JPH03100491A - Lower plenum of reactor core - Google Patents

Lower plenum of reactor core

Info

Publication number
JPH03100491A
JPH03100491A JP1237061A JP23706189A JPH03100491A JP H03100491 A JPH03100491 A JP H03100491A JP 1237061 A JP1237061 A JP 1237061A JP 23706189 A JP23706189 A JP 23706189A JP H03100491 A JPH03100491 A JP H03100491A
Authority
JP
Japan
Prior art keywords
flow
support leg
control rod
core shroud
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1237061A
Other languages
Japanese (ja)
Inventor
Koji Shiina
孝次 椎名
Shozo Nakamura
中村 昭三
Koichi Matsumoto
宏一 松本
Yasuo Mizushina
水品 靖男
Hiroto Uozumi
魚住 弘人
Noriaki Wada
和田 則明
Masaaki Tsubaki
正昭 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1237061A priority Critical patent/JPH03100491A/en
Publication of JPH03100491A publication Critical patent/JPH03100491A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To prevent the in-pile structure from being damaged due to flow vibration by lowering a position of a reactor core shroud support leg from the lower end of a control rod guide tube, and expanding its breadth by that portion. CONSTITUTION:First of all, as for reactor water of a downcomer part 12 between a pressure vessel 4 and a wall of a reactor core shroud 5, a suction flow 9 is pressurized by an internal pump 6, becomes a discharge flow 10 from an opening part of a reactor core shroud support leg 5a and flows into a reactor. Also, a coolant flows as an almost orthogonal flow to the outermost peripheral part of a control rod driving mechanism housing 3, and thereafter, ascends along a control rod guide tube 2, and also, goes into a fuel assembly at the upper part. Subsequently, a position of the support leg 5a is lowered from the lower end of the guide tube 2, and also, the discharge flow from the pump is set to a downward flow, therefore, an edge shape is used for the support leg 5a shape roughly in parallel to the lower specular surface. In such a way, an interval of the support leg 5a is expanded by a portion for lowering the support leg 5a, and by setting an opening area being equal to a conventional one, an average flow velocity of the discharge flow 10 is held roughly uniformly in the same way as heretofore.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はABWR原子炉炉心本体に係り、特に、炉内構
造物である制御棒、及び、制御棒案内管等を流動振動か
ら防止するのに好適な炉心シュラウドサポートレグ構造
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ABWR nuclear reactor core body, and in particular, to a method for preventing internal reactor structures such as control rods and control rod guide tubes from flow vibration. This invention relates to a core shroud support leg structure suitable for.

〔従来の技術〕[Conventional technology]

従来の原子炉、あるいは、炉心下部プレナムは第8図、
第9図に示すように、炉心シュラウドサポートレグ5a
が制御棒案内管2の下端の位置で設置されており、この
構造特有の作用として、ポンプ吐出流が炉内構造物に直
交流として流れることにより、炉内構造物である制御棒
案内管2、及び、制御棒駆動機構ハウジング3の流動振
動やハウジング3の最下端部の溶接部における曲げ応力
が大きく作用し、機器の信頼性、安全性などの心配が考
えられる。
A conventional nuclear reactor or lower core plenum is shown in Figure 8.
As shown in FIG. 9, the core shroud support leg 5a
is installed at the lower end of the control rod guide tube 2, and as a unique effect of this structure, the pump discharge flow flows into the reactor internals as a cross flow, so that the control rod guide tube 2, which is the reactor internals, , and the flow vibration of the control rod drive mechanism housing 3 and the bending stress at the welded portion at the lowest end of the housing 3 act to a large extent, which may cause concerns about the reliability and safety of the equipment.

