JPH03100530A - Two wavelength light source element - Google Patents

Two wavelength light source element

Info

Publication number
JPH03100530A
JPH03100530A JP23747989A JP23747989A JPH03100530A JP H03100530 A JPH03100530 A JP H03100530A JP 23747989 A JP23747989 A JP 23747989A JP 23747989 A JP23747989 A JP 23747989A JP H03100530 A JPH03100530 A JP H03100530A
Authority
JP
Japan
Prior art keywords
light
surface acoustic
acoustic waves
optical
optical waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23747989A
Other languages
Japanese (ja)
Other versions
JP2787345B2 (en
Inventor
Koichiro Miyagi
宮城 幸一郎
Hiroshi Shimotahira
寛 下田平
Akihito Otani
昭仁 大谷
Masaya Nanami
雅也 名波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP23747989A priority Critical patent/JP2787345B2/en
Publication of JPH03100530A publication Critical patent/JPH03100530A/en
Application granted granted Critical
Publication of JP2787345B2 publication Critical patent/JP2787345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the modulating action which is not required for a waveguide light in an optical modulation element by providing a groove and a sound absorbing material for interrupting and absorbing an ultrasonic wave between two optical modulation elements so that propagated surface acoustic waves do not mutually exert influence on the other optical modulation element. CONSTITUTION:On the surface layer of a piezoelectric substrate 1 having light transmissivity, a branch type optical waveguide 2, plane type optical waveguides 3, 4 connected to one end of the branch type optical waveguide 2, and linear type optical waveguides 5, 6 connected to the plane type optical waveguides 3, 4 are provided. In this state, an incident light is modulated by an optical modulating part provided on the inside, and in that case, surface acoustic waves 15, 16 which pass through the optical modulating part are almost absorbed by a groove 13 provided between two optical modulating parts and a sound absorbing material 14, and does not mutually exert influence. In such a manner, to the waveguide light, only the optical modulation of high efficiency by the Bragg diffraction can be executed, and the external disturbance is eliminated by unnecessary surface acoustic waves 15, 16.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、音響光学効果を利用して光の周波数遷移(
以後、周波数シフトという。)を実現する光変調装置に
係わり、特に薄膜光導波路と音響光変調素子を組み合わ
せることで、1つの入射光から、それぞれ2つの異なる
周波数で変調を受けた2光束を出射する2波長光源素子
に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention utilizes the acousto-optic effect to shift the frequency of light (
Hereinafter, this will be referred to as frequency shift. ), and particularly relates to a two-wavelength light source element that emits two beams modulated at two different frequencies from one incident light by combining a thin film optical waveguide and an acousto-optic modulator. .

(従来の技術) 光の波長以下の精度で位置や距離の測定を行うサブフリ
ンジ干渉計測法の1つとして光ヘテロダイン干渉計を利
用する方法がある。
(Prior Art) As one of the subfringe interferometry methods for measuring positions and distances with an accuracy equal to or less than the wavelength of light, there is a method using an optical heterodyne interferometer.

光ヘテロゲイン干渉計では、干渉する2つの光の周波数
が少し異なっているため参照光と被験物からの反射光を
干渉させた後、光電変換すると、その電気信号は差周波
のビート信号として観測でき、この場合、被験物の位置
情報はビート信号の位相と基準信号の位相との差として
検出できる。
In an optical heterogain interferometer, since the frequencies of the two interfering lights are slightly different, when the reference light and the reflected light from the test object are interfered with and then photoelectrically converted, the electrical signal can be observed as a beat signal of the difference frequency. In this case, the position information of the test object can be detected as the difference between the phase of the beat signal and the phase of the reference signal.

一方、同じ周波数の2つの光を干渉させる通常の干渉計
では、被験物の位置情報が干渉縞の明暗として検出され
るため期待できる測定精度は高々2分の1波長である。
On the other hand, with a normal interferometer that makes two lights of the same frequency interfere, the positional information of the object to be measured is detected as the brightness and darkness of the interference fringes, so the measurement accuracy that can be expected is at most 1/2 wavelength.

