JPH0299114A - Dehumidifying method - Google Patents

Dehumidifying method

Info

Publication number
JPH0299114A
JPH0299114A JP63252756A JP25275688A JPH0299114A JP H0299114 A JPH0299114 A JP H0299114A JP 63252756 A JP63252756 A JP 63252756A JP 25275688 A JP25275688 A JP 25275688A JP H0299114 A JPH0299114 A JP H0299114A
Authority
JP
Japan
Prior art keywords
membrane
gas
water vapor
cmhg
stp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63252756A
Other languages
Japanese (ja)
Other versions
JPH0763579B2 (en
Inventor
Yukio Yanaga
弥永 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP63252756A priority Critical patent/JPH0763579B2/en
Publication of JPH0299114A publication Critical patent/JPH0299114A/en
Publication of JPH0763579B2 publication Critical patent/JPH0763579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Abstract

PURPOSE:To perform dehumidification in an industrially extremely advantageous manner by using a polymer membrane having specific permselectivity and permeation speed and bringing a gaseous mixture into contact with said membrane under a specific condition. CONSTITUTION:A gaseous mixture containing steam is brought into contact with a polymer membrane wherein the permeation speed of steam is at least 2.5X10<-3>cm<3>(STP)/cm<2>, sec, cmHg, that of methane is 1X10<-7>-2.5X10<-5>cm<3>(STP)/ cm<2>, sec, cmHg and the selective separation capacity of steam is 500 or more. The pressure of the steam-containing gas on the supply side of the membrane is held to 20kg/cm<2> or more and that on the permeation side thereof is held to 0.5-20cmHg. By this method, the sharp reduction of the membrane area and the sharp increase in treatment quantity become possible and, especially, natural gas is dehumidified in low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水蒸気を含有する気体混合物の脱湿方法に関す
る。詳しくは、本発明は水蒸気を含有する気体混合物を
、特定の条件下で特定の性能を有する中空糸分離膜に接
触させて、同混合物中の水蒸気を分離することによる脱
湿方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for dehumidifying gas mixtures containing water vapor. Specifically, the present invention relates to a method of dehumidifying water vapor by contacting a gas mixture containing water vapor with a hollow fiber separation membrane having a specific performance under specific conditions to separate the water vapor in the mixture. .

〔従来の技術とその問題点〕[Conventional technology and its problems]

気体、特に、天然ガス、油層上のブランケットガス、ガ
ス/油混合物の分離で得られるガス、及び石油精製にお
いて発生するガス等の炭化水素ガスは脱湿を行なう必要
がある。
Gases, especially hydrocarbon gases such as natural gas, blanket gases on oil reservoirs, gases obtained from the separation of gas/oil mixtures, and gases generated in petroleum refining, need to be dehumidified.

すなわち、炭化水素ガスにおける水分の存在は、凍結に
よる固体水和物の生成及び炭酸ガス及び/又は硫化水素
の存在下での容器、配管の腐食といった危険性を有する
ため、これらのガスの遠方への輸送、液化等の次工程へ
の供給、或いは、市販等の場合には水分含量を極度に小
さい値とすることが重要である。
In other words, the presence of moisture in hydrocarbon gas poses the danger of formation of solid hydrates due to freezing and corrosion of containers and piping in the presence of carbon dioxide and/or hydrogen sulfide; It is important to keep the water content to an extremely low value when transporting, supplying to the next process such as liquefaction, or commercially selling.

従来、気体の脱湿法としては特に冷却による脱湿、グリ
コールとの接触による脱湿、シリカゲルへの吸着による
脱湿等が行なわれているが、これらの方法は大型の装置
及び脱湿のための多大なエネルギーを必要としているた
め、例えばグリコール法脱水装置においては安全性、装
置の重量及び大きさの点で著しくコスト高であるためそ
の使用は特殊な場合のみに限定されている0 したがって近年このような吸収法、吸着法等による脱湿
方法に代わるものとして、装置の小型化、軽量化、維持
管理の容易性、安全面からガス分離膜を内蔵するガス分
離モジュールを使用した混合ガスの除湿又は乾燥方法が
提案されている。すなわち、脱湿方法として、 (a)  特定の性能を有する高分子膜を用い、ガス分
離膜の透過側を減圧にすることによる混合ガスの脱湿方
法(特開昭!;’!−/!f21,79号)(b)  
供給ガスの主成分であるメタンガスの透過性が比較的高
く、(QCH4が/×1o−5J(sTP)/cm +
 sec + crnHg以上)かつメタンガスに対す
る水蒸気の選択性が200−’100であるガス分離膜
を使用して混合ガスを脱湿する方法(特開昭!;9−/
9313!;号) (C)  ガス分離膜の透過側に大量のパージガスを供
給し、透過した水蒸気の分圧を低下させることによる混
合ガスの脱湿方法(特開昭5O−26り1I) (d)  ガス分離膜の透過側に混合ガスに対し10容
量チ以下の乾燥ガス(水分500 ppm以下)をパー
ジさせることによる混合ガスの脱湿方法(特開昭/、 
2−4’ 2 ?=3)などが知られている。
Traditionally, gas dehumidification methods include dehumidification by cooling, dehumidification by contact with glycol, dehumidification by adsorption to silica gel, etc., but these methods require large equipment and dehumidification. For example, glycol method dehydration equipment is extremely expensive in terms of safety, weight and size of the equipment, and its use has been limited to special cases. As an alternative to such dehumidification methods such as absorption and adsorption methods, a gas separation module with a built-in gas separation membrane is used to remove mixed gas from the viewpoint of downsizing, weight reduction, ease of maintenance, and safety. Dehumidification or drying methods have been proposed. That is, as a dehumidification method, (a) a method of dehumidifying a mixed gas by using a polymer membrane with specific performance and reducing the pressure on the permeation side of the gas separation membrane (JP-A-Sho!;'!-/! f21, No. 79) (b)
The permeability of methane gas, which is the main component of the supplied gas, is relatively high, and (QCH4 is / x 1o-5J (sTP)/cm +
sec + crnHg or more) and a method of dehumidifying a mixed gas using a gas separation membrane having a water vapor selectivity of 200-'100 for methane gas (JP-A-Sho!; 9-/
9313! ) (C) Method of dehumidifying a mixed gas by supplying a large amount of purge gas to the permeation side of a gas separation membrane to lower the partial pressure of the permeated water vapor (JP-A-5O-26-1I) (d) Method for dehumidifying a mixed gas by purging the permeate side of a gas separation membrane with 10 volumes or less of dry gas (moisture 500 ppm or less) against the mixed gas (JP-A-Sho/,
2-4' 2? =3) are known.