そこで、特開昭60−168087号、特開昭6〇−1
86790号、特開昭61−114188号公報に記載
のように、炉心シュラウドサポートのレグ形状をポンプ
側を半円柱にしたもの、同じくポンプ側を内弧状にした
もの、翼形形状としてポンプ吐出流方向に向けたものな
どがある。発明の目的は、いずれも、ポンプ吐出流の流
動抵抗の低減が主たるものであリ、炉内構造物の流動振
動による振動応力低減に主眼を置いていない。実際に炉
内構造物に作用する振動応力を評価するためには、炉心
シュラウドサポートレグの横断面形状を上記のように変
更して流動抵抗を下げても抑えられない。すなわち、制
御棒駆動機構ハウジング下端部に曲げ応力として作用す
る振動応力を低減するためには炉心下部プレナムの軸方
向に沿った流れの方向に注目し、炉心シュラウドサポー
トレグの高さ方向、すなわち、縦断面形状に変更を加え
なければならない。
Therefore, JP-A-60-168087, JP-A-60-1
As described in No. 86790 and JP-A-61-114188, the leg shape of the core shroud support has a semi-cylindrical shape on the pump side, an inner arc shape on the pump side, and an airfoil shape to improve the pump discharge flow. There are things that point in the direction. The main purpose of the invention is to reduce the flow resistance of the pump discharge flow, and does not focus on reducing the vibration stress caused by the flow vibration of the reactor internal structure. In order to evaluate the vibration stress that actually acts on the reactor internals, it cannot be suppressed even if the cross-sectional shape of the core shroud support leg is changed as described above to lower the flow resistance. That is, in order to reduce the vibration stress that acts as bending stress on the lower end of the control rod drive mechanism housing, focus on the flow direction along the axial direction of the core lower plenum, and the height direction of the core shroud support leg, that is, Changes must be made to the longitudinal cross-sectional shape.

従って、従来の発明ではすべてポンプ吐出流の流動抵抗
の低減のみ注目しているが、原子炉で最も重要な炉内構
造物の安全性、信頼性の確保が見落されている。
Therefore, all conventional inventions have focused only on reducing the flow resistance of the pump discharge flow, but have overlooked ensuring the safety and reliability of the reactor internals, which are the most important aspects of a nuclear reactor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はインターナルポンプからの吐出流が炉心
シュラウド下部の開口部から流入し、炉内に配置された
制御棒駆動機構ハウジング、及び、制御棒案内管に衝突
する時の流動振動の点について考慮されておらず、上記
の円柱棒周りに生成されるカルマン渦に起因した振動に
より炉内機器が破損する可能性がある。
The above conventional technology deals with the flow vibration when the discharge flow from the internal pump enters from the opening in the lower part of the reactor core shroud and collides with the control rod drive mechanism housing and the control rod guide tube arranged in the reactor. This has not been taken into consideration, and there is a possibility that the equipment in the furnace will be damaged due to vibrations caused by the Karman vortices generated around the above-mentioned cylindrical rod.

本発明の目的は、炉内構造物が流動振動により破損する
のを防止する炉内下部プレナムを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lower plenum in a reactor that prevents reactor internals from being damaged by flow vibration.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は炉心シュラウドサ
ポートレグの位置を制御棒案内管の下端より下げ、その
分、サポートレグの横幅を狭めて開口面積を十分に確保
した。さらに、ポンプ吐出流を下向き流れとするために
、圧力容器下鏡面とほぼ平行にサポートレグをエツジ形
状とした。
In order to achieve the above object, the present invention lowers the position of the core shroud support leg from the lower end of the control rod guide tube, reduces the width of the support leg accordingly, and secures a sufficient opening area. Furthermore, in order to make the pump discharge flow downward, the support leg was formed into an edge shape almost parallel to the lower mirror surface of the pressure vessel.

〔作用〕[Effect]

炉心シュラウドサポートレグが下の位置へ変わり、その
分レグ開口面積が十分確保されていると、ポンプ吐出流
はレグ開口部で従来と同様の平均流速が確保される。そ
して、制御棒案内管へは、直接、直交流が当たることは
ない、すなわち、レグ開口部から横波がりの流速分布を
もって、制御棒駆動機構ハウジングへ直交流として当た
る。そのため、案内管、及び、ハウジングの溶接点下部
への流体力による曲げ応力の作用と、これら変動流によ
る静的、及び、動的振動応力は低減される。
When the core shroud support leg moves to the lower position and the leg opening area is sufficiently secured, the pump discharge flow will maintain the same average flow velocity as before at the leg opening. The cross flow does not directly hit the control rod guide tube; that is, it hits the control rod drive mechanism housing as a cross flow from the leg openings with a flow velocity distribution of transverse waves. Therefore, the effect of bending stress due to the fluid force on the guide tube and the lower part of the welding point of the housing, and the static and dynamic vibration stress due to these fluctuating flows are reduced.