しかしながら、光ヘテロゲイン干渉計より得られる電気
信号の位相は、信号振幅の変化に関係なく比較的容易に
2πの十分の1程度の精度で測定できるので光の位相情
報も精度よく測定できることになる。例えば、光へテロ
ダイン干渉計を表面粗さの測定に利用して、高さの分解
能として0.1nmを得た報告がされている。
However, since the phase of an electrical signal obtained by an optical heterogain interferometer can be measured relatively easily with an accuracy of about one-tenth of 2π regardless of changes in signal amplitude, optical phase information can also be measured with high accuracy. For example, it has been reported that an optical heterodyne interferometer was used to measure surface roughness and a height resolution of 0.1 nm was obtained.

(参考文献: G、 E、 Sommargren  
Appl、 Opt、 20p610 1.981)。
(References: G, E, Sommargren
Appl, Opt, 20p610 1.981).

光ヘテロダイン干渉計による計測法において重要な技術
は、周波数シフト技術であり、周波数が異なり、かつ現
存する光検出器で検出可能な周波数のビート信号を得る
ことのできる光源が必要である。このような光源は大き
く分けて3種類考えられている。
An important technique in the measurement method using an optical heterodyne interferometer is the frequency shift technique, which requires a light source that can obtain beat signals with different frequencies and frequencies that can be detected by existing photodetectors. Such light sources are considered to be roughly divided into three types.

第1の方法は1台のレーザ光源を周波数の異なるモード
で同時発振させる方法、 第2の方法は2台の周波数安定化レーザを周波数オフセ
ットロックして使用する方法である。
The first method is to simultaneously oscillate one laser light source in different frequency modes, and the second method is to use two frequency-stabilized lasers with frequency offset locked.

結論的に、これらの2方法は大がかりすぎて光ヘテロゲ
イン干渉計による計測法に適用するには困難な問題が多
い。
In conclusion, these two methods are too large-scale and have many problems that are difficult to apply to measurement methods using optical heterogain interferometers.

第3の方法は現在、最も多く用いられている方法で、1
台のレーザ光を2分し、その一方もしくは両方に光学位
相変調素子を用いて周波数シフトを行う方法である。
The third method is currently the most commonly used method.
This is a method in which the laser beam from the stand is divided into two parts and an optical phase modulation element is used in one or both parts to shift the frequency.

光学位相変調素子には初期の頃、回転型回折格子や回転
偏光素子などが用いられていたが、今日ではブラッグ回
折を利用した音響光変調素子がよく用いられている。音
響光変調素子は、高密度フリントガラスやモリブ酸鉛な
どの光学材料の中に超音波を進行させて位相格子を形成
し、光と超音波の相互作用で生じるブラッグ回折現象を
利用して周波数シフトを行うものである。干渉に使用す
る方式としては、1個の変調素子で得られる0次と1次
の回折光を利用する方法と、駆動周波数の異なる2個の
変調素子の各々の1次回折光を利用する方法とがある。
In the early days, rotating diffraction gratings, rotating polarizing elements, and the like were used as optical phase modulation elements, but today, acousto-optical modulation elements that utilize Bragg diffraction are often used. Acousto-optic modulators create a phase grating by propagating ultrasonic waves through an optical material such as high-density flint glass or lead molybate, and use the Bragg diffraction phenomenon caused by the interaction of light and ultrasonic waves to determine the frequency. It is a shift. The methods used for interference include a method that uses 0th-order and 1st-order diffracted light obtained by one modulation element, and a method that uses 1st-order diffracted light from each of two modulation elements with different driving frequencies. There is.

後者の方法では、偏光状態の直交する成分にそれぞれ周
波数シフトを与えることができ、直交偏光の2周波光源
として利用価値が高い。
In the latter method, a frequency shift can be given to each orthogonal component of the polarization state, and it is highly useful as a two-frequency light source of orthogonally polarized light.

音響光変調素子は、機械的可動部がなく小型でシフト周
波数も高くすることができるといった長所を有するが、
一方、量産に向かず高価な点、ブラッグ回折条件を満足
させる高精度な光学調整が必要な点、さらに、2周波光
源として構成した場合、ビームスプリッタ、反射ミラー
、波長板等構成部品が多く全体として複雑大型化し、機
械的外乱に弱い点などが欠点として残されている。
Acousto-optic modulators have the advantage of having no mechanically moving parts, being compact, and allowing a high shift frequency.
On the other hand, it is not suitable for mass production and is expensive, requires high-precision optical adjustment to satisfy Bragg diffraction conditions, and when configured as a dual-frequency light source, there are many components such as beam splitters, reflection mirrors, and wave plates. As a result, it has become complicated and large in size and is vulnerable to mechanical disturbances.