しかしながら、方法(a)においては膜の水蒸気透過速
度が小さいために所定量の水分を脱湿するためには透過
側の真空度を高くしなければならず、かつ広大な膜面積
も必要とすることから装置の大型化、高コストを招き現
在までに実用化には至っていない。
However, in method (a), the water vapor permeation rate of the membrane is low, so in order to dehumidify a predetermined amount of water, the degree of vacuum on the permeation side must be high, and a large membrane area is also required. As a result, the device becomes larger and more expensive, and it has not been put into practical use to date.

方法(b)では、この方法に適合するガス分離性能を有
するガス分離膜を製造することが困難であシ、又混合ガ
スの主成分である有用なガス(例えばメタン)を多量に
ロスするため有利とは言えない。
In method (b), it is difficult to produce a gas separation membrane with gas separation performance compatible with this method, and a large amount of useful gas (for example, methane), which is the main component of the mixed gas, is lost. I can't say it's advantageous.

又、方法(C)では、かなり大量のパージガスを消費し
、方法(d)においても乾燥ガスを製造する必要性から
分離膜脱湿装置以外にパージ用乾燥ガスの脱湿装置が必
要であることからやはり有利とは言えない。
In addition, method (C) consumes a considerably large amount of purge gas, and method (d) also requires a dehumidifying device for purge dry gas in addition to the separation membrane dehumidifying device because of the need to produce dry gas. Therefore, it cannot be said that it is advantageous.

このように工業的に気体から水蒸気を分離することは、
特に天然ガスの脱湿等において重要であり、分離膜法に
よる脱湿方法は非常に期待されている。しかし、従来の
分離膜プロセスによる脱湿方法では膜の水蒸気透過速度
が小さいため、工業的に用いるには膜面積が著しく大き
く設備が大規模になり、更に混合ガス中の有用な気体の
ロスが大きい等により、既存の脱取外の脱湿プロセスに
比べ、顕著に経済性に優れた方法になり得すいずれも工
業的に実用化されていない。
Industrially separating water vapor from gas in this way
This is particularly important in the dehumidification of natural gas, and there are great expectations for the dehumidification method using a separation membrane method. However, in the conventional dehumidification method using a separation membrane process, the water vapor permeation rate of the membrane is low, so for industrial use the membrane area is extremely large and the equipment is large-scale, and there is also a loss of useful gas in the mixed gas. Due to its large size, it can be a method that is significantly more economical than existing dehumidification processes that do not involve desorption, but none of these methods have been put into practical use industrially.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明者は前述のような「ガス分離膜を使用する混合ガ
スの脱湿方法」における欠点が解消された実用的な除湿
方法について、鋭意研究した結果、特定の膜性能を有す
る中空系分離膜を用いて、特定の条件下において工業的
に極めて有利に混合ガス、特に天然ガス中の水分を脱湿
しうろことを見い出し、本発明を完成するに至った。
As a result of intensive research into a practical dehumidification method that eliminates the drawbacks of the above-mentioned "mixed gas dehumidification method using a gas separation membrane," the inventor has developed a hollow separation membrane with specific membrane performance. The present inventors have discovered that a scale can be used to dehumidify moisture in a mixed gas, especially natural gas, under specific conditions, which is industrially extremely advantageous, and has completed the present invention.

すなわち本発明の要旨は、水蒸気を含有する気体から高
分子膜を用いて水蒸気を分離する脱湿方法において、該
高分子膜の水蒸気の透過速度(QH20)が2.j X
 / 0−3cm” (STP)/a++’ +sec
+cmHg以上、メタンの透過速度(QCH4)が/ 
X / (f’〜JJ X / 0−5cm3(STP
 )/z2+ seC+cy++Hg  かっ、水蒸気
の選択分離性能(QH20/QCH4)が5ooy上で
あって、膜の一方である供給側の水蒸気を含有する気体
の圧力が20 K97cm2以上であり、もう一方の透
過側の圧力が0−j ctnHg −2□cm Hgに
保持されていることを特徴とする脱湿方法に存する。
That is, the gist of the present invention is to provide a dehumidification method in which water vapor is separated from a gas containing water vapor using a polymer membrane, in which the water vapor permeation rate (QH20) of the polymer membrane is 2. j X
/ 0-3cm"(STP)/a++' +sec
+cmHg or more, the methane permeation rate (QCH4) is /
X / (f'~JJ X / 0-5cm3 (STP
)/z2+ seC+cy++Hg The selective separation performance of water vapor (QH20/QCH4) is above 5ooy, the pressure of the gas containing water vapor on the supply side, which is one side of the membrane, is 20K97cm2 or more, and the pressure on the other permeation side is 20K97cm2 or more. The dehumidification method is characterized in that the pressure is maintained at 0-j ctnHg -2□cm Hg.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の方法は、優れた水蒸気の選択透過性及び透過速
度を有する高分子膜を使用して、はじめて実用性のある
混合ガスの脱湿方法を実現したものであり、供給側に−
20Kf7cm2以上の圧力の水蒸気を含有する原料ガ
スを流通し透過側の圧力を0.3〜20 cmHg に
保持することによって次の点にすぐれた脱湿方法を提供
するものである。
The method of the present invention uses a polymer membrane with excellent water vapor permselectivity and permeation rate to realize a practical method for dehumidifying a mixed gas for the first time.
By passing a raw material gas containing water vapor at a pressure of 20 Kf7 cm2 or more and maintaining the pressure on the permeate side at 0.3 to 20 cmHg, a dehumidification method excellent in the following points is provided.

(1)水蒸気の透過量が大きくガス分離装置に内蔵され
る分離膜の表面積を小さくすることができ、装置が小型
となりコストが低減される。
(1) The amount of permeation of water vapor is large, and the surface area of the separation membrane built into the gas separation device can be reduced, making the device compact and reducing costs.

