pipe (high-pressure refrigerant liquid pipe 21) led from the condenser 2 and one return pipe 22 (suction pipe) led to the suction side of the compressor 1,
Or a pipe line 11a that communicates between the coolers 4a to 4c.
..., 12a... is sufficient, making it possible to simplify the pipe structure and significantly reduce the length of the pipe. In the Naoki invention, one cooler 4a for the high-pressure refrigerant liquid.
By introducing the high-pressure liquid refrigerant into the 4C via the expansion valves 13a, the high-pressure liquid refrigerant is supercooled and its enthalpy increases, thereby further increasing the cooling efficiency and freezing efficiency in the subsequent process. In addition, by opening the expansion valves 13a almost fully, defrosting can be performed with a lower temperature and sufficient thermal energy than when the expansion valves 13a are throttled. This enables smooth defrosting. Moreover, when supplying the refrigerant to the first coolers 4a to 4c, in order to keep the expansion valves 13a almost fully open and supply the refrigerant under high pressure, multiple cooling steps are performed in the subsequent process. Even when the coolers 4a to 4c are connected, low-pressure refrigerant can be supplied to each cooler 4a to 4c with sufficient margin. In this case, by first guiding the refrigerant liquid supercooled by the defrost of the coolers 4a to 4C to the low-pressure liquid receiver 5, the liquid receiver has a buffering function and only absorbs only the low-pressure refrigerant in a liquefied state. It is now possible to lead to other coolers 4 & ~ 4c, and the cooling operation can be performed even more smoothly. ``Embodiments'' Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, and relative arrangements of the components and components described in these embodiments are Unless there is a specific description, the scope of the present invention is not intended to be limited thereto, and is merely an illustrative example. Fig. 1 is a flowchart showing a cooling device according to an embodiment of the present invention. To briefly explain the overall structure, 1 is a refrigerant compressor, 2 is a condenser that condenses discharged gas from the compressor 1, and 3 is a condenser that removes heat from the return refrigerant led to the suction side of the compressor 1. a high-pressure liquid receiver for pressurizing the refrigerant liquid from the condenser 2;
1.22 is one high-pressure refrigerant liquid pipe 21 connected to the high-pressure liquid receiver 3, and one return pipe 22 guided to the suction side of the compressor 1. 4a to 4c are coolers 4ax that function as evaporators;
4c, expansion valves 13a, which are configured to be able to be opened almost fully, are installed on the inlet side of each valve. In addition, the expansion valve 13a.
. . . is a linear automatic expansion valve 13a that can adjust the opening while adjusting the flow rate by self-control.
3404) is used. And one high-pressure refrigerant liquid pipe 21 and the expansion valve 13a...
The first pipe line 11a... is connected via the on-off valve 14a...
・However, between the cooler 4a... and the low pressure liquid receiver 5,
Opening/closing valves 15a..., 18a... and switching valves 17a...
The second pipe is connected via . Further, the second pipe is branched via the switching valve 17a...