(発明が解決しようとする課題) 以上に述べた音響光変調素子を使用した2周波光源にお
ける問題点は、バルクタイプの光学系を用いた、いわゆ
る立体形光学系の持つ宿命的な欠陥である。この問題点
を全面的に改善する策として、2つの音響光変調素子を
薄膜光導波路と組み合わせて光集積化する方法が考えら
れる。−例として同一出願人・同一発明者による発明「
2周波光発生モジュール」(特願昭63−229146
号)を参照されたい。しかしながら、光集積化を行うと
、新たな問題点が生ずる。この場合、最も重大と考えら
れる問題は、2つの音響光変調素子がら発射された音響
波の光に対する不要な干渉効果である。
(Problems to be Solved by the Invention) The problem with the dual-frequency light source using the acousto-optic modulator described above is the fatal flaw of the so-called three-dimensional optical system using a bulk type optical system. . As a measure to completely improve this problem, a method of optically integrating two acousto-optic modulators by combining them with a thin film optical waveguide can be considered. -For example, an invention by the same applicant/inventor.
"Two-frequency light generation module" (Patent application 1986-229146)
Please refer to No. However, optical integration creates new problems. In this case, the most serious problem is the unnecessary interference effect on the light of the acoustic waves emitted from the two acousto-optic modulators.

すなわち、小さな光学基板上に発生させた音響波は容易
に消滅させることが難しく、変調をかけては具合いの悪
い導波光にまで変調作用を及ぼす。
That is, the acoustic waves generated on a small optical substrate are difficult to extinguish easily, and when modulated, they exert a modulating effect even on poorly guided light.

薄膜導波形光集積回路では、光は基板表層の薄い導波光
となり、また音響波も表面弾性波として基板表層部に集
中するため、両者の相互作用は強力であり、これに対す
る効果的な対応策が必要である。
In thin-film waveguide optical integrated circuits, light is guided in a thin layer on the surface of the substrate, and acoustic waves are also concentrated on the surface of the substrate as surface acoustic waves, so the interaction between the two is strong, and there are no effective countermeasures to deal with this. is necessary.

(課題を解決するための手段) 以上に述べた不要な表面弾性波が薄膜先導波路内の光に
与える影響を軽減させる方法として、本発明では基板表
面上の2つの音響光変調素子の間に溝を設ける構造をと
った。
(Means for Solving the Problems) As a method for reducing the influence of the above-mentioned unnecessary surface acoustic waves on the light in the thin film guided waveguide, the present invention provides a A structure with grooves was adopted.

すなわち、表面弾性波のエネルギーは基板表層部に集中
していて、その深さは表面弾性波の波長程度である。そ
のため、表面弾性波の波長以上の深さで溝を設ければ音
響光変調素子から発生し、互いに向かい合う方向で伝搬
する表面弾性波は溝で遮断され、もう一方の音響光変調
素子内−・の影響を除去できる。しかし、上記の構造で
は表面弾性波の溝の内壁からの反射の問題が残される。
That is, the energy of the surface acoustic waves is concentrated in the surface layer of the substrate, and the depth thereof is approximately the wavelength of the surface acoustic waves. Therefore, if a groove is provided at a depth equal to or greater than the wavelength of the surface acoustic wave, the surface acoustic waves generated from the acousto-optic modulator and propagating in opposite directions will be blocked by the groove, and the surface acoustic waves within the other acousto-optic modulator will be blocked by the groove. The influence of can be removed. However, in the above structure, the problem of reflection of surface acoustic waves from the inner wall of the groove remains.

そこで、本発明では溝部分に吸音材を塗布し、これを埋
める構造にした。このようにすることで、(1)一方の
音響光変調素子から発生した表面弾性波が別の音響光変
調素子内へ伝搬することが防止でき、 (2)さらに音響光変調素子から発生した表面弾性波が
溝で反射され、再び音響光変調素子内に伝搬して、表面
弾性波どうしの不要な干渉作用が生じることも防ぐこと
ができ、 (3)この結果、先導波路内を導波する光に不要な変調
作用を与える影響をなくした。
Therefore, in the present invention, a sound absorbing material is applied to the groove portion to fill it up. By doing this, (1) the surface acoustic waves generated from one acousto-optic modulator can be prevented from propagating into another acousto-optic modulator, and (2) the surface acoustic waves generated from one acousto-optic modulator can be prevented from propagating into another acousto-optic modulator. It is also possible to prevent the elastic waves from being reflected by the grooves and propagating into the acousto-optic modulator again, causing unnecessary interference between the surface acoustic waves. Eliminates the effects of unnecessary modulation on light.