(2)好適な水蒸気の選択透過性を有した高分子膜を有
しているので製品(例えばメタン)のロスを著しく低減
できる利点を有している。
(2) Since it has a polymer membrane with suitable water vapor permselectivity, it has the advantage of significantly reducing loss of products (for example, methane).

更に本発明中で特に使用される芳香族ポリイミド及び芳
香族ポリアミドイミド等は、・耐久性、耐熱性、耐薬品
性、耐湿熱性等が優れており、混合ガスの脱湿を長期間
安定的に実施することができる。
Furthermore, the aromatic polyimide and aromatic polyamideimide used in the present invention have excellent durability, heat resistance, chemical resistance, moist heat resistance, etc., and can stably dehumidify mixed gas for a long period of time. It can be implemented.

本発明による混合ガスの脱湿装置は、原料ガスの供給部
入口孔と脱湿された製品ガスの出口孔及び選択透過性を
有する分離膜によって該供給原料ガスと分離した透過ガ
スの出口孔からなり、水蒸気を含有する混合ガスを加圧
下で該供給部の入口に供給し、透過ガス側を減圧に保持
し該透過ガス側より水分の多くなったガスを取シ出し、
原料ガス中の水分を脱湿する方法よシなる。
The mixed gas dehumidification device according to the present invention has an inlet hole for a feed gas supply, an outlet hole for a dehumidified product gas, and an outlet hole for a permeate gas separated from the feed gas by a separation membrane having selective permeability. A mixed gas containing water vapor is supplied under pressure to the inlet of the supply section, the permeate gas side is maintained at a reduced pressure, and the gas containing more water is drawn out from the permeate gas side.
This is a method for dehumidifying the moisture in the raw material gas.

水蒸気の透過速度(QH20)が2.!; X / 0
−3cn? (STP)/cm” + sec 、cW
IHg未満、あるいはメタンの透過速度(QCH4)が
/ X / 0−’>”(STP )/cm’ + s
ec + cynHg未満であると脱湿に要する膜面積
が著しく増加するため好ましくない。
Water vapor transmission rate (QH20) is 2. ! ;X/0
-3cn? (STP)/cm” + sec, cW
less than IHg, or the methane permeation rate (QCH4) is /X/0-'>"(STP)/cm'+s
If it is less than ec + cynHg, the membrane area required for dehumidification increases significantly, which is not preferable.

又メタンの透過速度がs、t X / o−5,:: 
(STP) /♂、 Sec 、cmHgを越える場合
、あるいは水蒸気選択透過性(QH20/ QCH4)
がsoo未満であると、原料メタンガスに対するメタン
ロスが増加するため経済性の面で著しく不利となる。
Also, the permeation rate of methane is s, tX/o-5,::
(STP) /♂, Sec, if it exceeds cmHg, or water vapor selective permselectivity (QH20/QCH4)
If is less than soo, methane loss with respect to the raw material methane gas increases, which is extremely disadvantageous in terms of economic efficiency.

更に分離膜に供給される原料ガスの圧力が20 K9/
♂未満、あるいは透過側の圧力が20cmHgを越える
場合には、水蒸気透過の駆動力となる水蒸気分圧の差が
小さく、水蒸気の透過速度が小さくなり、製品の水分含
量を低減させるには膜面積を増大させなければならず不
利である。
Furthermore, the pressure of the raw material gas supplied to the separation membrane is 20K9/
If the pressure on the permeate side is less than ♂ or exceeds 20 cmHg, the difference in water vapor partial pressure, which is the driving force for water vapor permeation, is small, and the water vapor permeation rate is small. This is disadvantageous as it requires an increase in

又透過側の圧力が0.!r cmHg未満では、真空装
置の容量、動力、重量等の生産コストが増加するために
好ましくない。
Also, the pressure on the permeate side is 0. ! If it is less than r cmHg, production costs such as the capacity, power, and weight of the vacuum device will increase, which is undesirable.

以上の理由から、本発明は水蒸気の透過速度がコJ X
 / 0−3cr2 (STP )/cm” + se
c + cmHg以上、好ましくはよ×/θ−3(M?
(STP )/、l?+ sec + cmHg以上、
メタンの透過速度が/、o x y o−7〜x、s 
x t o−’、’(STP)/cm” + sec 
、cmHg %好ましくは!;×10−’ 〜/×10
−5cm” (STP )/z” ! sec 、ff
i)(g 、  特に好ましくは/×/ f’ 〜/ 
X / 0−51: (STP )/m” 、 sec
 、crnHg %  水蒸気とメタンの透過速度比Q
H20/QCH4で示される水蒸気選択透過性が200
以上好ましくはioo。
For the above reasons, the present invention has a water vapor permeation rate of
/ 0-3cr2 (STP)/cm” + se
c + cmHg or more, preferably yo x/θ-3 (M?
(STP)/, l? + sec + cmHg or more,
The permeation rate of methane is /, ox y o-7~x, s
x t o-','(STP)/cm" + sec
, cmHg% preferably! ;×10-' ~/×10
-5cm” (STP)/z”! sec, ff
i) (g, particularly preferably /×/ f' ~/
X/0-51: (STP)/m”, sec
, crnHg % Water vapor and methane permeation rate ratio Q
Water vapor selective permselectivity expressed as H20/QCH4 is 200
The above is preferably ioo.

以上、最も好ましくは2oθθ以上の分離膜が使用され
る。
As mentioned above, most preferably a separation membrane of 2oθθ or more is used.

更に膜に供給される原料ガスの圧力はコθKf/crI
?以上好ましくは4’ OKf/u以上、膜の透過圧力
はO,S〜−〇αHg  好ましくは/4Mh〜/θc
mHg、最も好ましくは/尋〜!rcmHgである。
Furthermore, the pressure of the raw material gas supplied to the membrane is θKf/crI
? The above is preferably 4' OKf/u or more, and the permeation pressure of the membrane is O,S~-〇αHg, preferably /4Mh~/θc
mHg, most preferably /fathom~! rcmHg.

本発明で2次側(透過側)を減圧させるための装置の容
量を低減させるためには、減圧装置の前で透過ガス中の
水蒸気を熱交換器を通して冷媒で冷却し、凝縮させるこ
とが好ましい。
In order to reduce the capacity of the device for reducing the pressure on the secondary side (permeation side) in the present invention, it is preferable to cool the water vapor in the permeate gas with a refrigerant through a heat exchanger and condense it before the pressure reduction device. .

