JPH0310190A - Calibration of energy for charged particle - Google Patents

Calibration of energy for charged particle

Info

Publication number
JPH0310190A
JPH0310190A JP14609089A JP14609089A JPH0310190A JP H0310190 A JPH0310190 A JP H0310190A JP 14609089 A JP14609089 A JP 14609089A JP 14609089 A JP14609089 A JP 14609089A JP H0310190 A JPH0310190 A JP H0310190A
Authority
JP
Japan
Prior art keywords
energy
resonance
target
charged particles
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14609089A
Other languages
Japanese (ja)
Inventor
Takashi Igarashi
崇 五十嵐
Haruhisa Mori
森 治久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14609089A priority Critical patent/JPH0310190A/en
Publication of JPH0310190A publication Critical patent/JPH0310190A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To establish a calibration of energy of charged particles compensated for linearity by using a target less than a thickness at which a difference becomes equal between a resonance energy on the side of a high energy and that on the side of a low energy adjacent thereto. CONSTITUTION:When energy of charged particles is calibrated by using a nuclear resonance reaction between charged particles having multiple resonance energy and a target substance, a target is used which is thinner than a thickness at which a difference becomes equal between an amount of energy which is attenuated from the charged particles having resonance energy on the side of a high energy and resonance energy on the side of a low energy adjacent thereto. Then, after the charged particles having the resonance energy on the side of a high energy pass through the target, they hold an energy exceeding the resonance energy lower by one level. Therefore, as no resonance lower by one level will not occur in the target, counts of radiation fall down to a background level thereby enabling measuring separating a peak of a resonance point on the side of a high energy.

Description

【発明の詳細な説明】 〔概要〕 荷電粒子のエネルギーと加速装置の加速エネルギーとの
較正方法に関し。
[Detailed Description of the Invention] [Summary] This invention relates to a method of calibrating the energy of charged particles and the acceleration energy of an accelerator.

原子核反応における複数の共鳴点を分離して。By separating multiple resonance points in nuclear reactions.

線形性を保証した荷電粒子のエネルギー較正方法を得る
ことを目的とし。
The purpose of this study is to obtain an energy calibration method for charged particles that guarantees linearity.

複数の共鳴エネルギーを持つ荷電粒子とターゲット物質
間の核共鳴反応を用いて荷電粒子のエネルギーを較正す
るに際し、高エネルギー側の共鳴エネルギーを持った荷
電粒子が該ターゲット中で減衰されるエネルギー量と、
該高エネルギー側の共鳴エネルギーとこれに隣接する低
エネルギー側の共鳴エネルギーとの差とが等しくなる厚
さより薄いターゲットを用いるように構成する。
When calibrating the energy of a charged particle using a nuclear resonance reaction between a charged particle with multiple resonance energies and a target material, the amount of energy attenuated in the target by a charged particle with a resonance energy on the high energy side is calculated. ,
A target thinner than the thickness at which the difference between the resonance energy on the high energy side and the resonance energy on the adjacent low energy side is equal is used.

〔産業上の利用分野〕[Industrial application field]

本発明は荷電粒子のエネルギーと加速装置の加速エネル
ギーとの較正方法に関する。
The present invention relates to a method for calibrating the energy of charged particles and the acceleration energy of an accelerator.

近年、半導体装置の高性能化に伴い、イオン注入プロセ
スにおいて3000 KeV程度の高エネルギーの注入
が要求されるようになった。
In recent years, as the performance of semiconductor devices has improved, high-energy implantation of about 3000 KeV has become required in the ion implantation process.

本発明はこのような高エネルギー加速装置の加速エネル
ギーを較正するために適用することができる。
The present invention can be applied to calibrate the acceleration energy of such a high-energy accelerator.

〔従来の技術〕[Conventional technology]

加速エネルギーの較正は通常、 200 KeV以下の
加速器では抵抗分割による電圧較正を行う場合が多いが
、これを3000 KeV以上の高エネルギー加速器に
適用すると抵抗分割による誤差が無視できなくなり、エ
ネルギーの誤差は数10%前後になり。
Acceleration energy is usually calibrated using resistance division for accelerators below 200 KeV, but when this is applied to high energy accelerators above 3000 KeV, the error due to resistance division cannot be ignored, and the energy error becomes It's around a few 10%.

