JPH0310152A - Method for measuring sintering degree of uranium dioxide powder - Google Patents

Method for measuring sintering degree of uranium dioxide powder

Info

Publication number
JPH0310152A
JPH0310152A JP14618189A JP14618189A JPH0310152A JP H0310152 A JPH0310152 A JP H0310152A JP 14618189 A JP14618189 A JP 14618189A JP 14618189 A JP14618189 A JP 14618189A JP H0310152 A JPH0310152 A JP H0310152A
Authority
JP
Japan
Prior art keywords
powder
oxidation
temperature
color
uranium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14618189A
Other languages
Japanese (ja)
Other versions
JP2502150B2 (en
Inventor
Kazuhiro Aoki
和宏 青木
Shinichi Hasegawa
伸一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP14618189A priority Critical patent/JP2502150B2/en
Publication of JPH0310152A publication Critical patent/JPH0310152A/en
Application granted granted Critical
Publication of JP2502150B2 publication Critical patent/JP2502150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure oxidation starting temperature accurately and simply and to make it possible to automate the operation by heating uranium dioxide (UO2) powder at the temperature increasing speed of 1 - 10 deg.C/mm, and detecting the fact that the powder starts oxidation and blackening with a non-contact type colorimeter/color- difference meter. CONSTITUTION:UO2 powder is picked up by 2 - 30g and mounted uniformly and thinly on a heat resisting and oxidation resisting pan, e.g. a stainless steel pan, which is placed on a plate-shaped heater. Then, the UO2 powder is heated with the heater at the temperature increasing speed of 1 - 10 deg.C/mm. When the powder is heated at said temperature increasing speed, the oxidation of the UO2 powder is started, and the color of the powder becomes black. The change in color is detected with a non- contact type colorimeter/color-difference meter. The temperature of the powder at this time is measured with a radiation thermometer, and the oxidation starting temperature is obtained. The oxidation starting temperature obtained in this way has the very excellent correlation with the sintering degree when the UO2 pellet is manufactured. Therefore, the oxidation starting temperature of the UO2 powder can be the important characteristic value in manufacturing the UO2 pellet.

Description

【発明の詳細な説明】 (産業分野) 本発明は二酸化ウラン粉末の焼結性な測定する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field) The present invention relates to a method for determining the sinterability of uranium dioxide powder.

(従来技術とその問題点) 二酸化ウラン粉末の物性な測定する方法として、従来平
均粒径?測定する方法CFSSS法等)及び比表面積な
測定する方法(BET法等)があったが、粉末の重j1
1ftIE確に一定量秤量する必要があるなど自動化及
びオンラインでの測定には不適でありな・ また、これらの物性値は焼結性とあ、る程度の相関はあ
るものの、これだけでは不光分であり、゛より相関性の
ある指標が求められていた。
(Prior art and its problems) What is the conventional method for measuring the physical properties of uranium dioxide powder? There are methods for measuring the specific surface area (CFSSS method, etc.) and methods for measuring the specific surface area (BET method, etc.), but the weight of the powder
1ft IE is not suitable for automated or online measurement as it is necessary to accurately weigh a certain amount. Also, although these physical property values have some correlation with sinterability, this alone is not enough to measure the opacity. There was a need for more correlated indicators.

(発明の目的) 本発明者らは上記の従来方法の問題点?解決すべく、f
4々検討した結果、一定条件下で加熱昇温した場合の二
酸化ウツノ扮末の酸化開始温度が粉末の焼結性と極めて
良い相関にあることな見出し。
(Objective of the Invention) What are the problems of the above conventional method? To solve the problem, f
As a result of many studies, it was found that the oxidation start temperature of Utsuno Kakaku powder when heated under certain conditions has an extremely good correlation with the sinterability of the powder.

この細光に基づいて本発明を完成するに到った。Based on this narrow light, we have completed the present invention.

(発明の構成) すなわち1本発明によれば、二酸化つ乏ン扮宋を2〜3
0g採取し、これを耐熱耐酸化性皿に一様罠薄く載せて
プレート状ヒーターの上に置き。
(Structure of the invention) That is, according to the present invention, 2 to 3
Take 0g of the sample, place it evenly and thinly on a heat-resistant and oxidation-resistant dish, and place it on a plate heater.

1−10℃/#lの昇温速度で加熱し、a二酸化ウラン
粉末が酸化し始め、黒色化するのを、非接触色彩色差計
で感知し、このときの粉体温度を放射温度針で測定し、
酸化開始温度とすることを特徴とする二酸化ウラン粉末
の焼結性測定方法、が得られる。
Heating at a temperature increase rate of 1-10℃/#l, a non-contact colorimeter detects when the uranium dioxide powder begins to oxidize and turns black, and the temperature of the powder at this time is measured using a radiation temperature needle. measure,
A method for measuring the sinterability of uranium dioxide powder is obtained, which is characterized in that the oxidation initiation temperature is determined.