更に脱湿装置の分離膜モジュールの数は、混合ガスの処
理量、及び原料ガス・製品ガスの水分濃度及び7次側圧
力、−次側圧力等の脱湿条件によって任意に決められる
ものであるが、数段以上のモジュールを直列に並べて使
用することが好ましい。
Furthermore, the number of separation membrane modules in the dehumidification device can be arbitrarily determined depending on the amount of mixed gas to be processed, the moisture concentration of the source gas and product gas, and the dehumidification conditions such as the downstream pressure and negative side pressure. However, it is preferable to use several stages or more of modules arranged in series.

この場合において7段での脱湿量は供給ガスの水分量に
対して374〜1/6になるように膜面積を設定するこ
とが水蒸気の透過流量を高めるうえで好ましい。
In this case, it is preferable to set the membrane area so that the amount of moisture removed in the seven stages is 374 to 1/6 of the moisture content of the supplied gas, in order to increase the permeation flow rate of water vapor.

本発明に用いられる高分子膜は、本発明の透過性能を満
たしていればどのような高分子膜を用いてもよく、ポリ
イミド、ポリアミドイミド、ポリエーテル、ポリスルホ
/、ポリエーテルスルホン、ポリアミドが用いられる。
The polymer membrane used in the present invention may be any polymer membrane as long as it satisfies the permeation performance of the present invention, and polyimide, polyamideimide, polyether, polysulfo/, polyethersulfone, and polyamide can be used. It will be done.

更に耐熱性、耐薬品性、機械的強度が優れ、かつ溶媒可
溶性である芳香族ポリイミド、芳香族ポリアミドイミド
、ポリフェニレンオキサイド等が好ましい。
Furthermore, aromatic polyimide, aromatic polyamideimide, polyphenylene oxide, etc., which have excellent heat resistance, chemical resistance, and mechanical strength and are soluble in solvents, are preferable.

高分子膜の形状としては平膜状、チーープ状、スパイラ
ル状、中空糸状の膜のいずれでもよいが、特に単位体積
轟りの膜面積が大きい中空糸状膜が工業的に有利である
The shape of the polymer membrane may be flat, cheap, spiral, or hollow fiber, but hollow fiber membranes are particularly industrially advantageous because they have a large membrane area per unit volume.

膜厚は小さい程透過速度が大きくなり有利であり、薄膜
化は混式製膜法によって製膜される、いわゆる非対称膜
又は支持体に分離層となる薄膜をコーテングした複合膜
によって達成される。
The smaller the membrane thickness, the higher the permeation rate, which is advantageous, and thinning can be achieved by using a so-called asymmetric membrane formed by a mixed membrane forming method, or a composite membrane in which a support is coated with a thin film serving as a separation layer.

したがって、本発明の膜は中空糸状の非対称膜又は複合
膜が特に好ましい。
Therefore, the membrane of the present invention is particularly preferably a hollow fiber asymmetric membrane or a composite membrane.

水の透過係数が/ X / 0−7cm3(STP )
・cm/cm” 、sec 、cmHg以上である高分
子重合体としてはポリイミド、ポリアミドイミド、ポリ
ジメチルフェニレンオキサイド、ポリブタジェン、エチ
ルセルロース、硝酸セルロース、ポリカーボネート、ポ
リエチルメタアクリレート、ポリスチレン、ポリアミノ
ウレタン共重合体、可溶性ポリアミド等が挙げられる。
Water permeability coefficient is /X/0-7cm3(STP)
・cm/cm", sec, cmHg or higher polymers include polyimide, polyamideimide, polydimethylphenylene oxide, polybutadiene, ethyl cellulose, cellulose nitrate, polycarbonate, polyethyl methacrylate, polystyrene, polyaminourethane copolymer, Examples include soluble polyamide.

製膜としては、非対称中空糸膜は、ポリマ濃度1O−1
IO%の溶液から成るドープ液を中空糸状に紡糸し、次
いで凝固液に浸漬し凝固膜を形成しその凝固膜から溶媒
、凝固液を洗浄し充分に乾燥して形成する製膜方法によ
り行うことができる。
As for membrane formation, the asymmetric hollow fiber membrane has a polymer concentration of 1O-1.
A dope solution consisting of an IO% solution is spun into a hollow fiber shape, then immersed in a coagulation solution to form a coagulation film, the solvent and coagulation solution are washed from the coagulation film, and the film is formed by thoroughly drying. Can be done.

特に好ましい複合中空糸分離膜としてはポリイミド、ポ
リアミドイミドを湿式法で製造した非対称型多孔中空糸
膜に水蒸気の透過係数P)(20が!; x / 0−
7crI?(STP )・cm/cm” + SeC+
 crnHg以上でPH20/PCH,≧200  か
らなるポリオキシジメチルフェニレン、エチルセルロー
ス、可溶性ポリアミド、ポリイミド等の希薄溶液を塗布
し乾燥された複合中空糸分離膜が挙げられる。
A particularly preferable composite hollow fiber separation membrane is an asymmetric porous hollow fiber membrane made of polyimide or polyamideimide using a wet process, and has a water vapor permeability coefficient P) (20!; x/0-
7crI? (STP)・cm/cm” + SeC+
Examples include composite hollow fiber separation membranes coated with a dilute solution of polyoxydimethylphenylene, ethyl cellulose, soluble polyamide, polyimide, etc. having a crnHg or higher and PH20/PCH, ≧200 and dried.

〔発明の効果〕〔Effect of the invention〕

従来提案されている膜による脱湿方法では、実施例等で
示されている様に水蒸気を含有する混合ガスを膜と接触
させることにより製品の水分濃度は低減することが出来
るが、膜面積当りの混合ガスの処理量が小さく、ガス処
理量の大きな工業界では膜面積が著しく大きくなり設備
が大規模となる。
In conventionally proposed dehumidification methods using membranes, the moisture concentration of the product can be reduced by bringing a mixed gas containing water vapor into contact with the membrane, as shown in examples, but the water concentration per membrane area can be reduced. In industries where the amount of mixed gas to be processed is small, and the amount of gas to be processed is large, the membrane area becomes significantly large and the equipment becomes large-scale.