(作用) この方法によって、本発明の2波長光源素子はその内部
に設けられた光変調部分で入射光の変調を行い、その際
に光変調部分を通過した表面弾性波は2つの光変調部分
の間に設けられた溝と吸音材でほとんど吸収され、互い
に影響を与えることがなくなった。これにより導波光に
は、ブラッグ回折による高効率な光変調のみを行うこと
が可能となり、不要な表面弾性波による外乱が取り除か
れた。
(Function) By this method, the two-wavelength light source element of the present invention modulates the incident light in the light modulation section provided inside the device, and at this time, the surface acoustic wave that has passed through the light modulation section is transmitted to the two light modulation sections. Most of the sound is absorbed by the grooves and sound-absorbing material placed between them, and they no longer affect each other. This makes it possible to perform only highly efficient optical modulation of guided light using Bragg diffraction, and eliminates unnecessary disturbances caused by surface acoustic waves.

(実施例) 第1図に、本発明に係る2波長光源素子の構成の一実施
例を示す。
(Example) FIG. 1 shows an example of the configuration of a two-wavelength light source element according to the present invention.

この実施例では、光透過性を有する圧電性基板1の表層
に、分岐型光導波路2と、該分岐型光導波路2の一端に
接続した第1の平面型光導波路3と、該第1の平面型光
導波路3に接続した第1の直線型光導波路5が設けであ
る。第1の平面型光導波路3の内部には分岐型光導波路
2の一端から入射して自然分散した光を、平行な導波光
に変換する第1の薄膜型レンズ7と、前記平行な導波光
を集光する第2の薄膜型レンズ8が設けられている。ま
た、前記圧電性基板1上には、前記平行にされた導波光
に対して、ブラング回折現象を生じさせる角度(ブラン
グ角度)で表面弾性波を発生させる第1の交差指型電極
11が設けである。分岐型光導波路2の他の一端には、
前記したものと同一構成を成した薄膜型光学系が接続さ
れているので詳しい説明は省く。
In this embodiment, a branched optical waveguide 2, a first planar optical waveguide 3 connected to one end of the branched optical waveguide 2, and a first planar optical waveguide 3 are provided on the surface layer of a piezoelectric substrate 1 having optical transparency. A first linear optical waveguide 5 connected to the planar optical waveguide 3 is provided. Inside the first planar optical waveguide 3, there is a first thin film lens 7 for converting naturally dispersed light incident from one end of the branched optical waveguide 2 into parallel guided light, and a first thin film lens 7 for converting the light that is naturally dispersed after entering from one end of the branched optical waveguide 2 into parallel guided light. A second thin film lens 8 is provided to condense the light. Further, a first interdigital electrode 11 is provided on the piezoelectric substrate 1 to generate a surface acoustic wave at an angle (Brang angle) that causes a Brang diffraction phenomenon with respect to the parallel guided light. It is. At the other end of the branched optical waveguide 2,
A thin film type optical system having the same configuration as that described above is connected, so a detailed explanation will be omitted.

第1の平面型光導波路3と第2の平面型光導波路4の間
には、第1及び第2の交差指型電極11.12それぞれ
にて発生し進行してきた第1及び第2の表面弾性波15
.16を遮断するための溝13と、遮断された表面弾性
波を吸収するための吸音材14が設けられている。また
、圧電性基板1の端面17.18は、光の入射及び出射
が効率よく行えるように鏡面研磨しである。
Between the first planar optical waveguide 3 and the second planar optical waveguide 4, first and second surfaces generated and progressed at the first and second interdigital electrodes 11 and 12, respectively, are disposed between the first and second planar optical waveguides 3 and 4. elastic wave 15
.. A groove 13 for blocking the waves 16 and a sound absorbing material 14 for absorbing the blocked surface acoustic waves are provided. Further, the end surfaces 17 and 18 of the piezoelectric substrate 1 are mirror-polished so that light can enter and exit efficiently.