とのよ5に、本発明方法では、第1図に示すよう罠、ま
ずUO,粉末な2〜sag採取し、これなプレート状ヒ
ーター上におかれた耐熱耐酸化性皿、例えば、ステンレ
ン裂皿に一様に薄く載せる。
5. In the method of the present invention, as shown in FIG. Place it evenly and thinly on the plate.

UO,粉末の採取量は2〜30g、好ましくは5〜10
9である。採取量は多過ぎても、少な過ぎても再現性の
点で問題となる。
The amount of UO, powder collected is 2-30g, preferably 5-10g.
It is 9. If the amount collected is too large or too small, problems will arise in terms of reproducibility.

次に、UO,粉末をヒーターによって1−10’C/=
、好ましくは2〜b 熱する。昇温速度が1℃/M未満では測定時間が長くな
るなどの問題があり、また昇温速度がlO℃/顛を超え
ると、酸化開始温度の再現性の点で問題となる。上記昇
温速度で加熱されると、UO。
Next, UO, powder was heated to 1-10'C/=
, preferably 2-b. If the temperature increase rate is less than 1° C./M, there will be problems such as a long measurement time, and if the temperature increase rate exceeds 10° C./number, problems will arise in terms of reproducibility of the oxidation start temperature. When heated at the above temperature increase rate, UO.

粉末のU、o、粉末への酸化が始まり、粉体の色は黒色
化する。この色の変化を非接触色彩色差針で感知し、こ
の時の粉体温度な放射温度計で測定し、酸化開始温度と
する。
Oxidation of the powder into U, O, and powder begins, and the color of the powder turns black. This color change is sensed with a non-contact color difference needle, and the temperature of the powder at this time is measured with a radiation thermometer, which is taken as the oxidation start temperature.

本発明者らはこのようにして得られた酸化開始温度がU
O,ペレットをM3!!するときの焼結性と極めて良い
相関罠あることIk−発見したのである。
The present inventors have determined that the oxidation initiation temperature obtained in this way is U
O, pellet M3! ! It was discovered that there is an extremely good correlation between the sinterability and the Ik.

なお上記のUOR粉末がU、o、粉末に酸化するときの
色の変化は目でW1認し、そのときの温度を読みとるこ
とも可能である。
It is also possible to visually recognize the color change when the above-mentioned UOR powder is oxidized to U, O, powder, and read the temperature at that time.

次に、本発明ik実施例により具体的に説明するが、以
下の笑流側によって本発明の範囲は眼定されるものでは
ない。
Next, the present invention will be specifically explained using examples, but the scope of the present invention is not determined by the following details.

要流側 焼結性の異なる6ff1MのUO1扮末について、次の
方法でそれぞれ酸化開始温度を測定した。
The oxidation start temperatures of 6ff1M UO1 powders having different mainstream sinterability were measured in the following manner.

約logのUO,粉末なステンレス製器に一様に薄く載
せてプレート状ヒーターの上に置き、2’C/mの昇温
速度でUO,粉末な加熱し、UO。
Approximately log of UO, the powder was uniformly thinly placed on a stainless steel vessel, placed on a plate heater, and heated with UO and powder at a heating rate of 2'C/m.

粉末がU、O,粉末に酸化を始め、黒色化をするのな、
非接触色彩色差計でW&卸し、このときの粉体温度な放
射温置針で測定して酸化開始温度とした。
The powder begins to oxidize into U, O, powder, and turns black.
The powder was heated using a non-contact colorimeter, and the oxidation start temperature was measured using a radiation temperature needle at the powder temperature at this time.

このようにして帰られた酸化開始温度と一定条件下で製
造したUO,ペレットの焼結密度な第1!5!に示す。
The sintering density of UO and pellets produced under the oxidation start temperature and constant conditions thus returned is 1!5! Shown below.

第1表 (発明の効果) 本発明方法は上記構成なとることによって次の効果を示
す。
Table 1 (Effects of the Invention) The method of the present invention exhibits the following effects by adopting the above configuration.

il)  UO,粉末の酸化開始温度の測定が正確かつ
簡便にできるため、自動化が可能であり、UO1粉末製
造ライうでの工程管理に利用できる。
il) Since the oxidation start temperature of UO powder can be measured accurately and easily, automation is possible and it can be used for process control in UO powder production process.

12)  UO,ペレットには焼結密度の厳しい仕様(
95±1.51 )が定められているため、第1表をプ
ロットした第2図ではUO,粉末の酸化開始温度とUO
!ペレットの焼結性と間に極めて良い相関性が見られる
ので、UO2粉末の酸化開始温度t;UO雪ペレット↓
造上重要な特性値となりうる。
12) UO and pellets have strict specifications for sintering density (
95±1.51), so in Figure 2, which is a plot of Table 1, UO, powder oxidation start temperature and UO
! There is an extremely good correlation between the sinterability of the pellets and the oxidation start temperature t of UO2 powder; UO snow pellets ↓
This can be an important characteristic value for construction.

【図面の簡単な説明】[Brief explanation of drawings]

91図は本発明方法の装置概略図の1例図、鉋2図は第
1表なUO,粉末の酸化開始温度(横軸)とUO,ペレ
ットの焼#5密度(縦軸)にプロットした図である。
Figure 91 is an example of a schematic diagram of the apparatus for the method of the present invention, and Figure 2 is a plot of UO, powder oxidation start temperature (horizontal axis) and UO, pellet sintered #5 density (vertical axis). It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] (1)二酸化ウラン粉末を2〜30g採取し、これを耐
熱耐酸化性皿に一様に薄く載せてプレート状ヒーターの
上に置き、1〜10℃/minの昇温速度で加熱し、該
二酸化ウラン粉末が酸化し始めて黒色化するのを、非接
触色彩色差計で感知し、このときの粉体温度を放射温度
計で測定し、酸化開始温度とすることを特徴とする二酸
化ウラン粉末の焼結性測定方法。
(1) Collect 2 to 30 g of uranium dioxide powder, place it evenly and thinly on a heat-resistant and oxidation-resistant dish, place it on a plate-shaped heater, and heat it at a temperature increase rate of 1 to 10 °C/min. A non-contact colorimeter detects when the uranium dioxide powder starts to oxidize and turns black, and the temperature of the powder at this time is measured with a radiation thermometer and is taken as the oxidation start temperature. Sinterability measurement method.
JP14618189A 1989-06-08 1989-06-08 Method for measuring sinterability of uranium dioxide powder Expired - Lifetime JP2502150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14618189A JP2502150B2 (en) 1989-06-08 1989-06-08 Method for measuring sinterability of uranium dioxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14618189A JP2502150B2 (en) 1989-06-08 1989-06-08 Method for measuring sinterability of uranium dioxide powder

Publications (2)

Publication Number Publication Date
JPH0310152A true JPH0310152A (en) 1991-01-17
JP2502150B2 JP2502150B2 (en) 1996-05-29

Family

ID=15401968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14618189A Expired - Lifetime JP2502150B2 (en) 1989-06-08 1989-06-08 Method for measuring sinterability of uranium dioxide powder

Country Status (1)

Country Link
JP (1) JP2502150B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943670B (en) * 2010-05-21 2013-01-30 中国科学院山西煤炭化学研究所 Testing device of sintering temperature of pressurized solid powder and application
KR101954340B1 (en) 2016-08-09 2019-03-05 한전원자력연료 주식회사 Sintered density analysis method of Uranium oxide(UOx) by Spectrophotometer
KR101986278B1 (en) * 2019-02-19 2019-06-07 한전원자력연료 주식회사 Method of predicting a sintered density of a uranium oxide(UOx) pellet for the nuclear fuel by Spectrophotometer

Also Published As

Publication number Publication date
JP2502150B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
CN100582765C (en) Method for testing insulating property of textile
CN107084905A (en) Measure control method, device and the analyzer of moisture, ash content and volatile matter
CN108020578B (en) Detection equipment for assimilation temperature of iron ore powder and assembly and detection method thereof
CN108007959B (en) Method for detecting assimilation temperature based on iron ore powder temperature-electric signal curve
JPH0310152A (en) Method for measuring sintering degree of uranium dioxide powder
US3392570A (en) Device for the thermal study of a sample
Nagata et al. Measurement of normal spectral emissivity of liquid copper
CN203376202U (en) Moisture meter
JPH02228592A (en) Measurement of sintering characteristic of powdered uranium dioxide
CN109523496B (en) Infrared shimmer binary channels image fusion distortion correction target board
CN108007960B (en) Device for detecting assimilation temperature of iron ore powder by adopting electric signals and detection method of assimilation reaction time
CN206960391U (en) A kind of device for assimilating temperature using electrical signal detection Iron Ore Powder
CN106932356A (en) The assay method of carbon and sulphur contents in thorium tetrafluoride
Kamimoto Enthalpy measurements on LiNO3 and NaNO2 by twin high-temperature calorimeter
JP2907531B2 (en) Rice cooker heating control method
JPH05203594A (en) Melting point measuring method
RU2692399C1 (en) Method for determination of metal powder self-ignition temperature
JPH04311349A (en) Roasting of coffee bean
CN106338485A (en) Detection method for content of sulfur element in silicon-steel grade magnesium oxide
SU76859A1 (en) Method for determination of mass weldness from starch-containing raw materials
SU1608419A1 (en) Method of determining roughness of shafts and cylinders
JPS5824846A (en) Tester for high-temperature property of iron-making raw material
SU1153664A1 (en) Method of checking ceramic and metal-ceramic articles
CN117367606A (en) Alloy surface infrared temperature measurement correction method
KR840001991B1 (en) The heat special quality testing method and apparatus of the fluxes for smelting heat insulation