又混合ガス中の有用な製品(例えばメタンガス)のロス
が大きく経済性の点より工業化されていない。
Furthermore, there is a large loss of useful products (for example, methane gas) in the mixed gas, so it has not been industrialized due to economic considerations.

本発明による脱湿方法によって膜面積の大巾な低減、処
理量の大巾な増大及び有用な製品のロスの大巾な削減が
可能となり、例えば天然ガスの現行の脱湿方法として採
用されているグリコール吸収法に比べ、優れた経済性を
有するため、混合ガス中の水蒸気の脱湿の用途に広く工
業界に期待されるものである。
The dehumidification method according to the present invention enables a drastic reduction in membrane area, a drastic increase in throughput, and a drastic reduction in the loss of useful products, and has been adopted as the current dehumidification method for natural gas, for example. Since this method is more economical than the conventional glycol absorption method, it is widely expected to be used in the industrial world for dehumidifying water vapor in mixed gases.

〔実施例〕〔Example〕

以下実施例によって更に詳細に説明するが、本発明は実
施例によって何ら制限されるものではない。
The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited by the Examples.

製造参考例/ 米国特許第370gIIkg号の実施例q中に述べられ
ている手順に準拠し3..3’、ll、II’−ベンゾ
フェノンテトラカルボン酸無水物とgθモル慢のトリレ
ンジイソシアネート(2,q−異性体約goモルチと2
.A−異性体約コOモル襲の混合物)及び20モルチの
9.ケ′−ジフェニルメタンジインシアナートを含む混
合物より共重合ポリイミドを重合した。重合溶媒はN+
N’−ジメチルホルムアミドを使用し樹脂濃度25重量
%のコポリイミド溶液を得た。
Manufacture Reference Example/3. According to the procedure described in Example q of U.S. Pat. No. 370gIIkg. .. 3',ll,II'-benzophenone tetracarboxylic anhydride and gθ molar tolylene diisocyanate (2,q-isomer approximately go molar and 2
.. A - a mixture of about 10 mol of isomers) and 20 mol of 9. A copolyimide was polymerized from a mixture containing K'-diphenylmethane diincyanate. Polymerization solvent is N+
A copolyimide solution with a resin concentration of 25% by weight was obtained using N'-dimethylformamide.

製造参考例コ 中空糸製造用ノズルから製造参考例/で得られたコポリ
イミド溶液を一定流量で押出し同時に中空糸の中心部に
芯ガスとして空気を一定流量で押出し直接水からなる3
0℃の凝固浴中に導き、一定速度で連続的に引き取りカ
セに巻きとった。この後水中に浸漬し、−昼夜乾燥した
Manufacture Reference Example 3 The copolyimide solution obtained in Manufacture Reference Example/ is extruded at a constant flow rate from a hollow fiber manufacturing nozzle, and at the same time air is extruded at a constant flow rate into the center of the hollow fiber as a core gas.
It was introduced into a coagulation bath at 0° C., and then taken up continuously at a constant speed and wound around a skein. After this, it was immersed in water and dried day and night.

この中空糸を700℃で3θ分乾燥し、さらに22!r
℃で30分乾燥した。中空糸の内径は370μ、外径は
qaoμであった。
This hollow fiber was dried at 700°C for 3θ minutes and further dried for 22! r
It was dried at ℃ for 30 minutes. The hollow fiber had an inner diameter of 370μ and an outer diameter of qaoμ.

製造参考例3 中空糸の内部に送入する芯液な水とし、乾燥温度をツタ
θ℃とした以外は製造参考例コと同一条件で中空糸分離
膜を製造した。
Production Reference Example 3 A hollow fiber separation membrane was produced under the same conditions as Production Reference Example 3, except that water was used as the core liquid and the drying temperature was set at θ°C.

製造参考例グ 凝固浴の温度を20℃とし、乾燥温度を3OO℃とした
以外は製造参考例コと同一条件で中空糸分離膜を製造し
た。
Reference Production Example A hollow fiber separation membrane was produced under the same conditions as Reference Production Example G, except that the coagulation bath temperature was 20°C and the drying temperature was 3OO°C.

製造参考例! 製造参考例/で製造された共重合ポリイミド溶液をN、
Nジメチルホルムアミドで/71i71重量イミド溶液
に調整した。この溶液を用いて製造参考例コと同様に中
空糸を紡糸した後、ioo℃の熱水中に75分浸漬処理
を行った後/昼夜乾燥後100℃で30分間乾燥し20
0℃より500’Cまで昇温し3o分間熱処理した。
Manufacturing reference example! Production Reference Example/The copolymerized polyimide solution produced in N,
The solution was adjusted to a 71/71 weight imide solution with N dimethylformamide. Using this solution, hollow fibers were spun in the same manner as in Production Reference Example C, and then immersed in hot water at 100°C for 75 minutes.
The temperature was raised from 0°C to 500'C, and heat treatment was performed for 30 minutes.

この中空糸をポリオキシジメチルフェニレン/重量%の
トルエン溶液中に1分間浸漬し、風乾後コSO℃で30
分間乾燥を行い、コポリイミド複合膜を製造した。
This hollow fiber was immersed in a toluene solution containing polyoxydimethylphenylene/wt% for 1 minute, air-dried, and heated to 30°C at SO℃.
Drying was performed for a minute to produce a copolyimide composite membrane.