圧電性基板1の光入射点19に入射した周波数f0の光
は、分岐型光導波路2の中を導波して2分岐され、第1
の平面型光導波路3内に入り、第1の薄膜型レンズ7で
光束幅の大きな導波光に変換される。第1の交差指型電
極11へ励振周波数f、の正弦波信号を印加して発生し
た第1の表面弾性波15は、平行な導波光の部分へブラ
ッグ角で入射して効率よく光の周波数変調を行う。この
ようにして周波数変調された光は、第2の薄膜型レンズ
8により集光され、第1の直線型光導波路5内に入射し
て圧電性基板1の第1の光出射点2oへ導波される。第
1の光出射点2oがら出射する光の周波数はfo+Lと
なる。
The light of frequency f0 that is incident on the light incidence point 19 of the piezoelectric substrate 1 is guided through the branched optical waveguide 2 and split into two.
The light enters the planar optical waveguide 3 and is converted by the first thin film lens 7 into guided light having a large beam width. The first surface acoustic wave 15 generated by applying a sine wave signal with an excitation frequency f to the first interdigital electrode 11 enters the parallel guided light portion at a Bragg angle and efficiently increases the light frequency. Perform modulation. The light frequency-modulated in this manner is focused by the second thin film lens 8, enters the first linear optical waveguide 5, and is guided to the first light output point 2o of the piezoelectric substrate 1. be waved. The frequency of the light emitted from the first light emitting point 2o is fo+L.

上記と同様の効果で、第2の平面型光導波路4内で周波
数変調された光は、第2の直線型光導波路6内に入射し
て、圧電性基板lの第2の光出射点21より出射する。
With the same effect as above, the light frequency modulated within the second planar optical waveguide 4 enters the second linear optical waveguide 6 and reaches the second light output point 21 of the piezoelectric substrate l. Emits more light.

第2の光出射点21より出射する光の周波数は、第2の
交差指型電極12に印加する正弦波信号の周波数rオだ
け遷移しており、fo+f、となる。
The frequency of the light emitted from the second light emitting point 21 is shifted by the frequency ro of the sine wave signal applied to the second interdigital electrode 12, and becomes fo+f.

本発明の2波長光源素子を構成する圧電性基板としては
、ニオブ酸リチウム結晶やタンタル酸リチウム結晶など
の基板が使用でき、この基板上に構成される各光導波路
の形成には、従来より光導波路作製方法として知られて
いるチタン拡散法が、また、薄膜レンズの形成にはプロ
トン交換法がそれぞれ利用できる。表面弾性波を発生さ
せる交差指型電極はフォトリソグラフィーによる微細加
工技術で実現可能である。
As the piezoelectric substrate constituting the two-wavelength light source element of the present invention, a substrate such as a lithium niobate crystal or a lithium tantalate crystal can be used. The titanium diffusion method, which is known as a wave path manufacturing method, and the proton exchange method can be used to form thin film lenses. Interdigital electrodes that generate surface acoustic waves can be realized using microfabrication technology using photolithography.

また、交差指型電極11.12より発生する第1及び第
2の表面弾性波15.16は第1図に示した方向だけで
なく、反対の方向へも励振され伝搬していく、そこで、
圧電性基板の側端面22.23と、反対側の方向に伝搬
した表面弾性波がぶつかる位置に吸音材を塗布すること
で、不要超音波の除去効果を高めることができる。
Furthermore, the first and second surface acoustic waves 15.16 generated by the interdigital electrodes 11.12 are excited and propagated not only in the direction shown in FIG. 1 but also in the opposite direction.
By applying a sound absorbing material to the side end surfaces 22 and 23 of the piezoelectric substrate at the positions where the surface acoustic waves propagating in the opposite direction collide, the effect of removing unnecessary ultrasonic waves can be enhanced.

不要超音波の除去方法としては、以上述べたように基板
表面に対し機械的な加工を施す以外に、基板表面の物理
的性質を不純物拡散やイオン注入等で変えることにより
、不要な表面弾性波のエネルギーを拡散もしくは基板内
部へ浸透させる方法も考えられる。
In addition to mechanically processing the substrate surface as described above, unnecessary ultrasonic waves can be removed by changing the physical properties of the substrate surface by impurity diffusion, ion implantation, etc. A method of diffusing or penetrating the energy into the inside of the substrate is also considered.

(発明の効果) この発明では、光を2つの異なる周波数で変調するため
に、導波光を2つの分岐型光導波路により2分し、それ
ぞれの先導波路を伝搬する導波光に対して異なる周波数
の表面弾性波で変調をかける構成とした。
(Effects of the Invention) In this invention, in order to modulate light at two different frequencies, the guided light is divided into two by two branched optical waveguides, and the guided light propagating through each leading waveguide is modulated with different frequencies. The structure uses surface acoustic waves for modulation.

また、2つの光変調素子の間に超音波の遮断及び吸収の
ための溝と吸音材を設けて、伝搬する表面弾性波が互い
に他の光変調素子へ影響を及ぼさないようにして、光変
調素子内を導波する光に不要な変調作用が生じないよう
にした。
In addition, grooves and sound absorbing materials are provided between the two light modulation elements to block and absorb ultrasonic waves, so that the propagating surface acoustic waves do not affect each other and the light modulation elements. This prevents unnecessary modulation effects from occurring on the light waveguided within the element.

よって、表面弾性波による光のブラッグ回折を利用した
2波長光源素子が実現可能となった。
Therefore, it has become possible to realize a two-wavelength light source element that utilizes Bragg diffraction of light due to surface acoustic waves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る2波長光源素子の構造の一実施
例を示す。 図において、1は圧電性基板、2は分岐型光導波路、3
と4は第1及び第2の平面型光導波路、5と6は第1及
び第2の直線型光導波路、7〜10は第1〜第4の薄膜
レンズ、11と12は第1及び第2の交差指型電極、1
3は溝、14は吸音材、15と16は第1及び第2の表
面弾性波、17と18は圧電性基板の端面、19は光入
射点、20と21は第1及び第2の光出射点、22と2
3は圧電性基板1の側端面をそれぞれ示す。
FIG. 1 shows an embodiment of the structure of a two-wavelength light source element according to the present invention. In the figure, 1 is a piezoelectric substrate, 2 is a branched optical waveguide, and 3 is a piezoelectric substrate.
and 4 are first and second planar optical waveguides, 5 and 6 are first and second linear optical waveguides, 7 to 10 are first to fourth thin film lenses, and 11 and 12 are first and second linear optical waveguides. 2 interdigital electrodes, 1
3 is a groove, 14 is a sound absorbing material, 15 and 16 are first and second surface acoustic waves, 17 and 18 are end faces of a piezoelectric substrate, 19 is a light incident point, 20 and 21 are first and second light beams Emission points, 22 and 2
3 indicates the side end surfaces of the piezoelectric substrate 1, respectively.

Claims (1)

【特許請求の範囲】 光透過性を有する圧電性基板(1)と; 該圧電性基板(1)の表層に設けられ、該圧電性基板の
端面より入射した光を導波し分配するための分岐型光導
波路(2)と; 該分岐型光導波路(2)の2つの出力端にそれぞれ接続
された第1及び第2の平面型光導波路(3)、(4)と
; 該第1及び第2の平面型光導波路(3)、(4)にそれ
ぞれ接続された第1及び第2の直線型光導波路(5)、
(6)と; 前記第1及び第2の平面型光導波路(3)、(4)のそ
れぞれの内部に設けられ、前記分岐型光導波路(2)の
2つの出力端から扇状に自然分散した薄膜状の導波光を
それぞれ平行光にするための第1及び第3の薄膜型レン
ズ(7)、(9)と; 該第1及び第3の薄膜型レンズ(7)、(9)を通過し
た後の平行光をそれぞれ前記第1及び第2の直線型光導
波路(5)、(6)に絞り込むために該平面型光導波路
(3)、(4)のそれぞれの内部に設けられた第2及び
第4の薄膜型レンズ(8)、(10)と;互いに周波数
が異なり、かつ、前記第1及び第2の平面型光導波路(
3)、(4)内を導波する平行光に対してブラッグの回
折条件をそれぞれ満足すべく波面と伝搬方向を持つ第1
及び第2の表面弾性波(15)、(16)を前記圧電性
基板(1)上に発生させる第1及び第2の交差指型電極
(11)、(12)と;前記第1及び第2の表面弾性波
(15)、(16)の進行を遮断するための溝(13)
と; 前記溝部分に塗布され、前記第1及び第2の表面弾性波
(15)、(16)を吸収するための吸音材(14)と
を備えた2波長光源素子。
[Scope of Claims] A piezoelectric substrate (1) having optical transparency; a branched optical waveguide (2); first and second planar optical waveguides (3) and (4) respectively connected to two output ends of the branched optical waveguide (2); first and second linear optical waveguides (5) connected to second planar optical waveguides (3) and (4), respectively;
(6) and; provided inside each of the first and second planar optical waveguides (3) and (4), and naturally dispersed in a fan shape from the two output ends of the branched optical waveguide (2). first and third thin film lenses (7) and (9) for converting thin film guided light into parallel light; passing through the first and third thin film lenses (7) and (9); In order to narrow down the parallel light beams into the first and second linear optical waveguides (5) and (6), a plurality of linear optical waveguides (3) and (4) are provided inside each of the planar optical waveguides (3) and (4). The second and fourth thin film lenses (8) and (10) have different frequencies, and the first and second planar optical waveguides (
3), (4) The first waveform has a wavefront and a propagation direction to satisfy Bragg's diffraction conditions for parallel light guided within
and first and second interdigital electrodes (11) and (12) for generating second surface acoustic waves (15) and (16) on the piezoelectric substrate (1); Groove (13) for blocking the progress of surface acoustic waves (15) and (16) of No. 2
and; a sound absorbing material (14) applied to the groove portion for absorbing the first and second surface acoustic waves (15) and (16).
JP23747989A 1989-09-13 1989-09-13 Two-wavelength light source element Expired - Fee Related JP2787345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23747989A JP2787345B2 (en) 1989-09-13 1989-09-13 Two-wavelength light source element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23747989A JP2787345B2 (en) 1989-09-13 1989-09-13 Two-wavelength light source element

Publications (2)

Publication Number Publication Date
JPH03100530A true JPH03100530A (en) 1991-04-25
JP2787345B2 JP2787345B2 (en) 1998-08-13

Family

ID=17015937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23747989A Expired - Fee Related JP2787345B2 (en) 1989-09-13 1989-09-13 Two-wavelength light source element

Country Status (1)

Country Link
JP (1) JP2787345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6290292B1 (en) 1999-01-11 2001-09-18 Tachi-S Co., Ltd. Seat back structure of hinged vehicle seat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6290292B1 (en) 1999-01-11 2001-09-18 Tachi-S Co., Ltd. Seat back structure of hinged vehicle seat

Also Published As

Publication number Publication date
JP2787345B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US5862164A (en) Apparatus to transform with high efficiency a single frequency, linearly polarized laser beam into beams with two orthogonally polarized frequency components orthogonally polarized
US7697195B2 (en) Apparatus for reducing wavefront errors in output beams of acousto-optic devices
KR20070088725A (en) Fabrication of structures in an optical substrate
US20240061352A1 (en) Exposure light beam phase measurement method in laser interference photolithography, and photolithography system
US5917844A (en) Apparatus for generating orthogonally polarized beams having different frequencies
KR20010032649A (en) Dual beam generator
JP2002517768A (en) Electro-optical, magneto-optical or acousto-optically controlled UV lighting device for the fabrication of Bragg gratings
US5629793A (en) Frequency shifter and optical displacement measurement apparatus using the same
JP2787345B2 (en) Two-wavelength light source element
JP2948645B2 (en) Two-wavelength light source element
JP2761951B2 (en) Waveguide type light modulator
JP2829411B2 (en) Surface acoustic wave high-speed optical deflection element
JPH0277029A (en) Two-frequency light generation module
JPH0711649B2 (en) Cross-polarized dual frequency light source
JPH1114544A (en) Light wave interfrerence measuring instrument
JPH02160221A (en) Two-frequency light generating source
CN115453826A (en) Laser interference photoetching system
RU2017236C1 (en) Multichannel optical data-recording device
JPH04121642A (en) Light integrated type heterodyne interference refractive index distribution measuring device
JP2662871B2 (en) Polarization diffraction element
JPH1019508A (en) Light wave interference measuring device and measuring system for variation of reflective index
SU1212167A1 (en) Opto-acoustic spectrum analyzer
JPH11271016A (en) Interference measuring signal forming equipment
GB2222271A (en) Collinear acousto-optic modulator
JPH08194178A (en) Multibeam optical scanner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees