JPH0310189A - Measurement of shape of charged particle beam - Google Patents

Measurement of shape of charged particle beam

Info

Publication number
JPH0310189A
JPH0310189A JP14408389A JP14408389A JPH0310189A JP H0310189 A JPH0310189 A JP H0310189A JP 14408389 A JP14408389 A JP 14408389A JP 14408389 A JP14408389 A JP 14408389A JP H0310189 A JPH0310189 A JP H0310189A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
light
shape
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14408389A
Other languages
Japanese (ja)
Inventor
Masami Torigoshi
正己 取越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14408389A priority Critical patent/JPH0310189A/en
Publication of JPH0310189A publication Critical patent/JPH0310189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To always achieve an accurate measurement eliminating a drop in permeability of light with a higher radiation resistance by using a pure water Cerenkov light for a charged particle beam shape monitor. CONSTITUTION:A pure water Cerenkov light emitting body 8 is arranged in a course of a charged particle beam 2 and an analog signal adder 9 is connected to photomultipliers 3 at both ends thereof. The pairs of photomultipliers 3 is placed tight on a Cerenkox light takeoff window and a Cerenkov light is incident into a corresponding photomultiplier 3 through upper and lower takeoff windows to be converted an electrical signal and then, outputted after amplified. The electrical signals outputted are added up with an adder 9 and the signals are measured with a measuring resistance 5 and an oscilloscope 4 to obtain an output proportional to the number of charged particles incident into a certain position and width of a section of the beam 2. Moreover, an arm 7 for scanning is driven to repeat measurements shifting the position of the light emitting body 8 thereby enabling measurement of a relative intensity distribution in the section of the beam 2, namely, a shape of the beam 2.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、I!電粒子加速器などで生成される高エネ
ルギー荷電粒子ビームの形状を測定するための荷電粒子
ビーム形状測定方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is based on I! The present invention relates to a charged particle beam shape measurement method for measuring the shape of a high-energy charged particle beam generated by an electric particle accelerator or the like.

[従来の技術] 従来、この種の荷電粒子ビーム形状測定方法として、本
出願人の先の出IN(特願昭63−135548号)に
係るものがあり、これを第4図、第5図を参照して説明
する。第4図において、光ファイバ(1)の一端部のセ
ンサ部(1a)が荷電粒子ビーム(2)の進路に置かれ
る。光ファイバ(1)の他端は光電子増倍管(3)に接
続されている。光電子増倍管(3)の出力はオシロスコ
ープ(4)に接続され、その中途に測定用抵抗(5)が
接続されている。光電子増倍管(3)は高圧電源(6)
で動作される。
[Prior Art] Conventionally, there is a method for measuring the shape of a charged particle beam of this type, which is related to the applicant's previous IN (Japanese Patent Application No. 135548/1983), which is shown in FIGS. 4 and 5. Explain with reference to. In FIG. 4, a sensor section (1a) at one end of an optical fiber (1) is placed in the path of a charged particle beam (2). The other end of the optical fiber (1) is connected to a photomultiplier tube (3). The output of the photomultiplier tube (3) is connected to an oscilloscope (4), and a measuring resistor (5) is connected halfway there. The photomultiplier tube (3) is a high voltage power supply (6)
It is operated by.

第5図において、走査用アーム(7)が光フアイバセン
サ部(1a)を支持しており、センサ部(1a)は荷電
粒子ビーム(2)の進行方向に対しαだけ傾けて取付け
られている。
In FIG. 5, a scanning arm (7) supports an optical fiber sensor section (1a), and the sensor section (1a) is installed at an angle of α with respect to the traveling direction of the charged particle beam (2). .

′tr電粒子粒子ビーム形状定は、光フアイバセンサ部
(la)に衝突する荷電粒子ビーム(2)が、αだけ傾
いたセンサ部(1a)中で指向性のあるチェレンコフ光
を放射し、次いでこのチェレンコフ光は光ファイバ(1
)中で完全反射を繰り返しながら光電子増倍管(3)に
達し、光電子増倍管(3)の光電面で、チェレンコフ光
により叩き出された光電子は、光電子増倍管用の高電圧
電源(6)より印加される高電圧により光電子増倍管(
3)中で増幅、出力される電荷を測定用抵抗(5)とオ
シロスコープ(4)を用いて測定すれば、荷電粒子ビー
ム(2)の断面内にある荷電粒子の相対的な数がわかる
。さらに走査用アーム(7)を駆動し、光フアイバーセ
ンサ(1a)の位置をずらしながら、上記測定をくり返
えせば、荷電粒子ビーム(2)の断面内の強度分布、す
なわち、荷電粒子ビーム形状が測定できる。
'tr Charge particle beam shape determination is such that a charged particle beam (2) colliding with an optical fiber sensor part (la) emits directional Cerenkov light in the sensor part (1a) tilted by α, and then This Cerenkov light is transmitted through an optical fiber (1
), the photoelectrons reach the photomultiplier tube (3) through repeated complete reflections, and are ejected by Cherenkov light at the photocathode of the photomultiplier tube (3). ) The high voltage applied from the photomultiplier tube (
3) If the charges amplified and outputted in the beam are measured using a measuring resistor (5) and an oscilloscope (4), the relative number of charged particles in the cross section of the charged particle beam (2) can be determined. By repeating the above measurement while further driving the scanning arm (7) and shifting the position of the optical fiber sensor (1a), it is possible to determine the intensity distribution in the cross section of the charged particle beam (2), that is, the shape of the charged particle beam. can be measured.

ここで光フアイバーセンサ(1a)の傾き角度αは、光
ファイバ(1)のコアとクラッドの屈折率および荷電粒
子ビーム(2)の速度により決定される6[発明が解決
しようとする課題] 以上のような従来の荷電粒子ビーム形状測定方法では、
そのセンサ部は荷電粒子ビームの対照により、放射線劣
化を起こし、光の透過率が低下し、それに応じて出力信
号も小さくなるため、荷電粒子ビーム形状の測定に不正
確さを招き、著しい場合には測定不能になるという問題
があった。
Here, the tilt angle α of the optical fiber sensor (1a) is determined by the refractive index of the core and cladding of the optical fiber (1) and the speed of the charged particle beam (2).6 [Problems to be Solved by the Invention] Traditional charged particle beam shape measurement methods such as
The sensor part undergoes radiation deterioration due to the contrast of the charged particle beam, resulting in a decrease in light transmittance and a corresponding decrease in the output signal, leading to inaccuracies in the measurement of the charged particle beam shape, and in severe cases. There was a problem that it became impossible to measure.

この発明は上記のような問題点を解消するためになされ
たもので、耐放射性が良く、光の透過率の低下がなく、
常に正確な荷電粒子ビーム形状を測定できる荷電粒子ビ
ーム形状測定方法を得ることを目的とする。
This invention was made to solve the above problems, and has good radiation resistance, no decrease in light transmittance,
The purpose of this invention is to obtain a method for measuring the shape of a charged particle beam that can always accurately measure the shape of a charged particle beam.

[課題を解決するための手段] この発明においては、長期間の高強度の荷電粒子ビーム
対照によっても、放射線劣化による光の透過率の低下を
来たさない。
[Means for Solving the Problems] In the present invention, the light transmittance does not decrease due to radiation deterioration even after long-term high-intensity charged particle beam control.

[実施例) 以下、この発明の一実1t!、例を第1図〜第3図を参
照して説明する6第1図において、センサ部の荷電粒子
ビーム(2)の進路に純水チェレンコフ光発光体(8)
が配置されており、その両端部の光電子増倍管(3)に
アナログ信号加算器(9)が接続されている。第2図は
第1図A部を詳細に示したものであり、第3図は純水チ
ェレンコフ光発光体(8)を詳細に示したものである。
[Example] The following is a sample of this invention! , an example will be explained with reference to FIGS. 1 to 3. 6 In FIG.
are arranged, and analog signal adders (9) are connected to photomultiplier tubes (3) at both ends thereof. FIG. 2 shows the section A in FIG. 1 in detail, and FIG. 3 shows the pure water Cerenkov light emitter (8) in detail.

第3図において、中空の筐体(8a)の上下にチェレン
コフ光取出窓(8b)が取付けられている。また、筐体
(8a)の内壁面上にはチェレンコフ光集光鏡(8c)
が設けられている。チェレンコフ光(2a)は純水チェ
レンコフ光発光体(8)の純水(8d)中に入射した荷
電子粒子(2)により放射される。チェレンコフ光(2
a)は鋭い指向性を有し、純水(8d)中を伝播してゆ
き、チェレンコフ光集光鏡(8c)により反射され、上
下のチェレンコフ光取出窓(8b)より取出される。
In FIG. 3, Cerenkov light extraction windows (8b) are attached to the top and bottom of a hollow housing (8a). In addition, a Cerenkov light condensing mirror (8c) is mounted on the inner wall of the housing (8a).
is provided. Cherenkov light (2a) is emitted by charged electron particles (2) that have entered pure water (8d) of a pure water Cherenkov light emitter (8). Cherenkov light (2)
Light a) has sharp directivity, propagates through pure water (8d), is reflected by the Cherenkov light condenser mirror (8c), and is extracted from the upper and lower Cherenkov light extraction windows (8b).

第2図において、1対の光電子増倍管(3)はチェレン
コフ光取出窓(8b)に密着して置かれており、チェレ
ンコフ光(2a)は上下のチェレンコフ光取出窓(8b
)を通して対応する光電子増倍管(3)に入射し、そこ
で電気信号に変換され、増幅・出力される。各々の光電
子増倍管(3)より出力された電気信号は、第1図に示
したアナログ信号加算器(9)で加算され、測定抵抗(
5)とオシロスコープ(4)により測定することにより
、荷電粒子ビーム(2)の断面のある位置および幅に入
射する荷電粒子の数に比例した出力が得られる。
In Figure 2, a pair of photomultiplier tubes (3) are placed in close contact with the Cherenkov light extraction window (8b), and the Cherenkov light (2a) is transmitted through the upper and lower Cherenkov light extraction windows (8b).
), the light enters the corresponding photomultiplier tube (3), where it is converted into an electrical signal, amplified, and output. The electrical signals output from each photomultiplier tube (3) are added by the analog signal adder (9) shown in Figure 1, and then added to the measuring resistor (
5) and an oscilloscope (4), an output proportional to the number of charged particles incident on a certain position and width of the cross section of the charged particle beam (2) is obtained.

さらに、走査用アーム(7)を駆動し、純水チェレンコ
フ光発光体(8)の位置をずらしながら、以上の測定を
繰り返せば、荷電粒子ビーム(2)の断面の相対的強度
分布、すなわち荷電粒子ビムの形状が測定できる。
Furthermore, by repeating the above measurements while driving the scanning arm (7) and shifting the position of the pure water Cherenkov light emitter (8), it is possible to obtain the relative intensity distribution of the cross section of the charged particle beam (2), that is, the charged The shape of particle beams can be measured.

なお、上記実施例では、純水チェレンコフ光発光体(8
)に上下2箇所にチェレンコフ光取出窓(8b)を設け
、対応して光電子増倍管(3)も2個としたが、チェレ
ンコフ光取出窓(8b)を1障所とし、光電子増倍管(
3)も対応させて1個としたものを用いてもよい。
In the above example, pure water Cerenkov photoluminescent material (8
) were provided with two Cerenkov light extraction windows (8b) at the top and bottom, and two photomultiplier tubes (3) were installed correspondingly, but the Cerenkov light extraction window (8b) was set as one obstacle, and the photomultiplier tube (
3) may also be combined into one.

また、純水チェレンコフ光発光体(8)の筐体(8a)
の内壁面上をチェレンコフ光集光鏡(8c)で掩ったか
、反射率の良い物質であれば、曇りガラス様表面をもつ
ものを用いてもよい。
In addition, the casing (8a) of the pure water Cerenkov light emitter (8)
The inner wall surface of the mirror may be obscured by a Cerenkov light focusing mirror (8c), or a material with a frosted glass-like surface may be used as long as it has a good reflectance.

[発明の効果1 以上のように5この発明によれば、荷電粒子ビニ形状モ
ニタに純水チェレンコフ発光体を用いたので、放射線損
傷による発光体の光透通事の減衰がなく、正確な荷電粒
子ビームの断面形状を測定できる効果がある。
[Effects of the Invention 1 As described above, 5 According to the present invention, since a pure water Cerenkov luminescent material is used in the charged particle vinyl-shaped monitor, there is no attenuation of the light transmission of the luminous material due to radiation damage, and accurate charging can be achieved. This has the effect of being able to measure the cross-sectional shape of a particle beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はこの発明の一実施例を説明するための
もので、第1図は回路図、第2図はセンサ部の斜視図、
第3図(a)(b)は発光体部の側面図と正面図である
。 第4図、第5図は従来の荷電粒子ビーム形状測定方法を
説明するためのもので、第4図は回路図、第5図(a)
(b)はセンナ部の正面図と側面図である。 (2)・・荷電粒子ビーム、(3)・・光電子増倍管、
(4)・・オシロスコープ、(8)純水チェレンコフ光
発光体、(9)・・アナログ信号加算器。 なお、各図中、同一符号は同−又は相当部分を示す。 代  理  人       曾  我  道  照図 Cつ 醍 図
1 to 3 are for explaining one embodiment of the present invention, in which FIG. 1 is a circuit diagram, FIG. 2 is a perspective view of the sensor section,
FIGS. 3(a) and 3(b) are a side view and a front view of the light emitter section. Figures 4 and 5 are for explaining the conventional charged particle beam shape measurement method. Figure 4 is a circuit diagram, and Figure 5 (a)
(b) is a front view and a side view of the senna portion. (2)...Charged particle beam, (3)...Photomultiplier tube,
(4)...Oscilloscope, (8) Pure water Cherenkov light emitter, (9)...Analog signal adder. In each figure, the same reference numerals indicate the same or corresponding parts. Representative Person

Claims (1)

【特許請求の範囲】[Claims] 荷電粒子ビームの進路に純水チエレンコフ光発光体をも
つセンサ部を挿入し、純水中で放射されるチエレンコフ
光により前記荷電粒子ビームの断面の強度分布を測定す
る荷電粒子ビーム形状測定方法。
A method for measuring the shape of a charged particle beam, in which a sensor unit having a pure water Thielenkov light emitter is inserted in the path of a charged particle beam, and the intensity distribution in a cross section of the charged particle beam is measured using Thierenkov light emitted in pure water.
JP14408389A 1989-06-08 1989-06-08 Measurement of shape of charged particle beam Pending JPH0310189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14408389A JPH0310189A (en) 1989-06-08 1989-06-08 Measurement of shape of charged particle beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14408389A JPH0310189A (en) 1989-06-08 1989-06-08 Measurement of shape of charged particle beam

Publications (1)

Publication Number Publication Date
JPH0310189A true JPH0310189A (en) 1991-01-17

Family

ID=15353853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14408389A Pending JPH0310189A (en) 1989-06-08 1989-06-08 Measurement of shape of charged particle beam

Country Status (1)

Country Link
JP (1) JPH0310189A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135092A1 (en) * 2001-07-15 2003-01-30 Hahn Meitner Inst Berlin Gmbh Cerenkov dosimetry device for detection of high energy particles has a sensor element comprising a single layer of adjacent optical fibers forming a large cross section for detection of the whole cross section of particle beams
JP2006084414A (en) * 2004-09-17 2006-03-30 Univ Nagoya Radiation distribution line sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135092A1 (en) * 2001-07-15 2003-01-30 Hahn Meitner Inst Berlin Gmbh Cerenkov dosimetry device for detection of high energy particles has a sensor element comprising a single layer of adjacent optical fibers forming a large cross section for detection of the whole cross section of particle beams
JP2006084414A (en) * 2004-09-17 2006-03-30 Univ Nagoya Radiation distribution line sensor
JP4552009B2 (en) * 2004-09-17 2010-09-29 国立大学法人名古屋大学 Radiation distribution line sensor

Similar Documents

Publication Publication Date Title
US4802768A (en) Two light source reference system for a fluorometer
US7274448B2 (en) Short range LIDAR apparatus having a flat spatial response
EP0350768A2 (en) Particle size measuring instrument with direct scattered light detection
WO2017129131A1 (en) Light path-coupling device and fluorescence temperature-sensing optical system
CN108955655B (en) Optical receiver, method and storage medium for determining position and/or orientation
CN87106264A (en) The method of measurement of Refractive Index Profile o figure
JP2006125862A (en) Optical range finding sensor, self-advancing cleaner, and air conditioner
GB2224353A (en) Radiation detector
GB2147697A (en) Level measurement method and apparatus
JPS6034709B2 (en) Anger-type γ camera
JPH0310189A (en) Measurement of shape of charged particle beam
Kirkwood et al. Imaging backscattered and near to backscattered light in ignition scale plasmas
CA1154609A (en) Visibility meter and components used therein
JP4377072B2 (en) 3D measurement module
JPH01500539A (en) Measuring device for laser radiation characteristics
JPS61260113A (en) Detector for tilt angle of plane
US6041150A (en) Multipass cavity sensor for measuring a tissue-equivalent radiation dose
JP2559818B2 (en) Optical fiber sensor and method of using the same
JPS62124443A (en) Device for obtaining information on inside of body with light
JPH03214038A (en) Instrument for measuring aerosol, dust and the like spreaded in the air
JPH11237479A (en) Radiation intensity measuring device
IT1256003B (en) HIGH SENSITIVITY ELECTRONIC DEVICE, PARTICULARLY SUITABLE FOR MEASURING LUMINOUS EMISSIONS OF VERY SMALL INTENSITY
JPH0814943A (en) Displacement-amount detection apparatus
JPH0348530B2 (en)
JPH052183B2 (en)