Connected to the outlet side of the evaporator 4ax and 4c. The low-pressure liquid receiver 5 is provided with a partition 31 and an overflow pipe 32 as shown in FIG. It is constructed so that it can be returned to the condenser 2 by means of a liquid pump. As a result, coolers 4a to 4
There is no shortage of high-temperature refrigerant liquid required for defrosting. Next, the operation of this embodiment will be explained. First, when cooling the other coolers 4b and 4c in parallel with the defrosting operation of the cooler 4a, the on-off valves 14a,
After closing the expansion valve 13a, on-off valves 18a and 15a, and opening the on-off valve 111fa, the on-off valve 14a is opened, and then the expansion valve 13a is gradually opened until it is fully open. At that time, cooler 4b
, 4c valves 14b , 18b , 14c , 1
8c and close valve 18b. 15b, 18c,
15c is opened, and the expansion valves 13b and 13C control the flow rate by automatic M control. Open while reading the I section. As a result, the cooler 4a
The high-pressure refrigerant liquid supercooled by the defrosting increases its enthalpy and enters the respective coolers 4b and 4c through the low-pressure liquid receiver 5, the on-off valve 15b, the expansion valves 13b and 15C, and the expansion valve 13c. The gasified refrigerant liquid cooled by the coolers 4b and 4c passes through the return pipe 22, is further superheated and evaporated by the high-pressure receiver 3, and is sucked into the compressor 1. Repeat the above operation. Next, the cooler 4b is defrosted, and the coolers 4a and 4c are
When supercooling, also defrost the cooler 4C,
When supercooling the coolers 4b and 4C, each valve is switched according to the above-mentioned procedure. "Effects of the Invention" As described above, according to the present invention, defrost operation and cooling operation can be performed in parallel by switching operations such as on-off valves, etc., and this leads to simplification and savings in the configuration of the system and piping system. , leading to a significant reduction in equipment costs. Furthermore, according to the invention, the defrost operation is not performed using a separate refrigerant, but the cooling operation is performed using a refrigerant liquid whose enthalpy has been effectively increased by the defrost operation, so that excess energy is used for defrosting. Not only does this cost nothing, but the cooling efficiency and refrigeration efficiency are further increased compared to when low-pressure refrigerant liquid is introduced directly into the cooler. This results in increased cooling capacity and reduced operating costs. It has various effects such as.
第1図は本発明の基木構或図、第2図はは木発明の実施
例に係る冷却装置を示すフローシ一ト図、第3図はその
要部4!I1戊たる低圧受液器の断面図,第4図は従来
技術に係る冷却装置を示すフローシ一ト図を示す.
第 15A
N3図Fig. 1 is a basic structure diagram of the present invention, Fig. 2 is a flow sheet diagram showing a cooling device according to an embodiment of the invention, and Fig. 3 is a main part 4! A cross-sectional view of a low-pressure liquid receiver named I1, and FIG. 4 is a flow sheet diagram showing a cooling device according to the prior art. Figure 15A N3
Claims (1)
けた冷却装置において、冷却用の低圧冷媒を直接冷却器
に導入する事なく、デフロスト用の高圧冷媒液を一の冷
却器に導入してデフロスト動作を行った後、該デフロス
ト終了後の冷媒液を前記一の冷却器の出口側より他の冷
却器に導入して、該冷媒液を利用して冷却動作を行う事
を特徴とする冷却装置における動作制御方法 2)前記高圧冷媒液の一の冷却器への導入がほぼ全開状
態にした膨張弁を介して行われる請求項1)記載の冷却
装置における動作制御方法 3)前記デフロスト終了後の冷媒液を一旦低圧受液器に
導いて余剰分を凝縮器に戻しながら他の冷却器への供給
を行うようにした請求項1)記載の冷却装置における動
作制御方法4)蒸発器として機能する冷却器を少なくと
も複数個設けた冷却装置において、デフロスト用の高圧
冷媒液をほぼ全開可能な膨張弁を介して各冷却器に供給
する第1の管路と、一の冷却器の出口側より取り出され
たデフロスト終了後の冷媒液を前記膨張弁を介して他の
冷却器に導く第2の管路とを有し、所定位置に設けた一
又は複数の弁により前記第1の管路と第2の管路が各冷
却器を介して順次選択的に連結可能に構成した事を特徴
とする冷却装置 5)前記第2の管路中に、デフロスト終了後の冷媒液の
余剰分を凝縮器に戻す低圧受液器が介在している請求項
4)記載の冷却装置におけるデフロスト制御方法[Scope of Claims] 1) In a cooling device equipped with at least a plurality of coolers that function as evaporators, high-pressure refrigerant liquid for defrosting can be cooled without directly introducing low-pressure refrigerant for cooling into the coolers. After the refrigerant liquid is introduced into the cooler to perform a defrost operation, the refrigerant liquid after the defrost is introduced into another cooler from the outlet side of the one cooler, and a cooling operation is performed using the refrigerant liquid. 2) A method for controlling operation in a cooling device according to claim 1, wherein the high-pressure refrigerant liquid is introduced into the cooler through an expansion valve that is substantially fully open. 4) Operation control method in a cooling device according to claim 1), wherein the refrigerant liquid after the defrosting is once led to a low-pressure liquid receiver, and the surplus is returned to the condenser while being supplied to other coolers. ) A cooling device including at least a plurality of coolers functioning as evaporators, wherein a first pipe line supplies high-pressure refrigerant liquid for defrosting to each cooler via an expansion valve that can be opened almost fully; and a second conduit that guides the refrigerant liquid taken out from the outlet side of the container after defrosting to another cooler via the expansion valve, and one or more valves provided at predetermined positions 5) A cooling device characterized in that the first pipe line and the second pipe line can be sequentially and selectively connected via respective coolers. A defrost control method in a cooling device according to claim 4, further comprising a low-pressure liquid receiver that returns the surplus amount to the condenser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24036589A JPH03102149A (en) | 1989-09-16 | 1989-09-16 | Cooling device and method of controlling operation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24036589A JPH03102149A (en) | 1989-09-16 | 1989-09-16 | Cooling device and method of controlling operation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03102149A true JPH03102149A (en) | 1991-04-26 |
Family
ID=17058411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24036589A Pending JPH03102149A (en) | 1989-09-16 | 1989-09-16 | Cooling device and method of controlling operation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03102149A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099733A1 (en) * | 2011-12-26 | 2013-07-04 | ダイキン工業株式会社 | Air conditioner |
-
1989
- 1989-09-16 JP JP24036589A patent/JPH03102149A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099733A1 (en) * | 2011-12-26 | 2013-07-04 | ダイキン工業株式会社 | Air conditioner |
JP2013133982A (en) * | 2011-12-26 | 2013-07-08 | Daikin Industries Ltd | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101421567A (en) | High speed defrosting heat pump | |
AU745198B2 (en) | Two-refrigerant refrigerating device | |
CN105004088A (en) | Cascaded water chilling unit for dual purposes of intermediate temperature and low temperature | |
CN113494790B (en) | Refrigerating system, defrosting control method and refrigerating equipment thereof | |
CN216481725U (en) | Refrigerating system and refrigerating equipment thereof | |
CN215412599U (en) | Refrigerating system | |
CN108131854B (en) | Direct expansion type liquid supply multi-parallel screw low-temperature water chilling unit | |
CN113899106A (en) | Engine-driven air source heat pump | |
US11965683B2 (en) | Cooling system for low temperature storage | |
CN110470073B (en) | Carbon dioxide heat pump system | |
CN217464934U (en) | Refrigerating system and refrigerating equipment | |
CN112728800A (en) | Air conditioner | |
CN112013472A (en) | Air conditioner and control method thereof | |
JPH03102149A (en) | Cooling device and method of controlling operation thereof | |
CN112880228B (en) | Liquid return prevention device and method for air conditioner | |
CN210832607U (en) | Air conditioner | |
CN210663485U (en) | Thermal fluorination defrosting system for refrigerating system and refrigerating system | |
JPH08320157A (en) | Freezer | |
CN214250222U (en) | Refrigerating device and refrigerator with same | |
CN217423661U (en) | Novel constant humidity machine refrigeration double-compressor single-opening system | |
JPH02178575A (en) | Heat pump for cooling or heating and supplying hot water system | |
JP2513164Y2 (en) | Cooling system | |
JP3467407B2 (en) | Refrigeration equipment | |
CN214250234U (en) | Hot fluorine defrosting system of water-cooled refrigerator unit and refrigeration equipment | |
CN221055345U (en) | Refrigerating system and refrigerating equipment |