製造参考例6 製造参考例コで製造された中空糸を製造参考例1で重合
したポリイミド溶液70部にジメチルホルムアミド/ジ
オキサンを30770 (重量比)の割合で混合した溶
媒75部を添加したポリイミド希薄溶液に7分間浸漬し
風乾後、27 !r℃で30分間乾燥しコポリイミド複
合膜を製造した0 製造参考例7 中空糸製造用ノズルから製造参考例/で得られたコポリ
イミド溶液を一定流量で押し出し、同時に中空糸の中心
部に芯液として水とジメチルホルムアミドを!0730
 (重量比)の割合で混合した液を一定流量で押し出し
形成された中空糸を/コσのエアギャップをとって一定
速度で連続的に引き取υながら水から成る凝固水に導き
浸漬したのち、更に水中で洗浄した。この後−昼夜風乾
した後100℃で30分間乾燥し200℃より500℃
まで73分間昇温後、500℃で77分間熱処理した。
Production reference example 6 Production of the hollow fiber produced in production reference example 7 Polyimide dilution in which 75 parts of a solvent prepared by mixing dimethylformamide/dioxane at a ratio of 30,770 (weight ratio) was added to 70 parts of the polyimide solution polymerized in reference example 1. After soaking in the solution for 7 minutes and air drying, 27! A copolyimide composite membrane was produced by drying at r°C for 30 minutes.0 Production Reference Example 7 The copolyimide solution obtained in Production Reference Example/ was extruded from a hollow fiber production nozzle at a constant flow rate, and at the same time a core was placed in the center of the hollow fiber. Water and dimethylformamide as liquids! 0730
The hollow fibers formed by extruding a liquid mixed at a ratio of (weight ratio) at a constant flow rate are introduced into coagulated water consisting of water while being continuously drawn at a constant speed υ with an air gap of /σσ, and immersed in it. It was further washed in water. After this - After air drying day and night, dry at 100℃ for 30 minutes and then from 200℃ to 500℃
After raising the temperature to 500° C. for 73 minutes, heat treatment was performed at 500° C. for 77 minutes.

得られた中空糸は、外径t、qoμ、内径325μであ
った。
The obtained hollow fiber had an outer diameter of t, qoμ, and an inner diameter of 325μ.

製造参考例g 製造参考例3で製造された中空糸を用いて、310℃で
乾燥した以外は、製造参考例6と同一条件でコポリイミ
ド複合膜を製造した。
Production Reference Example g A copolyimide composite membrane was produced using the hollow fiber produced in Production Reference Example 3 under the same conditions as Production Reference Example 6, except that it was dried at 310°C.

製造参考例ワ 芯液組成として水/ジメチルホルムアミドをsh/qs
 (重量比)、エヤギー?7プを30111?FI −
v及び熱処理温度を37!;℃とした以外は製造参考例
りと同一条件で中空糸分離膜を製造した。
Production reference example Water/dimethylformamide as the cotton core liquid composition sh/qs
(weight ratio), airy? 7p 30111? FI-
v and heat treatment temperature to 37! A hollow fiber separation membrane was manufactured under the same conditions as the manufacturing reference example except that the temperature was changed to ℃.

参考例 ガス透過性能テスト 製造参考例−〜tで得られた中空糸分離膜をそれぞれエ
ポキシ樹脂で結束し30m2の中空糸モジュールを農作
した。7次側(供給側)をgo℃ioo%の水蒸気雰囲
気下にし、2次側(透過側)を/mmHgの真空度にな
るように真空ポンプで吸引し、透過した水蒸気を液体窒
素にてトラップを冷却し補集して水蒸気透過速度(QH
20)を算出した。
Reference Example Gas Permeability Test Production Reference Example The hollow fiber separation membranes obtained in t to t were each bound with epoxy resin to produce a 30 m2 hollow fiber module. The 7th side (supply side) is placed in a water vapor atmosphere of go℃ioo%, the secondary side (permeation side) is sucked with a vacuum pump to a vacuum degree of /mmHg, and the permeated water vapor is trapped with liquid nitrogen. is cooled and collected to determine the water vapor transmission rate (QH
20) was calculated.

メタンの透過速度(QCH4)は、7次側に3θ℃コK
g/crr?のメタンガスを流し、コ次側を大気圧にし
、メタンの透過量より算出した。
The permeation rate of methane (QCH4) is 3θ℃ on the seventh side.
g/crr? This was calculated from the amount of methane permeated by flowing methane gas and bringing the downstream side to atmospheric pressure.

結果を表−/に示す。The results are shown in Table-/.

メタンの脱水評価方法 製造参考例λ〜ワで製造された中空糸分離膜をそれぞれ
エポキシ樹脂で結束し約100♂の中空糸モジュールを
製作した。
Method for Evaluating Dehydration of Methane Production Reference Examples The hollow fiber separation membranes produced in λ to W were each bound with epoxy resin to produce a hollow fiber module of approximately 100♡.

中空糸モジュールの7次側に大気圧以上の圧力で水分を
含むメタンガスを? s (Nil/m)流通し、7次
側圧以下(減圧)にし、膜の脱水性のテストを行った。
Methane gas containing moisture at a pressure higher than atmospheric pressure on the 7th outlet side of the hollow fiber module? s (Nil/m), and the dehydration property of the membrane was tested by reducing the pressure to the 7th outlet side pressure or lower (reduced pressure).

原料及び製品(膜に沿って流れ脱水された/次側メタン
ガス)の水分量はカール・フィッシャー水分計(三菱化
成■製CA−03型)で測定し、又透過した水蒸気は液
体窒素で補集し、原料、製品の水分濃度、水の透過速度
(N、CC/−m)を算出した。
The moisture content of the raw materials and products (methane gas that flows along the membrane and is dehydrated/next side) is measured using a Karl Fischer moisture meter (Model CA-03 manufactured by Mitsubishi Kasei Corporation), and the permeated water vapor is collected with liquid nitrogen. Then, the water concentration and water permeation rate (N, CC/-m) of the raw materials and products were calculated.

メタンの透過速度(N、CC/11111 )は2次側
を大気圧下、メタンの透過量を測定した。2次側を減圧
で行うテストにおいては、メタンの透過速度(N、cr
、7m)は差圧にて換算し求めた。
The methane permeation rate (N, CC/11111) was determined by measuring the amount of methane permeation at the secondary side under atmospheric pressure. In tests conducted with reduced pressure on the secondary side, the permeation rate of methane (N, cr
, 7m) was calculated using differential pressure.

原料のメタンが膜を透過することによって生じた脱水さ
れた原料(製品)の損失の尺度としてメタンの透過速度
JCH4(cC/m)/水の透過速度JH20(CC/
頗)を用いた。
Methane permeation rate JCH4 (cC/m)/water permeation rate JH20 (CC/
Chestnut) was used.