エネルギー誤差はそのまま注入不純物プロファイルの誤
差となり、プロセス制御ができなくなっていた。
Energy errors directly result in errors in the implanted impurity profile, making process control impossible.

そこで、絶対値の精度のよい(大きくても数KeV程度
の非常に狭いエネルギー幅の範囲でしか反応の起こらな
い)原子核共鳴反応が用いられている。
Therefore, a nuclear resonance reaction is used, which has a high accuracy of absolute value (the reaction occurs only in a very narrow energy width range of several KeV at most).

従来の即発性原子核共鳴反応による荷電粒子のエネルギ
ー較正方法は、原子核反応を起こすターゲットと加速器
で加速された荷電粒子とを衝突させ、即発的に発生する
γ線又は中性子線等の放射線ヲシンチレーションカウン
タで受け、加速エネルギを変化させてカウント数を測定
し、原子核反応系に固有な共鳴点(カウント数のピーク
値)を調べて較正していた。
The conventional energy calibration method for charged particles using a prompt nuclear resonance reaction involves colliding a target that causes a nuclear reaction with charged particles accelerated in an accelerator, and using a scintillation counter to detect radiation such as gamma rays or neutron beams that are immediately generated. The number of counts was measured by changing the acceleration energy, and the resonance point (peak value of the number of counts) unique to the nuclear reaction system was investigated and calibrated.

ところがこの方法において、荷電粒子のエネルギーと加
速エネルギー間の線形性を保証するためには、加速器に
より与えられる加速エネルギー(相対値)と原子核反応
からのエネルギー(絶対値)の直線関係図において、最
低2点の共鳴点を調べて、この2点を結ぶ直線が原点を
通る45°の傾斜を持つように加速器のゲインやオフセ
ットを調整しなければならないが、ターゲットの厚さに
対する知見がなかったため、第2図のように高エネルギ
ー側の共鳴点のピーク位置がわからなかった。
However, in this method, in order to guarantee linearity between the energy of charged particles and acceleration energy, it is necessary to We had to check the resonance points of the two points and adjust the gain and offset of the accelerator so that the straight line connecting these two points had a 45° inclination passing through the origin, but we had no knowledge of the thickness of the target. As shown in Figure 2, the peak position of the resonance point on the high energy side was not known.

第2図は従来例による原子核反応の共鳴点の測定結果を
示す図である。
FIG. 2 is a diagram showing the measurement results of resonance points of nuclear reactions according to a conventional example.

図は、陽子(荷電粒子)とAI (ターゲット)の原子
核反応の荷電粒子の持つエネルギーに対する原子核反応
により発生する放射線のカウント数を示す。
The figure shows the number of counts of radiation generated by the nuclear reaction of protons (charged particles) and AI (target) with respect to the energy of the charged particles.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図かられかるように、共鳴点の2つ以上ある原子核
反応に対し、従来例では共鳴点は低エネルギー側の1点
しか測定できず、荷電粒子のエネルギー較正ができなか
った。
As can be seen from FIG. 2, for nuclear reactions with two or more resonance points, in the conventional method, only one resonance point on the low energy side could be measured, making it impossible to calibrate the energy of charged particles.

この理由は、高エネルギ側の2番目、3番目のピークが
低エネルギー側の1番目のピークと混ざってしまってカ
ウントされるからである。
The reason for this is that the second and third peaks on the high energy side are mixed with the first peak on the low energy side and are counted.

即ち、陽子とAtの共鳴反応の場合を例にとって説明す
ると、陽子が1317.19 KeV以上のエネルギー
を持ってAIに衝突すると、陽子の持つエネルギーはA
I中を走行中に減衰し、ちょうど1317.19KeV
になった位W(A点)で共鳴を起こしてγ線を放射する
。しかしAIが厚いと、この位置を通過した陽子は減速
をじ続けて991.91 KeVの位置(B点)で再び
共鳴を起こしてγ線を放射する。そのためA点(第2ピ
ーク)とB点(第1のピーク)から放出されるγ線は混
ざってカウントされることになる。
That is, to explain the case of a resonance reaction between protons and At as an example, when a proton collides with AI with an energy of 1317.19 KeV or more, the energy of the proton becomes A.
Attenuated while traveling in the I, and just 1317.19KeV
At this point, resonance occurs at W (point A) and γ-rays are emitted. However, if the AI is thick, the protons that have passed through this position continue to decelerate, resonate again at the 991.91 KeV position (point B), and emit γ-rays. Therefore, the γ rays emitted from point A (second peak) and point B (first peak) are counted together.

本発明は原子核反応における複数の共鳴点を分離して、
線形性を保証した荷電粒子のエネルギー較正方法を得る
ことを目的とする。
The present invention separates multiple resonance points in a nuclear reaction,
The purpose of this study is to obtain a method for calibrating the energy of charged particles that guarantees linearity.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、複数の共鳴エネルギーを持つ荷電粒
子とターゲット物質間の核共鳴反応を用いて荷電粒子の
エネルギーを較正するに際し、高エネルギー側の共鳴エ
ネルギーを持った荷電粒子が該ターゲット中で減衰され
るエネルギー量と。
The solution to the above problem is that when calibrating the energy of charged particles using a nuclear resonance reaction between charged particles with multiple resonance energies and a target material, charged particles with resonance energy on the high energy side are and the amount of energy that is attenuated.

該高エネルギー側の共鳴エネルギーとこれに隣接する低
エネルギー側の共鳴エネルギーとの差とが等しくなる厚
さより薄いターゲ・ントを用いることを特徴とする荷電
粒子のエネルギー較正方法により達成される。
This is achieved by a charged particle energy calibration method characterized by using a target thinner than the thickness at which the difference between the resonance energy on the high energy side and the resonance energy on the adjacent low energy side is equal.

〔作用) 本発明は、ターゲット中を高エネルギー側の共鳴エネル
ギーを持った荷電粒子がターゲットを通り抜けた後は1
つ下の共鳴エネルギー以上のエネルギーを保持しており
、従ってターゲット中で1つ下の共鳴を起こさないため
、放射線のカウント数がバックグランドレベルまで下が
り、高エネルギー側の共鳴点のピークを分離でき、測定
することができるようにしたものである。
[Function] In the present invention, after a charged particle having resonance energy on the high energy side passes through the target, 1
It holds energy higher than the resonance energy of the one below, and therefore does not cause the next resonance in the target, so the radiation count drops to the background level and the peak of the resonance point on the high energy side can be separated. , so that it can be measured.

即ち、前記の例の陽子とAlの共鳴反応の場合。That is, in the case of the resonance reaction between protons and Al in the above example.

陽子が1317.19 KeV以上のエネルギーを持っ
てAIに衝突すると、陽子の持つエネルギーはAI中を
走行中に減衰し、ちょうど1317.19 KeVにな
った位置(4点)で共鳴を起こしてγ線を放射する。八
1の厚さが厚いと、この位置を通過した陽子は減速をし
続けて991.91 KeVの位置(B点)で再び共鳴
を起こしてγ線を放射する。しかしここで、 AIの厚
さを耐表面とB点間の距離より薄くするとAI中では9
91.91 KeVの共鳴は起こらず、高エネルギー側
の共鳴点を分離できることになる。
When a proton collides with AI with an energy of 1317.19 KeV or more, the energy of the proton is attenuated while traveling through AI, and resonance occurs at the position (4 points) where the value is exactly 1317.19 KeV, and γ radiate a line. If the thickness of the proton is large, the protons that have passed through this position will continue to decelerate, resonate again at the 991.91 KeV position (point B), and emit γ-rays. However, if the thickness of AI is made thinner than the distance between the resistive surface and point B, 9
91.91 KeV resonance does not occur, and the resonance point on the high energy side can be separated.

次に1本発明に使用する原子核反応の数例1を表1に示
す。
Next, Table 1 shows some examples of nuclear reactions used in the present invention.

表  1 荷電粒子 共鳴エネルギー (にeV) 340.45±0.04 453.6±0.3 872、1±0.2 1373.0±1.0 陽子 陽子 991.91±0.05 1317.19±0.4 5801  ±2 陽子 1423.64±0.43 1843.45±0.56 9201  ±4 9512  ±3 放射線 反応式 %式%) ) ) ) ) ) ) ) ) ) ここで、共鳴エネルギの士の値は反応の起こる幅を示す
。又9反応式中Pは陽子、αはα線。
Table 1 Charged particles Resonance energy (in eV) 340.45±0.04 453.6±0.3 872, 1±0.2 1373.0±1.0 Proton Proton 991.91±0.05 1317.19 ±0.4 5801 ±2 Proton 1423.64±0.43 1843.45±0.56 9201 ±4 9512 ±3 Radiation Reaction formula% formula%)))))))))) Here, the resonance energy The value of the value indicates the range over which the reaction occurs. In the 9 reaction formula, P is a proton and α is an α ray.

Tはγ線、放射線のnは中性子線を示す。T indicates a gamma ray, and n of radiation indicates a neutron ray.

1)5elected Low Energy Nuc
lear Reaction’p281゜ 例えば1反応”AI(P+  T )”S+は27A1
 と陽子Pが共鳴反応を起こしγ線を放射して、質量数
が1つ大きい2″Siに変化する反応である。
1) 5elected Low Energy Nuc
lear Reaction'p281゜For example, 1 reaction "AI (P+ T)" S+ is 27A1
In this reaction, the proton P causes a resonance reaction and emits gamma rays, changing to 2''Si, which has a mass number one larger.

又1反応19F(P、αγ)160は、19Fと陽子P
が共鳴反応を起こしα線(’He)とγ線を放射して。
Also, one reaction 19F (P, αγ) 160 is 19F and proton P
causes a resonance reaction and emits α rays ('He) and γ rays.

160に変化する反応である。この際の質量計算は。This is a reaction that changes to 160. What is the mass calculation in this case?

γ線の換算質量が非常に小さいので。Because the equivalent mass of gamma rays is very small.

19(F)  +1(P) −4(He) =16(0
) となる。
19(F) +1(P) −4(He) =16(0
) becomes.

〔実施例〕〔Example〕

本発明の一実施例として、原子核反応として表1の”A
l(P、 7’)”Siを用い、荷電粒子として陽子(
H゛)を加速する。
As an example of the present invention, "A" in Table 1 is used as a nuclear reaction.
l(P, 7')"Si is used, and protons (
Accelerate H゛).

加速器はタンデム型ヴアン・デ・グラーフ加速器を使用
する。
The accelerator will be a tandem Van de Graaf accelerator.

次に9本発明の特徴であるターゲットについて説明する
Next, the target, which is a feature of the present invention, will be explained.

この実施例はへ1膜中での原子核反応である。まず、 
LSS”理論又は数表3)より、1μmの厚さの1中で
の陽子1000 KeVのエネルギ減衰率Δは約24 
KeV/μmであることがわかる。
This example is a nuclear reaction in the Hel membrane. first,
According to LSS theory or numerical table 3), the energy attenuation rate Δ of 1000 KeV protons in a 1 μm thick layer is approximately 24
It can be seen that the value is KeV/μm.

2) Lfndhard、 5charff、 5ch
ioLtの3人の頭文字をとった理論 3) Pro’ected Ran e 5tatis
tics。
2) Lfndhard, 5charff, 5ch
Theory 3) Pro'ected Ran e 5tatis
tics.

Sem1conductor and Re1ated
 Materials。
Sem1conductor and Re1ated
Materials.

2nd Edition、 Halsted Pres
s。
2nd Edition, Halsted Pres.
s.

一方1反応27八1(P、γ)28Siの共鳴点の内一
番手さいエネルギー差は326 KeVであるので、お
およそ13μm以下の厚さのAI膜をSi上につければ
よいことがわかる。
On the other hand, since the smallest energy difference among the resonance points of 1 reaction 2781(P, γ)28Si is 326 KeV, it can be seen that it is sufficient to form an AI film with a thickness of approximately 13 μm or less on the Si.

実施例では、 AIをStウェハ上に気相成長(CVD
)法により3000人被着したものを用いた。この場合
のΔは7 KeVである。
In the example, AI was deposited on a St wafer by vapor phase growth (CVD).
3,000 people were coated using the method. Δ in this case is 7 KeV.

加速器により1317 Keν相当の加速をされた陽子
をAl膜被着のターゲットに入射して共鳴を起こし。
Protons accelerated by an accelerator equivalent to 1317 Keν are incident on a target coated with an Al film, causing resonance.

即発性γ線を放射する。Emit prompt gamma rays.

このγ線をシンチレーションカウンタで検出し。This gamma ray is detected with a scintillation counter.

入射エネルギを1317〜991 KeV間で連続的に
変化させると、第1図に示されるようにエネルギー幅が
約20にeVのピークが2つ現れる。
When the incident energy is continuously changed from 1317 to 991 KeV, two peaks with an energy width of about 20 eV appear as shown in FIG.

上記のように、陽子が厚さ3000人のAI膜を垂直に
突き抜けたときに失うエネルギーΔは7 KeVである
ため、ピークのエネルギー幅は7 KeVとなるはずで
あるが、荷電粒子がターゲットに垂直方向からずれて入
射するものや、固体中での自由電子の散乱(コンプトン
散乱)等により、実際はこの値より広がって約20 K
eVとなっている。
As mentioned above, the energy Δ lost when a proton perpendicularly penetrates an AI film with a thickness of 3,000 people is 7 KeV, so the peak energy width should be 7 KeV. In reality, it is wider than this value and reaches about 20 K due to things that are incident off-axis from the perpendicular direction, scattering of free electrons in solids (Compton scattering), etc.
eV.

第1図は原子核反応の共鳴点の実施例による測定結果を
示す図である。
FIG. 1 is a diagram showing measurement results of resonance points of nuclear reactions according to an example.

図は荷電粒子の持つエネルギーに対する原子核反応によ
り発生する放射線のカウント数を示す。
The figure shows the number of counts of radiation generated by nuclear reactions with respect to the energy of charged particles.

このようにして、タンデム加速電圧の絶対値が2点極め
て正確(±0.05 KeV)にわかるため、較正はこ
れを基準にして加速電源のゲインやオフセットを調節し
て、この値に合わせ込めばよい。
In this way, the absolute value of the tandem accelerating voltage can be found extremely accurately (±0.05 KeV) at two points, so calibration can be done by adjusting the gain and offset of the accelerating power supply using this as a reference. Bye.

即ち前記のように、加速器により与えられる加速エネル
ギー(相対値)と原子核反応からのエネルギー(絶対値
)の直線関係を示す図において7最低2点の共鳴点を調
べて、この2点を結ぶ直線が原点を通る45°の傾斜を
持つように加速器のゲインやオフセットを8周整する。
That is, as mentioned above, in the diagram showing the linear relationship between the acceleration energy (relative value) given by the accelerator and the energy (absolute value) from the nuclear reaction, find the lowest two resonance points in 7, and draw a straight line connecting these two points. Adjust the gain and offset of the accelerator 8 times so that it has a 45° inclination that passes through the origin.

実施例では、加速粒子として陽子を用いたが。In the example, protons were used as accelerated particles.

これの代わりに重陽子、α線(Heイオン)等を用いて
もよい。
Instead of this, deuterons, α rays (He ions), etc. may be used.

又、加速器も、タンデム型の他にRF加速法、静電型コ
ツククロフト加速器等を用いてもよい。
Further, as for the accelerator, in addition to the tandem type, an RF acceleration method, an electrostatic type Kotscroft accelerator, etc. may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、原子核反応におけ
る複数の共鳴点を分離することができ。
As explained above, according to the present invention, a plurality of resonance points in a nuclear reaction can be separated.

線形性を保証した荷電粒子のエネルギー較正方法が得ら
れる。
A method for calibrating the energy of charged particles that guarantees linearity is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子核反応の共鳴点の実施例による測定結果を
示す図。 第2図は原子核反応の共鳴点の従来例による測定結果を
示す図である。 、荷tm子のホキつエネjしキ゛−(KeV)大旌5例
の測定 第1図 R電太と子の4毎つ1不)レキ゛− 従来什]の夛j定 第2記
FIG. 1 is a diagram showing measurement results of resonance points of nuclear reactions according to an example. FIG. 2 is a diagram showing the results of conventional measurement of resonance points of nuclear reactions. , Measurement of 5 examples of power supply energy (KeV) of load tm.

Claims (1)

【特許請求の範囲】[Claims] 複数の共鳴エネルギーを持つ荷電粒子とターゲット物質
間の核共鳴反応を用いて荷電粒子のエネルギーを較正す
るに際し、高エネルギー側の共鳴エネルギーを持った荷
電粒子が該ターゲット中で減衰されるエネルギー量と、
該高エネルギー側の共鳴エネルギーとこれに隣接する低
エネルギー側の共鳴エネルギーとの差とが等しくなる厚
さより薄いターゲットを用いることを特徴とする荷電粒
子のエネルギー較正方法。
When calibrating the energy of a charged particle using a nuclear resonance reaction between a charged particle with multiple resonance energies and a target material, the amount of energy attenuated in the target by a charged particle with a resonance energy on the high energy side is calculated. ,
A charged particle energy calibration method characterized in that a target is thinner than the thickness at which the difference between the resonance energy on the high energy side and the resonance energy on the adjacent low energy side is equal.
JP14609089A 1989-06-08 1989-06-08 Calibration of energy for charged particle Pending JPH0310190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14609089A JPH0310190A (en) 1989-06-08 1989-06-08 Calibration of energy for charged particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14609089A JPH0310190A (en) 1989-06-08 1989-06-08 Calibration of energy for charged particle

Publications (1)

Publication Number Publication Date
JPH0310190A true JPH0310190A (en) 1991-01-17

Family

ID=15399909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14609089A Pending JPH0310190A (en) 1989-06-08 1989-06-08 Calibration of energy for charged particle

Country Status (1)

Country Link
JP (1) JPH0310190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031600A (en) * 2011-08-03 2013-02-14 Japan Atomic Energy Agency Cancer treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031600A (en) * 2011-08-03 2013-02-14 Japan Atomic Energy Agency Cancer treatment system

Similar Documents

Publication Publication Date Title
Achasov et al. Study of the reaction e+ e−→ π 0 γ with the SND detector at the VEPP-2M collider
Tschalär et al. Energy-straggling measurements of heavy charged particles in thick absorbers
Fowler et al. Gamma-radiation from excited states of light nuclei
Chang et al. L-subshell ionization by proton and alpha-particle bombardment of Ta, Au, and Bi
Pleasonton Fission-Fragment Energy-Correlation Measurements for the Thermal-Neutron Fission of U 233
Barber Electrodisintegration of Be 9 and C 12
Bissinger et al. Study of the Production of K X Rays in Ca, Ti, and Ni by 2-28-MeV Protons
Achasov et al. Measurement of the e+ e−→ π 0 γ cross section in the energy range 1.075–2 GeV at SND
Koks et al. Investigation on β-polarization at low velocities with β-particles from the decay of tritium
JP2005513486A (en) Method and apparatus for measuring the intensity distribution of a radiation field
He et al. K-shell ionization cross sections by electron bombardment at low energies
Mitchell et al. The use of si surface barrier detectors for energy calibration of mev ion accelerators
Kojima et al. A measurement of the photon structure function F2γ at Q2= 6.8 GeV2
Liebert et al. X-Ray Production by Protons of 2.5-12-MeV Energy
JPH0310190A (en) Calibration of energy for charged particle
Vorobyov et al. Experimental apparatus for the study of small angle neutron-proton elastic scattering at intermediate energies
Faissner et al. Evidence for parity violation in neutral current induced π0 production from a comparison of neutrino and antineutrino cross sections
Friedman et al. Photoproduction of pion pairs in hydrogen
Frederick et al. C 12 (γ, p) B 11 Angular Distributions In and Just Above the Giant Resonance
Kotov et al. Application of parallel plate avalanche counters for proton induced fission studies
Couch et al. Nucleon Transfer in B 10 (N 14, N 13) B 11, B 10 (N 14, C 11) C 13, and Ca 40 (N 14, N 13) Ca 41 Reactions
Kaufman et al. C 12 (p, p n) C 11 cross section at 300 GeV
Lazarus et al. Measurement of the Velocity Dependence of the Helicity of Beta Particles from Co 60
Motz et al. Gamma‐Ray Measurements by the Magnetic Analysis of Compton Electrons
DeHaven et al. Measurement of the ratio of differential cross sections for double and single ionization of He by (4–10)-MeV protons