しかも、炉心シュラウドサポートレグの下端部を圧力容
器の下鏡に並行にエツジ状とすることにより、ポンプ吐
出流の流れ方向を下鏡に沿った流れとして、コントロー
ルすることができ、炉内構造物である制御棒案内管と駆
動機構ハウジングに作用する曲げモーメントの作用点長
さを小さくすることができるため、振動応力はさらに低
減される。
Moreover, by making the lower end of the core shroud support leg edge-shaped parallel to the lower mirror of the pressure vessel, the flow direction of the pump discharge flow can be controlled to flow along the lower mirror, and the reactor internal structure can be controlled. Since the length of the point of action of the bending moment acting on the control rod guide tube and the drive mechanism housing can be reduced, vibration stress is further reduced.

この作用により、原子炉下部プレナムにおける炉内構造
物の流動振動を低減し、原子炉の安全性。
This action reduces the flow vibration of reactor internals in the lower reactor plenum, improving reactor safety.

信頼性を確保する。Ensure reliability.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図から第3図により説明
する。第1図は新型沸騰水型原子炉(ABWR)の下部
プレナム内の構造を示す。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Figure 1 shows the structure inside the lower plenum of a new type of boiling water reactor (ABWR).

ABWRの再循環系は従来のBWRのジェットポンプの
代わりに、インターナルポンプを用いて冷却材を炉内機
器へ流入させるものである。まず、ABWRの全体構成
は省略し、ABWRの下部ブレナム内構造について説明
する。第1図は本発明の下部プレナムの部分断面図、第
3図は第1図の■−■矢視断面図を示す。下部プレナム
部1構造は圧力容器4内の下鏡部に沿って炉内構造物で
ある制御棒案内管2と制御棒駆動機構ハウジング3が複
数本設置されている。また、炉心シュラウド5は制御棒
案内管2束の外側に外接するように配置し、圧力容器4
と炉心シュラウド5との間に10台あるいは12台のイ
ンターナルポンプ6が等間隔に設置されている。なお、
制御棒案内管2と制御棒駆動機構ハウジング3からなる
炉内構造物は上部の炉心8内で炉心サポート7により支
持される。そして、圧力容器4の下部の下鏡と炉心シュ
ラウド5との間はポンプの前面及びポンプ中間部の冷却
材流入孔を除いて炉心シュラウドサポートレグ5aによ
り溶接接合されている。
The ABWR recirculation system uses an internal pump to flow coolant into the reactor equipment instead of the traditional BWR jet pump. First, the overall structure of the ABWR will be omitted, and the internal structure of the lower blemish of the ABWR will be described. FIG. 1 is a partial cross-sectional view of the lower plenum of the present invention, and FIG. 3 is a cross-sectional view taken along the line -■ in FIG. In the structure of the lower plenum section 1, a plurality of control rod guide tubes 2 and control rod drive mechanism housings 3, which are internal reactor structures, are installed along a lower mirror section inside the pressure vessel 4. In addition, the core shroud 5 is arranged so as to circumscribe the outside of the two control rod guide tube bundles, and the pressure vessel 4
Ten or twelve internal pumps 6 are installed at equal intervals between the core shroud 5 and the core shroud 5. In addition,
A reactor internal structure consisting of a control rod guide tube 2 and a control rod drive mechanism housing 3 is supported by a core support 7 within an upper core 8. The lower mirror of the lower part of the pressure vessel 4 and the core shroud 5 are welded together by a core shroud support leg 5a, except for the coolant inflow holes at the front face of the pump and the middle part of the pump.

次に、その動作について説明する。まず、圧力容器4と
炉心シュラウド5の壁間のダウンカマ部12の炉水(冷
却材)はインターナルポンプ6で吸込流9が加圧されて
、炉心シュラウドサポートレグ5a間の開孔部から吐出
流1oとなって炉内へ流入する。そして、冷却材10は
制御棒駆動機構ハウジング3の最外周部へ、はぼ、直交
流で流れ、その後、制御棒案内管2に沿って上昇し、さ
らに、上部の燃料集合体へ入る。
Next, its operation will be explained. First, the reactor water (coolant) in the downcomer section 12 between the walls of the pressure vessel 4 and the core shroud 5 is pressurized into a suction flow 9 by the internal pump 6, and is discharged from the opening between the core shroud support legs 5a. It becomes a stream 1o and flows into the furnace. The coolant 10 then flows in a cross-flow manner to the outermost periphery of the control rod drive mechanism housing 3, then rises along the control rod guide tube 2, and further enters the upper fuel assembly.

このように、ABWRにおけるインターナルポンプ吐出
位置は従来のBWRにおけるジェットポンプのそれに比
べ低い位置にあるため、炉内流動、つまり、ポンプの吐
出流10が高速化される。そのため、制御棒案内管2、
及び、制御棒駆動機構ハウジング3にはこれら流体力に
よる静的振動応力、あるいは、ポンプ吐出流の変動によ
る動的振動応力が作用する二特に、流体衝突による曲げ
モーメモントが圧力容器4の下部の下鏡部の各制御棒駆
動機構ハウジング3の根元の溶接部に作用するため、非
常に大きな応力がかかるなどの心配がある。
As described above, since the internal pump discharge position in the ABWR is located at a lower position than that of the jet pump in the conventional BWR, the flow in the furnace, that is, the pump discharge flow 10 is increased in speed. Therefore, the control rod guide tube 2,
Static vibrational stress due to these fluid forces or dynamic vibrational stress due to fluctuations in the pump discharge flow acts on the control rod drive mechanism housing 3. In particular, bending moments due to fluid collisions occur under the lower part of the pressure vessel 4. Since this acts on the welds at the base of each control rod drive mechanism housing 3 in the mirror section, there is a concern that a very large stress will be applied.

そこで、本発明では、第1図に示すように、炉心シュラ
ウドサポートレグ5aの位置を従来の制御棒案内管2の
下端よりも下げ、さらに、ポンプからの吐出流10を下
向き流れとするため、下鏡面にほぼ平行にサポートレグ
5a形状にエツジ状を用いた。しかし、従来と同じ幅で
炉心シュラウドサポートレグ5aを下げてしまうと、レ
グの開口面積が小さくなり、ポンプ吐出流がさらに増加
してしまう、そのため、第3図に示すように、本発明で
は炉心シュラウドサポート5aを下げた分。
Therefore, in the present invention, as shown in FIG. 1, the position of the core shroud support leg 5a is lower than the lower end of the conventional control rod guide tube 2, and the discharge flow 10 from the pump is made to flow downward. An edge shape was used for the support leg 5a substantially parallel to the lower mirror surface. However, if the core shroud support leg 5a is lowered with the same width as the conventional one, the opening area of the leg will become smaller and the pump discharge flow will further increase. Therefore, as shown in FIG. By lowering shroud support 5a.

炉心シュラウドサポートレグ5a間隔を拡げ、従来と同
等の開口面積とすることにより、ポンプ吐出流の平均流
速は従来と、はぼ、−様に保つ。
By widening the spacing between the core shroud support legs 5a and making the opening area the same as in the past, the average flow velocity of the pump discharge flow is kept similar to that in the past.

次に、本発明の実施例特有の効果について説明する。第
4図に本発明の流れ方向の説明図を示す。
Next, effects specific to the embodiments of the present invention will be explained. FIG. 4 shows an explanatory diagram of the flow direction of the present invention.

炉心下部プレナムにおいて、ポンプ吐出流の流体力が加
振力として顕著に作用する点は、主に、制御棒案内管2
、及び、制御棒駆動機構バジング3等の炉内構造物配列
の最外周部である。本発明により、炉心シュラウドサポ
ートレグ5a間の開口部から流入する場合の流れ方向1
0、及び、流速分布11は第4図及び第5図に示すよう
な圧力容器4の下鏡に沿って下ぶくらみの流速分布とな
る。
In the lower core plenum, the fluid force of the pump discharge flow acts noticeably as an excitation force mainly in the control rod guide tubes 2.
, and the outermost periphery of the reactor internal structure arrangement such as the control rod drive mechanism badge 3. According to the invention, the flow direction 1 when flowing from the opening between the core shroud support legs 5a
0 and the flow velocity distribution 11 become a downward flow velocity distribution along the lower mirror of the pressure vessel 4 as shown in FIGS. 4 and 5.

そのため、制御棒駆動機構ハウジング3の最下部の点■
の溶接部に作用する曲げモートメンMは次式のようにな
る。
Therefore, the lowest point of the control rod drive mechanism housing 3
The bending moment M acting on the welded part is given by the following equation.

M=FQ               ・・・(1)
ここで、流体力Fは集中荷重として位置Ωに作用すると
考えれば、流速分布V va a xの増加にかかわら
ず、作用点の位置aが小さいので、点■の曲げ応力σ5
は小さい。
M=FQ...(1)
Here, if we consider that the fluid force F acts on the position Ω as a concentrated load, the bending stress σ5 at the point ■ is small regardless of the increase in the flow velocity distribution V va a
is small.

一方、従来の場合は、第6図及び第7図に示すように、
はぼ、−様な流速分布11の流体力F′がΩ′の位置に
集中荷重として作用するため、点■の溶接部に作用する
曲げモーメントM′は次式%式%(2) この場合、流速分布はほぼ均一となりV、□押Vmax
となり、さらに、流体力が集中荷重として作用する位置
Ω′は第3図に比べと大きくなる。
On the other hand, in the conventional case, as shown in FIGS. 6 and 7,
Since the fluid force F' of the flow velocity distribution 11 with a -like flow velocity distribution 11 acts as a concentrated load at the position Ω', the bending moment M' acting on the welding part at point ■ is calculated by the following formula % formula % (2) In this case , the flow velocity distribution is almost uniform and V, □press Vmax
Furthermore, the position Ω' where the fluid force acts as a concentrated load is larger than in FIG. 3.

また、曲げ応力σh も大きくなる。In addition, the bending stress σh also increases.

従って、炉心シュラウドサポートレグ5aの形状の違い
により、本発明と従来例の点■における曲げモーメント
M、及び、曲げ応力σbの大小を比較すると1次のよう
になる。
Therefore, due to the difference in the shape of the core shroud support leg 5a, a comparison of the bending moment M and the bending stress σb at point (3) of the present invention and the conventional example is linear.

MUM・               ・・・(3)
σbくσ5               ・・・(4
)ゆえに、制御棒案内管2、及び、制御棒駆動機構ハウ
ジング3の根元溶接部に作用する曲げ応力は本発明によ
り小さくなる。
MUM...(3)
σbkuσ5 ...(4
) Therefore, the bending stress acting on the root welds of the control rod guide tube 2 and the control rod drive mechanism housing 3 is reduced by the present invention.

以上のサポートレグ構造はインターナルポンプ中間部の
みに採用するのが流速分布の改善に効果的ではあるが、
サポートレグの強度が許される場合は、インターナルポ
ンプ前面部、及び、中間部の全てに採用することもでき
る。
Although it is effective to use the above support leg structure only in the middle part of the internal pump to improve the flow velocity distribution,
If the strength of the support leg is permitted, it can also be adopted for both the front part and the middle part of the internal pump.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、炉心シュラウドサポートレグを従来の
制御棒案内管下端よりも下げ、その分。
According to the present invention, the core shroud support leg is lowered lower than the lower end of the conventional control rod guide tube.

開口面積を一定とするため横幅を拡げ、しかも、サポー
トをエツジ状とすることにより、炉内構造物である制御
棒案内管、及び、制御棒駆動機構ハウジングに作用する
曲げ応力や流動振動の発生を抑え、安全性、信頼性の高
い原子炉を提供することができる。
By widening the width to keep the opening area constant and making the support edge-shaped, bending stress and flow vibration that act on the control rod guide tube and control rod drive mechanism housing, which are internal reactor structures, are reduced. It is possible to provide a nuclear reactor with high safety and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の部分断面図、第2図は第1
図の■−■矢視断面図、第3図は第2図のm−m矢視図
、第4図は本発明の流れ方向の説明図、第5図は第4図
の流速分布と曲げ応力の関係図、第6図は従来の流れ方
向の説明図、第7図は第6図の流速分布と曲げ応力の関
係図、第8図は従来の縦断面図、第9図は第8図のIX
−IX矢視断面図である。 1・・・下部プレナム、2・・・制御棒案内管、3・・
・制御棒駆動機構ハウジング、4・・・圧力容器、5・
・・炉心シュラウド、5a・・!炉心シュラウドサポー
トレグ。 6・・・インターナルポンプ、7・・・炉心サポート、
8・・・炉心、9・・・インターナルポンプの吸込流、
10・・・インターナルポンプの吐出流、11・・・速
度分布、夢2 図 #3 8陣(肉幡積 酬の鵬口虚纒貴 察4図 茶5図
FIG. 1 is a partial sectional view of one embodiment of the present invention, and FIG.
Figure 3 is a cross-sectional view taken along the arrows ``-■'' in the figure, Figure 3 is a view taken along the mm-m arrow in Figure 2, Figure 4 is an explanatory diagram of the flow direction of the present invention, and Figure 5 is the flow velocity distribution and bending shown in Figure 4. Stress relationship diagram, Figure 6 is an explanatory diagram of the conventional flow direction, Figure 7 is a diagram of the relationship between the flow velocity distribution of Figure 6 and bending stress, Figure 8 is a conventional longitudinal cross-sectional view, and Figure 9 is an illustration of the conventional flow direction. Figure IX
-IX arrow sectional view. 1... Lower plenum, 2... Control rod guide tube, 3...
・Control rod drive mechanism housing, 4...pressure vessel, 5.
... Core shroud, 5a...! Core shroud support leg. 6... Internal pump, 7... Core support,
8...Reactor core, 9...Internal pump suction flow,
10...Discharge flow of internal pump, 11...Speed distribution, dream 2 Figure #3 8 formations (Nikuhata Sekishu's Hoguchi Yoshiaki 4 figure, brown figure 5)

Claims (1)

【特許請求の範囲】 1、原子炉圧力容器内に炉心シユラウドを設け、前記原
子炉圧力容器と前記炉心シユラウドとの間に数台のイン
ターナルポンプを設置した原子炉において、 前記炉心シユラウドのサポートレグの位置を制御棒案内
管の下端より下げ、その分サポート幅を狭くすることに
より、レグ間の開口面積を十分確保したことを特徴とす
る炉心下部プレナム。 2、請求項1において、前記炉心シユラウドの前記サポ
ートレグの形状を内側に向けてエッジ状にしたことを特
徴とする炉心下部プレナム。
[Claims] 1. In a nuclear reactor in which a core shroud is provided in a reactor pressure vessel and several internal pumps are installed between the reactor pressure vessel and the core shroud, the support for the core shroud is provided. A core lower plenum characterized by ensuring a sufficient opening area between the legs by lowering the position of the legs below the lower end of the control rod guide tube and narrowing the support width accordingly. 2. The lower core plenum according to claim 1, wherein the support legs of the core shroud have an edge shape facing inward.
JP1237061A 1989-09-14 1989-09-14 Lower plenum of reactor core Pending JPH03100491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237061A JPH03100491A (en) 1989-09-14 1989-09-14 Lower plenum of reactor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237061A JPH03100491A (en) 1989-09-14 1989-09-14 Lower plenum of reactor core

Publications (1)

Publication Number Publication Date
JPH03100491A true JPH03100491A (en) 1991-04-25

Family

ID=17009840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237061A Pending JPH03100491A (en) 1989-09-14 1989-09-14 Lower plenum of reactor core

Country Status (1)

Country Link
JP (1) JPH03100491A (en)

Similar Documents

Publication Publication Date Title
EP0283836A2 (en) Thin walled channel
EP1909292A1 (en) Nuclear reactor fuel assemblies
US5533078A (en) Nuclear fuel assembly for a pressurized water reactor
US5243635A (en) Fuel rod capturing grid spring and arch
JPS5829879B2 (en) Reactor
KR20120075476A (en) Body for a nuclear fuel assembly, and nuclear fuel assembly comprising such a body
EP1343175A2 (en) Grid for use in a fuel assembly of a nuclear reactor
JPH01126592A (en) Spider assembly for supporting control rod cluster
JPH03100491A (en) Lower plenum of reactor core
JPH04232895A (en) Guide-tube inserted-material assembly in in-pile structure assembly
USRE34246E (en) Thin walled channel
EP0117073A1 (en) Reducing vibrational damage to nuclear fuel rods
US5721758A (en) Bottom head to shell junction assembly for a boiling water nuclear reactor
RU2216056C2 (en) Fuel assembly and core of water-cooled nuclear reactor
US4793966A (en) Nuclear reactor
EP0125325B1 (en) Nuclear reactor
JPH03235096A (en) Valve pump type boiling water nuclear reactor
US20040032925A1 (en) Fuel assembly
JPH03185394A (en) Fuel assembly with liquid film peeling device for boiling water type nuclear reactor
JP3887759B2 (en) Core support structure
WO2024004349A1 (en) Steam dryer for boiling water-type reactor
KR910003802B1 (en) Nuclear reactor
JP2000111682A (en) Core internal structure of pressurized water reactor
JPH0512798Y2 (en)
Jhung et al. Dynamic analysis of reactor internals for the tributary pipe breaks