小さい膜面積で、かつ、有用な製品の損失を少なくし、
回収率の高い経済的な脱湿プロセスとするためには水の
透過速度が太きくしかもメタンの透過速度/水の透過速
度が小さい程有利となる。
Small membrane area and less loss of useful products,
In order to achieve an economical dehumidification process with a high recovery rate, it is advantageous that the water permeation rate is high and the methane permeation rate/water permeation rate is small.

実施例/−9 製造参考例コの中空糸分離膜を用いて表−2の脱湿条件
で脱湿を行ない、前記脱湿評価方法に従って透過水分量
(水の透過速度)、製品水分濃度、製品ロス(JCH4
/JH20)を測定した。
Example/-9 Dehumidification was performed using the hollow fiber separation membrane of Production Reference Example under the dehumidification conditions shown in Table 2, and the amount of permeated water (water permeation rate), product water concentration, Product loss (JCH4
/JH20) was measured.

その結果を表−2に示す。The results are shown in Table-2.

比較例/〜6 実施例/−9と同じ中空糸を用いて、表−コの脱湿条件
で実施例/〜9と同様にメタンの脱湿性能を測定し、そ
の結果を表−二に示す。
Comparative Example/~6 Using the same hollow fiber as Example/-9, the dehumidification performance of methane was measured in the same manner as Example/~9 under the dehumidification conditions shown in Table-C, and the results are shown in Table-2. show.

表 コ 実施例70〜// 製造参考例3の中空糸分離膜を用いて表−3の脱湿条件
で実施例/〜ワと同様にメタンの脱湿性能を測定した。
Using the hollow fiber separation membrane of Manufacturing Reference Example 3, the dehumidification performance of methane was measured under the dehumidification conditions shown in Table 3 in the same manner as in Examples 70-1.

比較例7〜q 実施例10〜//と同じ中空糸分離膜を用いて表−3の
脱湿条件で実施例/〜9と同様にメタンの脱湿性能を測
定した。
Comparative Examples 7-q Using the same hollow fiber separation membrane as in Examples 10-//, methane dehumidification performance was measured in the same manner as in Examples/-9 under the dehumidifying conditions shown in Table 3.

これらの結果を表−3に示す。These results are shown in Table 3.

実施例/ダ〜/S 製造参考例夕の複合中空糸分離膜を用いて表−5の脱湿
条件で実施例/〜りと同様にメタンの脱湿性能を測定し
た。
Example/Da~/S Production Reference Example Using the composite hollow fiber separation membrane described above, the methane dehumidification performance was measured under the dehumidification conditions shown in Table 5 in the same manner as in Example/~.

比較例73〜15 実施例/ダル/左の複合中空糸分離膜を用いて表−3の
脱湿条件で実施例/〜ワと同様にメタンの脱湿性能を測
定した。
Comparative Examples 73 to 15 Using the composite hollow fiber separation membrane shown in Example/Dull/left, the dehumidification performance of methane was measured under the dehumidification conditions shown in Table 3 in the same manner as in Examples/~Wa.

これらの結果を表−5に示す。These results are shown in Table-5.

実施例7.2〜/3 製造参考例ダの中空糸分離膜を用いて表−qの脱湿条件
で実施例/〜ワと同様にメタンの脱湿性能を測定した。
Examples 7.2 to 3 Using the hollow fiber separation membrane of Production Reference Example D, the dehumidification performance of methane was measured under the dehumidification conditions shown in Table q in the same manner as in Examples 2 to 3.

比較例/θ〜7.2 実施例/コ〜/3の中空糸分離膜を用いて表−9の脱湿
条件で実施例/〜デと同様にメタンの脱湿性能を測定し
た。
Comparative Example/θ~7.2 Using the hollow fiber separation membrane of Examples/C~/3, the dehumidification performance of methane was measured under the dehumidification conditions shown in Table 9 in the same manner as in Examples/~D.

これらの結果を表−弘に示す。These results are shown in Table 1.

比較例76〜コ乙 製造参考例6、り、ざ、りの中空糸分離膜を用いて表−
乙の脱湿条件で実施例/〜りと同様にメタンの脱湿性能
を測定し、その結果を表−6に示す。
Comparative Example 76 - Production Reference Example 6 Using hollow fiber separation membranes of Ri, Za, Ri
The dehumidification performance of methane was measured under the dehumidification conditions of B in the same manner as in Examples/--I, and the results are shown in Table 6.

Claims (4)

【特許請求の範囲】[Claims] (1)水蒸気を含有する気体から高分子膜を用いて水蒸
気を分離する脱湿方法において、該高分子膜の水蒸気の
透過速度(QH_2O)が2.5×10^−^3cm^
3(STP)/cm^2、sec、cmHg以上、メタ
ンの透過速度(QCH_4)が1×10^−^7〜2.
5×10^−^5cm^3(STP)/cm^2、se
c、cmHgかつ水蒸気の選択分離性能(QH_2O/
QCH_4)が500以上であって膜の一方である供給
側の水蒸気を含有する気体の圧力が20Kg/cm^2
以上であり、もう一方の透過側の圧力が0.5cmHg
〜20cmHgに保持されていることを特徴とする脱湿
方法
(1) In a dehumidifying method in which water vapor is separated from a gas containing water vapor using a polymer membrane, the water vapor permeation rate (QH_2O) of the polymer membrane is 2.5 x 10^-^3 cm^
3 (STP)/cm^2, sec, cmHg or more, methane permeation rate (QCH_4) is 1 x 10^-^7~2.
5×10^-^5cm^3(STP)/cm^2, se
c, cmHg and water vapor selective separation performance (QH_2O/
QCH_4) is 500 or more and the pressure of the gas containing water vapor on the supply side, which is one side of the membrane, is 20Kg/cm^2
The pressure on the other permeation side is 0.5 cmHg.
A dehumidifying method characterized by maintaining the humidity at ~20 cmHg
(2)高分子膜が芳香族ポリイミド、芳香族ポリアミド
イミド及び芳香族ポリエーテルから選択された非対称構
造を有する中空糸膜であることを特徴とする特許請求範
囲第1項記載の脱湿方法
(2) The dehumidification method according to claim 1, wherein the polymer membrane is a hollow fiber membrane having an asymmetric structure selected from aromatic polyimide, aromatic polyamideimide, and aromatic polyether.
(3)高分子膜が、その上に水の透過係数が1×10^
−^7cm^3(STP)・cm/cm^2、sec、
cmHg以上である高分子重合体層を5μ以下に設けて
なる複合中空糸分離膜であることを特徴とする特許請求
範囲第1項記載の脱湿方法
(3) The polymer membrane has a water permeability coefficient of 1×10^ on it.
-^7cm^3(STP)・cm/cm^2, sec,
The dehumidification method according to claim 1, which is a composite hollow fiber separation membrane comprising a polymer layer having a thickness of 5 μm or less and having a high molecular weight of 5 μm or more.
(4)高分子膜のQH_2Oが5×10^−^3cm^
3(STP)/cm^2、sec、cmHg以上QCH
_4が1×10^−^6〜1.0×10^−^5cm^
3(STP)/cm^2、sec、cmHgかつQH_
2O/QCH_4が1500〜25000であることを
特徴とする特許請求の範囲第1項、2項、3項記載の脱
湿方法
(4) QH_2O of polymer membrane is 5 x 10^-^3cm^
3(STP)/cm^2, sec, cmHg or more QCH
_4 is 1x10^-^6~1.0x10^-^5cm^
3(STP)/cm^2, sec, cmHg and QH_
2O/QCH_4 is 1500 to 25000, The dehumidification method according to claims 1, 2, and 3
JP63252756A 1988-10-06 1988-10-06 Dehumidification method Expired - Fee Related JPH0763579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63252756A JPH0763579B2 (en) 1988-10-06 1988-10-06 Dehumidification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63252756A JPH0763579B2 (en) 1988-10-06 1988-10-06 Dehumidification method

Publications (2)

Publication Number Publication Date
JPH0299114A true JPH0299114A (en) 1990-04-11
JPH0763579B2 JPH0763579B2 (en) 1995-07-12

Family

ID=17241852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63252756A Expired - Fee Related JPH0763579B2 (en) 1988-10-06 1988-10-06 Dehumidification method

Country Status (1)

Country Link
JP (1) JPH0763579B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289229A (en) * 2001-03-22 2002-10-04 Nok Corp Humidifier and its use
JP2002289228A (en) * 2001-03-22 2002-10-04 Nok Corp Humidifier and its use
US6464755B2 (en) * 2000-01-19 2002-10-15 Ube Industries, Ltd. Gas separation membrane and method for its use
JP2009095829A (en) * 2007-09-28 2009-05-07 Orion Mach Co Ltd Water separating hollow fiber and water separating filter
JP2012020232A (en) * 2010-07-14 2012-02-02 Unitika Ltd Polyamide permeable membrane and method of producing the same
JP2014024025A (en) * 2012-07-27 2014-02-06 Ube Ind Ltd Dehumidification system and method of producing dry air
JP2019076866A (en) * 2017-10-27 2019-05-23 宇部興産株式会社 Gas separation membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391122A (en) * 1986-10-04 1988-04-21 Mitsubishi Kasei Corp Separation of steam
JPS63236517A (en) * 1987-03-24 1988-10-03 Ube Ind Ltd Dehumidification method for mixed gas
JPH01194927A (en) * 1988-01-27 1989-08-04 Japan Gore Tex Inc Steam permselective membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391122A (en) * 1986-10-04 1988-04-21 Mitsubishi Kasei Corp Separation of steam
JPS63236517A (en) * 1987-03-24 1988-10-03 Ube Ind Ltd Dehumidification method for mixed gas
JPH01194927A (en) * 1988-01-27 1989-08-04 Japan Gore Tex Inc Steam permselective membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464755B2 (en) * 2000-01-19 2002-10-15 Ube Industries, Ltd. Gas separation membrane and method for its use
JP2002289229A (en) * 2001-03-22 2002-10-04 Nok Corp Humidifier and its use
JP2002289228A (en) * 2001-03-22 2002-10-04 Nok Corp Humidifier and its use
JP2009095829A (en) * 2007-09-28 2009-05-07 Orion Mach Co Ltd Water separating hollow fiber and water separating filter
JP2012020232A (en) * 2010-07-14 2012-02-02 Unitika Ltd Polyamide permeable membrane and method of producing the same
JP2014024025A (en) * 2012-07-27 2014-02-06 Ube Ind Ltd Dehumidification system and method of producing dry air
JP2019076866A (en) * 2017-10-27 2019-05-23 宇部興産株式会社 Gas separation membrane

Also Published As

Publication number Publication date
JPH0763579B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
KR910000656B1 (en) Gas dehydration membrane apparatus
CA3063825C (en) Co-cast thin film composite flat sheet membranes
JP5567211B2 (en) High permeance polyimide membrane for air separation
KR101526096B1 (en) Polyimide gas separation membranes
US6464755B2 (en) Gas separation membrane and method for its use
US7556677B2 (en) Solvent resistant asymmetric integrally skinned membranes
JP2016538351A (en) Self-crosslinking and self-crosslinking aromatic polyimide membranes for separation
WO2016100058A1 (en) Super high selectivity aromatic block copolyimide membranes for separations
US9233344B1 (en) High selectivity polyimide membrane for natural gas upgrading and hydrogen purification
WO2014209701A1 (en) High hydrocarbon resistant chemically cross-linked aromatic polyimide membrane for separations
WO2016168189A1 (en) High permeance membranes for gas separations
JPH0446173B2 (en)
US6004374A (en) Carbonaceous adsorbent membranes for gas dehydration
US9266058B1 (en) High selectivity polyimide membrane for natural gas upgrading and hydrogen purification
JPH0299114A (en) Dehumidifying method
JPH06254367A (en) Gas separating membrane of asymmetrical hollow yarn made of polyimide
JPS63236517A (en) Dehumidification method for mixed gas
US9751053B2 (en) Asymmetric integrally-skinned flat sheet membranes for H2 purification and natural gas upgrading
US9308487B1 (en) Polyimide blend membranes for gas separations
WO2016049274A1 (en) Asymmetric integrally-skinned flat sheet membranes for h2 purification and natural gas upgrading
JP2002172311A (en) Gas separation membrane and its using method
JPS63209730A (en) Process for separating steam
JPH06106019A (en) Production of dry gas
WO2015094675A1 (en) Aromatic poly(ether sulfone imide) membranes for gas separations

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees