JPH029906A - Exhaust gas energy recovering device of turbosupercharge engine - Google Patents
Exhaust gas energy recovering device of turbosupercharge engineInfo
- Publication number
- JPH029906A JPH029906A JP63156990A JP15699088A JPH029906A JP H029906 A JPH029906 A JP H029906A JP 63156990 A JP63156990 A JP 63156990A JP 15699088 A JP15699088 A JP 15699088A JP H029906 A JPH029906 A JP H029906A
- Authority
- JP
- Japan
- Prior art keywords
- air
- exhaust
- exhaust gas
- turbine
- atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 27
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 238000011084 recovery Methods 0.000 claims description 12
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 7
- 238000001816 cooling Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 54
- 230000001105 regulatory effect Effects 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/04—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は排気ターボ過給機付内燃機関(以下ターボ過
給機関と言う)の排気ガスエネルギ回収装置に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an exhaust gas energy recovery device for an internal combustion engine with an exhaust turbocharger (hereinafter referred to as a turbocharger).
従来の技術
従来、ターボ過給機関の排気ガスエネルギを回収する装
置としては排気ガスボイラまた排気タービンを設けて排
気ガスエネルギを熱エネルギまたは動力エネルギとして
回収利用するのが通常である。2. Description of the Related Art Conventionally, as a device for recovering exhaust gas energy from a turbocharged engine, an exhaust gas boiler or an exhaust turbine is usually provided to recover and utilize the exhaust gas energy as thermal energy or motive energy.
発明が解決しようとする問題点
併し乍ら、この様な従来の装置においては、排気ガスボ
イラを設けた場合には、水蒸気エネルギとして回収する
ために給水装置、気水分術装亙、復水装置等の複雑な装
置を必要とする上に、排気ガスボイラの排気ガスと接触
する伝熱面に排気ガス中の硫酸分による腐食が発生し易
い等の難点の在ることが広く知られている。In addition to the problems that the invention aims to solve, when an exhaust gas boiler is installed in such a conventional device, complicated water supply equipment, pneumatic equipment, condensation equipment, etc. are required to recover water vapor energy. In addition, it is widely known that there are drawbacks such as the fact that the heat transfer surface of the exhaust gas boiler that comes into contact with the exhaust gas is susceptible to corrosion due to the sulfuric acid content in the exhaust gas.
また、排気タービンを設けて高速動力エネルギとして回
収する場合には、排気タービンに加えて流体継手の緩衝
装置と減速装置が必要となって、高価な装置となるため
に数千KW以上または特殊な用途のターボ過給機関に限
られて使われているのが通常である。In addition, if an exhaust turbine is installed to recover high-speed power energy, in addition to the exhaust turbine, a shock absorber and a speed reducer for the fluid coupling are required. Normally, it is used only for turbocharged engines.
従って、この発明の目的はこの様な従来における問題点
を解決するために、単純化した安価な装置を成して出力
の小さなターボ過給機関にまで排気ガスエネルギの回収
による有効な利用装置であるターボ過給機関の排気ガス
エネルギ回収装置を提供することにある。Therefore, the purpose of the present invention is to solve these conventional problems by creating a simple and inexpensive device that can effectively utilize exhaust gas energy even in small-output turbocharged engines by recovering exhaust gas energy. An object of the present invention is to provide an exhaust gas energy recovery device for a turbocharged engine.
問題点を解決するための手段
この発明に依れば、上述の目的を達成するために、ター
ボ過給機関の排気ガスエネルギ回収装置は、内燃機関の
機関本体と過給機の排気タービンとを連通する排気管か
ら分岐する排気バイパス通路を有する過給機関において
、排気バイパス通路中の排気集合槽、該排気集合槽の後
の排気流量調節絞り装置、該排気集合槽の後にて切換弁
を介して排気ガスエネルギで駆動される排気タービンお
よび該排気タービンに接続されて駆動される空気圧縮機
から成る排気タービン駆動空気圧縮ユニット、該排気タ
ービン駆動空気圧縮ユニットの空気圧縮機が大気から吸
入して圧縮した空気を前記過給機の排気タービン出口の
排気ガスにより加熱する空気加熱装置、該空気加熱装置
の後にて切換弁を介して流体を加熱する熱交換器、前記
の加熱された圧縮空気と大気とを混合して温度を調節し
て温風を送る送風装置を備え、該送風装置は、空気圧縮
機と空気冷却器および空気膨張機とで構成される空気冷
凍機によって前記空気圧縮機の吐出圧縮空気を低温に状
態変化させた空気に大気と混合して温度調節した冷風を
送ることができることを特徴としている。Means for Solving the Problems According to the present invention, in order to achieve the above-mentioned object, an exhaust gas energy recovery device for a turbocharged engine connects the engine body of an internal combustion engine and the exhaust turbine of a supercharger. In a supercharged engine having an exhaust bypass passage branching from a communicating exhaust pipe, an exhaust gas collecting tank in the exhaust bypass passage, an exhaust flow rate regulating throttle device after the exhaust collecting tank, and a switching valve after the exhaust collecting tank are used. an exhaust turbine-driven air compression unit consisting of an exhaust turbine driven by exhaust gas energy and an air compressor connected to and driven by the exhaust turbine; an air heating device that heats compressed air with exhaust gas from the exhaust turbine outlet of the supercharger; a heat exchanger that heats fluid via a switching valve after the air heating device; The air blower is equipped with an air blower that sends hot air by mixing it with the atmosphere and adjusting the temperature, and the air blower is configured to cool the air compressor by an air chiller that is composed of an air compressor, an air cooler, and an air expander. It is characterized by being able to send discharged compressed air whose state has been changed to a low temperature and mix it with the atmosphere to send temperature-controlled cold air.
作 用
この様なこの発明の手段に依って、内燃機関の機関本体
と過給機の排気タービンとを連通する排気管から分岐す
る排気バイパス通路を備えたターボ過給機関において、
排気バイパス通路中の排気集合槽を経て排気ガス流量調
節絞り装置で調節した流量の排気ガスを排気タービンに
導入して該排気タービンに接続する空気圧縮機を駆動し
て、大気から吸入した空気を圧縮空気に変換すると共に
、該圧縮空気を熱媒体として空気圧縮機と連通ずる空気
加熱装置の二次側にて前記過給機の排気タービン出口の
排気ガス廃熱を一次側から回収して、切換弁を介して空
気加熱装置の後にて接続する熱交換器の一次側から二次
側の流体を加熱する。該熱交換器で放熱した圧縮空気は
切換弁を介して前記の機関本体に導入されて給気の役割
を果たす。According to the means of the present invention, in a turbocharged engine equipped with an exhaust bypass passage branching from an exhaust pipe that communicates the engine body of the internal combustion engine and the exhaust turbine of the supercharger,
Exhaust gas at a flow rate adjusted by the exhaust gas flow rate regulating device is introduced into the exhaust turbine through the exhaust collection tank in the exhaust bypass passage, and the air compressor connected to the exhaust turbine is driven to convert the air taken in from the atmosphere. converting it into compressed air, and recovering exhaust gas waste heat at the exhaust turbine outlet of the supercharger from the primary side on the secondary side of an air heating device that communicates with the air compressor using the compressed air as a heat medium; The fluid from the primary side to the secondary side of the heat exchanger connected after the air heating device is heated via the switching valve. The compressed air that has radiated heat in the heat exchanger is introduced into the engine body through the switching valve and serves as air supply.
また、空気加熱装置の後にて接続された他方の切換弁を
介して連通される送風装置に導入された圧縮空気は、ブ
ロワにより大気から吸入されてダンパにて流量調節され
た空気と混合され且つ温度が調節されて、温風としてダ
クトから送られる。この場合には、圧縮空気の圧力エネ
ルギは送風エネルギとして使われる。Furthermore, the compressed air introduced into the blower device connected after the air heating device through the other switching valve is mixed with air drawn from the atmosphere by the blower and whose flow rate is regulated by the damper. The temperature is regulated and hot air is sent through the ducts. In this case, the pressure energy of the compressed air is used as blowing energy.
また、空気圧縮機の後にて接続された他方の切換弁を介
して連通された空気冷凍機の圧縮機に導入された圧縮空
気は該空気冷凍機の圧縮機にて昇温昇圧されて空気冷却
器で冷却温度調節されて空気膨張機に入り膨張仕事を行
って該空気膨張機に接続された空気冷凍機の空気圧縮機
を駆動すると共に、低温の空気となって切換弁を介して
送風装置に導入されて、ブロワにより吸入されて且つ流
量がダンパで調節された大気と混合されて冷風として供
給されて夫々有効に使用される。In addition, the compressed air introduced into the compressor of the air refrigerator, which is connected through the other switching valve connected after the air compressor, is heated and pressurized by the compressor of the air refrigerator, and is then cooled. The temperature of the cooled air is adjusted by the air expander, which then enters the air expander and performs expansion work to drive the air compressor of the air refrigerator connected to the air expander, and the low-temperature air is passed through the switching valve to the blower. The air is introduced into the air, mixed with atmospheric air whose flow rate is controlled by a damper, and is then effectively used.
斯様に、動圧過給方式のターボ過給機関の過給機のター
ビン面積を小さくすると共に、過給機の排気タービンと
内燃機関の機関本体とを接続する複数の排気管から交互
に排気ガスが脈動して流入する。排気集合槽の後に設け
られた排気流量調節絞り装置により調節された流量の排
気ガスは、切換弁を介して排気タービンに導入されて膨
張仕事を行った後に過給機の排気タービン出口の排気ガ
スと合流する。排気タービンで吸収した膨張仕事は排気
タービンから軸によって回転エネルギとして伝導されて
空気圧縮機を駆動して、大気から吸入した空気を昇温昇
圧して圧縮空気を空気圧縮機出口の接続管から送り出す
と、接続管に備えた2個の切換弁の一方を経た圧縮空気
は接続管によって過給機の排気タービン出口に備える空
気加熱装置の二次側に導入されて一次側を通過する排気
ガスによって加熱されて空気加熱装置出口の接続管に備
える2個の一方の切換弁を介して熱交換器の一次側に導
入されて二次側を通過する流体を加熱する熱媒体の役割
を果たした後に熱交換器出口の切換弁を介して内燃機関
の給気管に導入して給気としての役割を果す、空気加熱
装置出口の接続管に備える他方の切換弁を介して送風装
置に供給された高温の圧縮空気は送風装置のブロワが吸
入してダンパにて流量を調節された大気からの空気と混
合されて温風としてダクトから送られ、この時の圧縮空
気の圧力エネルギは送風エネルギとして役立つ。また、
空気圧縮機出口の接続管に備えた他方の切換弁を介して
空気圧縮機、空気冷却器、空気膨張機から構成される空
気冷凍機に導入された圧縮空気は空気圧縮機で更に昇温
昇圧された後に、空気冷却器で冷却して温度調節されノ
ご後に空気膨張機で膨張仕事を行って空気膨張機が吸収
した回転エネルギは、軸によって伝導されて空気圧縮機
の昇温昇圧エネルギに還元すると共に低温低圧の空気と
なり、空気冷凍機出口の接続管に備える切換弁を介して
送風装置に導入されて送風装置のブロワが吸収してダン
パで流量を調節された大気からの空気と混合されて温度
を調節して冷風としてダクトから送られる。また、過給
機の排気タービンが排気ガスから吸収する回転エネルギ
はタービン面積を小さくすることで、排気タービンにお
ける排気ガスの熱落差が増加するので、排気ガスをバイ
パスしても従来並に維持して機関本体に供給される給気
量は従来並に維持することが出来る。In this way, the turbine area of the supercharger of a turbocharged engine using dynamic pressure supercharging is reduced, and the exhaust gas is alternately exhausted from multiple exhaust pipes that connect the exhaust turbine of the supercharger and the engine body of the internal combustion engine. Gas flows in in a pulsating manner. The exhaust gas whose flow rate is regulated by the exhaust flow rate regulating throttle device installed after the exhaust collecting tank is introduced into the exhaust turbine via the switching valve, performs expansion work, and then becomes the exhaust gas at the exhaust turbine outlet of the supercharger. join with. The expansion work absorbed by the exhaust turbine is transmitted from the exhaust turbine as rotational energy by the shaft and drives the air compressor, which heats and pressurizes the air taken in from the atmosphere and sends the compressed air out of the connecting pipe at the air compressor outlet. The compressed air that has passed through one of the two switching valves provided in the connecting pipe is introduced into the secondary side of the air heating device provided at the exhaust turbine outlet of the turbocharger through the connecting pipe, and is heated by the exhaust gas passing through the primary side. After being heated, it is introduced into the primary side of the heat exchanger through two switching valves provided in the connecting pipe at the outlet of the air heating device, and after it plays the role of a heat medium that heats the fluid passing through the secondary side. The high temperature that is introduced into the air supply pipe of the internal combustion engine through the switching valve at the outlet of the heat exchanger and serves as supply air is supplied to the blower device via the other switching valve provided in the connecting pipe at the outlet of the air heating device. The compressed air is sucked in by the blower of the blower, mixed with air from the atmosphere whose flow rate is regulated by a damper, and sent from the duct as warm air, and the pressure energy of the compressed air at this time serves as blast energy. Also,
The compressed air is introduced into the air chiller, which consists of an air compressor, an air cooler, and an air expander, through the other switching valve provided on the connecting pipe at the air compressor outlet, and is further heated and pressurized by the air compressor. After that, the air is cooled in an air cooler to adjust the temperature. After that, an air expander performs expansion work, and the rotational energy absorbed by the air expander is conducted by the shaft and converted into energy for heating and pressurizing the air compressor. As it is reduced, it becomes low-temperature, low-pressure air, which is introduced into the blower via the switching valve provided in the connecting pipe at the outlet of the air cooler, where the blower of the blower absorbs it and mixes with air from the atmosphere whose flow rate is regulated by a damper. The temperature is then adjusted and sent through the duct as cold air. In addition, the rotational energy that the turbocharger's exhaust turbine absorbs from the exhaust gas can be maintained at the same level as before even if the exhaust gas is bypassed, since reducing the turbine area increases the heat drop of the exhaust gas at the exhaust turbine. Therefore, the amount of air supplied to the engine body can be maintained at the same level as before.
この発明の他の目的や特長および利点は以下の添付図面
に沿っての詳細な説明により明らかになろう。Other objects, features and advantages of the present invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings.
実 施 例
図面に示される様に、この発明のターボ過給機関の排気
ガスエネルギ回収装置1は、内燃機関の機関本体10と
過給機13の排気タービン16とを連通ずる排気管11
.12から分岐する排気バイパス通路5を有するターボ
過給機関2において、排気バイパス通路5中の排気集合
槽29、この排気集合槽29の後の排気流量調節絞り装
置30、排気集合槽29の後にて切換弁32を介して排
気ガスエネルギで駆動される排気タービン35およびこ
の排気タービン35に軸36によって接続されて駆動さ
れる空気圧縮機37から成る排気タービン駆動空気圧縮
ユニット34、この排気タービン駆動空気圧縮ユニット
34の空気圧縮機37が大気から吸入して圧縮した空気
を過給機13の排気タービン出口の排気ガスにより加熱
する空気加熱装置1つ、この空気加熱装置1つの後にて
切換弁44を介してδ九体を加熱する烈文損番45、空
気加熱装置1つで加熱された圧縮空気と大気を混合して
温度をユ!節して温風を送る送風装置52がら主に構成
され、空気圧縮機5つと空気冷却器61および室気1コ
3張(I!6Bとで1111成される空気冷凍U!58
によって空気圧縮機37の吐出圧縮空気を低温に状態変
化させた空気に大気と混合して温度調節した冷風を送る
ことができる。Embodiment As shown in the drawings, an exhaust gas energy recovery device 1 for a turbocharged engine according to the present invention includes an exhaust pipe 11 that communicates an engine body 10 of an internal combustion engine with an exhaust turbine 16 of a supercharger 13.
.. In a turbocharged engine 2 having an exhaust bypass passage 5 branching from the exhaust bypass passage 12, an exhaust collection tank 29 in the exhaust bypass passage 5, an exhaust flow rate adjustment throttle device 30 after the exhaust collection tank 29, and an exhaust gas flow rate adjusting throttle device 30 after the exhaust collection tank 29. An exhaust turbine driven air compression unit 34 consisting of an exhaust turbine 35 driven by exhaust gas energy via a switching valve 32 and an air compressor 37 connected to the exhaust turbine 35 by a shaft 36 and driven; One air heating device heats air sucked in from the atmosphere and compressed by the air compressor 37 of the compression unit 34 with exhaust gas from the exhaust turbine outlet of the supercharger 13, and a switching valve 44 is installed after this one air heating device. Rebun Shiban 45, which heats the δ nine bodies through the air heating device, mixes the compressed air heated with one air heating device and the atmosphere to raise the temperature! The air refrigeration unit U!58 is mainly composed of a blower device 52 that sends hot air at intervals, and consists of five air compressors, an air cooler 61, and one indoor air cooler (I!6B).
By this, the compressed air discharged from the air compressor 37 can be mixed with the atmosphere and the temperature-controlled cold air can be sent.
図示される様に、この発明のターボ過給機関の排気ガス
エネルギ回収装置1は、排気ガスエネルギ回収装置1が
分岐接続されるターボ過給機関2の内燃機関の機関本体
10と、機関本体1oに接続された第1、第2の排気管
11.12と、排気管11.12からの排気ガスが排気
タービン人口14.15から導入される排気タービン1
6およびこのjJF気タービン16と軸21により接続
された空気圧縮tI!122を宥する過給U更13と、
過給機13の排気タービン16の出口車室17に排気用
I」管18を介して接続された空気加ス(1装置1つと
、過給機13の空気圧lit vi22の給気量1]2
3に接続された給気管24と、給気管24に空気冷却器
25を介して接続された機関本体10の給気管26と、
ターボ過給機関2の機関本体10の排気管11.12に
分岐接続された排気バイパス通路5の連結管27.28
によって排気ガスが導入されるよう接続された排気バイ
パス通路5中の排気集合槽2つと、この排気!13合4
t’? 29の出口に接続された排気ガス流−It調節
絞り装置30と、排気バイパス通路5内のこの排気ガス
流量調節絞り装置30に続いてQ)換弁32お」:び接
続管33を介して排気ガスがノ、ダ入される排気タービ
ン35および排気タービン35に軸36を介して連結さ
れた空気圧縮機37を有する排気タービン駆動空気圧縮
ユニット34と、排気タービン111へ動空気圧縮ユニ
ット34の空気圧Jli1!1137により大気から吸
入して圧縮した圧縮空気を送出す接続管39にLJj換
弁41および接続管42を介して接続された空気加が一
装置1つの二次側に導入されて加熱された圧縮空気が切
換弁44を経て導入される熱交換2ii 45と、排気
タービン11(シ動空気圧116ユニット34の空気圧
Jlii fi 37出口の接もV管3つに切換弁4o
を介して接続された空気圧縮機5つと空気冷却器61と
±気膨張機63を有する空気冷凍機58と、空気冷凍機
58の空気膨張機63の出口に接続された接続管65と
切換弁66および接続管51を経て接続されたブロワ5
3とダンパ54および混合室55を有する送風装置52
とがら構成されている。As shown in the figure, the exhaust gas energy recovery device 1 for a turbocharged engine of the present invention is connected to an engine body 10 of an internal combustion engine of a turbocharged engine 2 to which the exhaust gas energy recovery device 1 is branch-connected, and an engine body 1o. an exhaust turbine 1 into which exhaust gas from the exhaust pipe 11.12 is introduced from the exhaust turbine 14.15;
6 and this jJF air turbine 16 and the air compressor tI connected by the shaft 21! 122, a supercharging U further 13,
An air supply connected to the outlet casing 17 of the exhaust turbine 16 of the supercharger 13 via an exhaust pipe 18 (1 device and air supply amount 1 of the air pressure lit vi 22 of the supercharger 13) 2
3, an air supply pipe 26 of the engine body 10 connected to the air supply pipe 24 via an air cooler 25,
Connecting pipes 27 and 28 of the exhaust bypass passage 5 branched and connected to the exhaust pipes 11 and 12 of the engine body 10 of the turbocharged engine 2
The two exhaust collecting tanks in the exhaust bypass passage 5 are connected so that exhaust gas is introduced by the exhaust! 13go 4
t'? 29, and this exhaust gas flow regulating throttle device 30 in the exhaust bypass passage 5 is followed by an exhaust gas flow regulating throttle device 30 connected to the outlet of Q) exchange valve 32 and a connecting pipe 33. An exhaust turbine-driven air compression unit 34 having an exhaust turbine 35 into which gas is introduced and an air compressor 37 connected to the exhaust turbine 35 via a shaft 36; Jli1!1137 is connected to a connecting pipe 39 through which compressed air is drawn from the atmosphere and sent out, through an LJj switching valve 41 and a connecting pipe 42, and the air is introduced into the secondary side of one unit and heated. The heat exchanger 2ii 45 into which compressed air is introduced via the switching valve 44 and the exhaust turbine 11 (the air pressure Jlii fi 37 outlet of the air pressure unit 34) are connected to the three V-pipes and the switching valve 4o.
An air refrigerator 58 having five air compressors, an air cooler 61, and a ±air expander 63 connected through the air refrigerator 58, a connecting pipe 65 connected to the outlet of the air expander 63 of the air refrigerator 58, and a switching valve. 66 and the blower 5 connected via the connecting pipe 51
3, a damper 54, and a mixing chamber 55.
It is made up of spikes.
図示される様に、斯様に構成されたこの発明のターボ過
給機関の排気ガスエネルギ回収装置1においては、内燃
機関の機関本体10がへ流出した排気ガスは、機関本体
10に各々接続された排気管11a、llb、llcが
ら成る第1の排気管11と、排気管12a、12b、1
2cがら成る第2の排気管12とにより過給機13の排
気タービン人口14.15を経て各々排気タービン16
内に導入されて排気タービン16を駆動して、軸21を
介して給気用の空気圧縮機22を駆動して大気を吸入し
、吸入した給気を圧縮して給気出口23から給気管24
に送り込む。過給機13の排気タービン16を駆動した
排気ガスは過給機13の出口車室17、排気出口管18
がら排気出口管18に接続された空気加熱装置1つの一
次側を経て排気管20から大気に放出される。また、過
給機13の空気圧縮@22にて吸入された給気は給気出
口23から給気管24を介して空気冷却器25および機
関本体10の給気管26に導入されて内燃機関の機関本
体10に給気される。As shown in the figure, in the exhaust gas energy recovery device 1 for a turbocharged engine of the present invention configured in this manner, the exhaust gas flowing out from the engine body 10 of the internal combustion engine is connected to the engine body 10 respectively. a first exhaust pipe 11 consisting of exhaust pipes 11a, llb, llc, and exhaust pipes 12a, 12b, 1;
A second exhaust pipe 12 consisting of 2c and an exhaust turbine 16 of the supercharger 13 via an exhaust turbine 14.15 respectively.
It drives the exhaust turbine 16, drives the supply air compressor 22 through the shaft 21 to suck in atmospheric air, compresses the intake air, and connects it from the supply air outlet 23 to the supply pipe. 24
send to. The exhaust gas that drove the exhaust turbine 16 of the supercharger 13 is sent to the outlet chamber 17 of the supercharger 13 and the exhaust outlet pipe 18.
The air is discharged into the atmosphere from the exhaust pipe 20 through the primary side of one air heating device connected to the exhaust outlet pipe 18. Further, the air intake sucked by the air compressor @ 22 of the supercharger 13 is introduced from the air intake outlet 23 through the air air intake pipe 24 into the air cooler 25 and the air air intake pipe 26 of the engine body 10, and is then introduced into the engine of the internal combustion engine. Air is supplied to the main body 10.
また、内燃機関の機関本体10の排気管11.12に接
続された排気バイパス通路5の連結管27.28によっ
て排気集合槽29内に導入された排気ガスの一部は、排
気集合槽29の出口の排気ガス流量調節絞り装置30に
より流量が調節された後に切換弁32を経て接続管33
から排気タービン駆動空気圧縮ユニット34の排気ター
ビン35を駆動して、接続管38から、過給8113の
排気タービン16を駆動して出口車室17から流出する
排気ガスと排気出口管18で合流される。Further, a part of the exhaust gas introduced into the exhaust collecting tank 29 by the connecting pipe 27.28 of the exhaust bypass passage 5 connected to the exhaust pipe 11.12 of the engine body 10 of the internal combustion engine is transferred to the exhaust collecting tank 29. After the flow rate is adjusted by the exhaust gas flow rate regulating device 30 at the outlet, it is passed through the switching valve 32 to the connecting pipe 33.
The exhaust turbine 35 of the exhaust turbine drive air compression unit 34 is driven, and the exhaust turbine 16 of the supercharging 8113 is driven from the connecting pipe 38 to join the exhaust gas flowing out from the outlet casing 17 at the exhaust outlet pipe 18. Ru.
排気タービン駆動空気圧縮ユニット34の排気タービン
35が吸収した回転エネルギは軸36によって伝達され
て空気圧縮機37を駆動して大気から吸入した空気を昇
温昇圧して圧縮空気として接続管3つに送り出す。この
接続管3つに設けられな切換弁40.41の内、切換弁
41だけを開くと、排気タービン駆動空気圧縮ユニット
34の空気圧縮機37がらの圧縮空気は接続管42がら
空気加熱装置1つの二次側に導入されて一次側を通る排
気出口管18がら空気加熱装置1つを経て排気管20が
ら大気中に放出される排気ガスによって加熱されて高温
となって接続管43に流入される。また、接続管43に
は切換弁44.5oが設けられているが、切換弁44だ
けを開くと、高温の圧縮空気は熱交換H45に導入され
てポンプ装置46によって熱交換器45に送り込まれる
流体を加熱して接続管47、切換弁48、接続管4つを
経て過給機13の空気圧縮機22がら送り出されて、給
気出口23がら給気管24に流入される給気と合流して
空気冷却器25で冷却されて温度調節された後に給気管
26がら機関本体1oに供給される。The rotational energy absorbed by the exhaust turbine 35 of the exhaust turbine-driven air compression unit 34 is transmitted by the shaft 36 to drive the air compressor 37, which heats and pressurizes the air taken in from the atmosphere and supplies it as compressed air to three connecting pipes. send out. When only the switching valve 41 of the switching valves 40 and 41 provided in the three connecting pipes is opened, the compressed air from the air compressor 37 of the exhaust turbine-driven air compression unit 34 is transferred from the connecting pipe 42 to the air heating device 1. The exhaust outlet pipe 18 that is introduced into the two secondary sides and passes through the primary side is heated by the exhaust gas released into the atmosphere from the exhaust pipe 20 through one air heating device, becomes high temperature, and flows into the connecting pipe 43. Ru. Further, the connecting pipe 43 is provided with a switching valve 44.5o, but when only the switching valve 44 is opened, high temperature compressed air is introduced into the heat exchanger H45 and sent to the heat exchanger 45 by the pump device 46. The fluid is heated and sent out from the air compressor 22 of the supercharger 13 through the connecting pipe 47, the switching valve 48, and the four connecting pipes, and merges with the air supply flowing into the air supply pipe 24 through the air supply outlet 23. After being cooled and temperature-controlled in an air cooler 25, the air is supplied to the engine main body 1o through an air supply pipe 26.
一方、空気加熱装置1つから流入された高温の圧縮空気
は、接続管43に設けられた別の切換弁50だけを開く
ときに、接続管51がら送風装置52の混合室55でブ
ロワ53が大気から吸入してダンパ54で流量が調節さ
れた空気を誘引混合して温風としてダクト56から送り
出す。On the other hand, when the high temperature compressed air flowing in from one air heating device opens only another switching valve 50 provided in the connecting pipe 43, the blower 53 flows through the connecting pipe 51 into the mixing chamber 55 of the blower device 52. Air is sucked in from the atmosphere, the flow rate of which is regulated by a damper 54, and the mixture is induced and sent out from a duct 56 as warm air.
また、排気タービン駆動空気圧縮ユニット34の空気圧
縮機37の出口からの圧縮空気は、接続管3つに設けら
れた他方の切換弁40だけを開くときに、空気冷凍機5
8の空気圧縮機5つに導入されて昇温昇圧され接続管6
0がら空気冷却器61に流入して冷却温度調節されて接
続管62がら空気膨張機63に導入されて、膨張仕事を
行って軸64に空気圧縮機5つに回転エネルギを供給す
ると共に、低温の空気となって接続管65、切換弁66
、接続管51を経て送風装置51の混合室55でブロワ
53が大気から吸入してダンパ54で流量を調節した空
気左混合されて温度が調節された冷風としてダクト56
から送り出される。Further, compressed air from the outlet of the air compressor 37 of the exhaust turbine-driven air compression unit 34 is transferred to the air refrigerator 5 when only the other switching valve 40 provided in the three connecting pipes is opened.
The air is introduced into the five air compressors No. 8, the temperature and pressure are increased, and the connecting pipe No. 6
0 flows into the air cooler 61, where the cooling temperature is adjusted, and is introduced into the air expander 63 through the connecting pipe 62, where it performs expansion work and supplies rotational energy to the five air compressors through the shaft 64. The air becomes the connecting pipe 65 and the switching valve 66.
Air is sucked in from the atmosphere by the blower 53 in the mixing chamber 55 of the blower device 51 via the connecting pipe 51, and the flow rate is adjusted by the damper 54.The air is then mixed into the duct 56 as cold air whose temperature is adjusted.
sent from.
発明の効果
この様に、この発明のターボ過給機関の排気ガスエネル
ギ回収装置に依れば、近年の過給機の性能向上と、内燃
機関と過給機のマツチング技術の向上とを利用すること
によって過給機のタービン面積を小さくして排気ガスの
過給1瓜の排気タービンにおけるp落差を大きくして排
気ガスエネルギの回収ブ(ζを向上さす°て、過給11
(の窄気圧JIW仕事分従来並に維持して内燃機関の機
関本体への給気の供給址を維持し、排気バイパス′装置
にバイパス排気ガスを供給して新たに設(すた排気ター
ビンと空気圧縮機でバイパス排気ガスのエネルギを圧J
lii 空気エネルギに変換すると共に、圧縮埜気の小
さな化体(+’tを利用して熱媒体に使用して過給U及
のlJf気タービンj1冒]に設けた空気加f:!5装
置で排気ガスのIIF熱を回収して高温になった圧11
6空気が熱交換2Sで燃T′1重油、潤滑油、氷雪:の
流体を加熱することを可能にし、放り;5後の圧第14
空気エネルギを更に内燃機関のU1関本体でJΔ気とし
て利用することが出来る。また、過給への排気タービン
出口に説+′)らhた空気加熱装置によって排気ガスj
ゴEばJ4を回収し゛(高温の圧116空気を送風装置
に導入することにJ: 。Effects of the Invention As described above, the exhaust gas energy recovery device for a turbocharged engine of the present invention takes advantage of recent improvements in performance of superchargers and improvements in matching technology between internal combustion engines and superchargers. By reducing the turbine area of the turbocharger and increasing the p head in the exhaust turbine of the exhaust gas, the exhaust gas energy recovery block (ζ) is improved.
(Constriction pressure JIW work) is maintained at the same level as before to maintain the supply of air to the engine body of the internal combustion engine, and by supplying bypass exhaust gas to the exhaust bypass 'device, a new exhaust turbine and The energy of the bypass exhaust gas is converted into pressure by an air compressor.
In addition to converting it into air energy, an air heating f:! The pressure 11 which recovered the IIF heat of the exhaust gas and became high temperature
6 Air heat exchanger 2S allows to heat the fluids: fuel T'1 heavy oil, lubricating oil, ice and snow; 5 after pressure 14th
The air energy can further be utilized as JΔ air in the U1 engine body of the internal combustion engine. In addition, an air heating device installed at the exhaust turbine outlet to supercharge exhaust gas
GoE collects J4 (to introduce high temperature, pressure 116 air into the blower).
て大気と混合して温風として暖房、コ゛、1湿、’:’
l+ /、”I ’+’;の用途に利用することが出来
るとJ(に、圧116空気エネルギを送風エネルギに利
用出来る。更に、圧縮空気を空気冷凍機に導入して低温
の空気に変換して送風装置に供給して大気と混合して冷
風として供給して冷′775等に供することが出来るー
t、のIIF 気ガスエネルギの有効利用の効果が得ら
れる6It mixes with the atmosphere and generates heating as warm air.
If it can be used for the purpose of l+ /, "I '+'," the pressure 116 air energy can be used as ventilation energy.Furthermore, the compressed air is introduced into an air refrigerator and converted to low-temperature air. It can be supplied to an air blower, mixed with the atmosphere, and supplied as cold air for cooling purposes, etc.
図面はこの発明のターボ過給機関の排気ガスエ;1、ル
ギ回収装置の概要図である1図中、1:排気ガスエネル
ギ回収装置、2;ターボ過給機関、5:排気バイパス通
路、10:内燃機関の機関本体、11.12:排気管、
13:過給機、14.15: JJF気タービン入[I
、16.35:排気タービン、18:排気出口管、1つ
:空気加熱装置、20:排気管、21.36.611.
軸、22:空気圧J17沢、23 給気1」−冒コ、
271.26 :給気管、25:空気冷却器、27.2
8:連結管、2つ二団気!に合1111.30.排気ガ
ス流M調節絞り装置、31.33.38.39、/l
2.113.47.49.51.57.60.62.6
5:接IA管、32.110.41.44.48.50
.66:切換4r、34:排気タービン駆動空気圧縮ユ
ニット、37.5つ:空気圧縮機、45:熱交換器、4
6:ポンプ装置、52:送風装置、53ニブロワ、5.
1ダンパ、55:混合室、56・ダクl=、58 空気
冷凍機、61.空気冷却器、63.空気膨張代。The drawing is a schematic diagram of the exhaust gas energy recovery device of the turbocharged engine of the present invention; 1: Exhaust gas energy recovery device; 2: Turbocharged engine; 5: Exhaust bypass passage; 10: Engine body of internal combustion engine, 11.12: Exhaust pipe,
13: Supercharger, 14.15: JJF air turbine input [I
, 16.35: Exhaust turbine, 18: Exhaust outlet pipe, 1: Air heating device, 20: Exhaust pipe, 21.36.611.
Axis, 22: Pneumatic pressure J17 Sawa, 23 Air supply 1''-Blaze,
271.26: Air supply pipe, 25: Air cooler, 27.2
8: Connecting pipes, two groups! 1111.30. Exhaust gas flow M regulating restrictor, 31.33.38.39, /l
2.113.47.49.51.57.60.62.6
5: Connection IA pipe, 32.110.41.44.48.50
.. 66: Switching 4r, 34: Exhaust turbine driven air compression unit, 37.5: Air compressor, 45: Heat exchanger, 4
6: Pump device, 52: Air blower, 53 Niblower, 5.
1 damper, 55: mixing chamber, 56・dakl=, 58 air refrigerator, 61. Air cooler, 63. Air expansion cost.
Claims (1)
る排気管から分岐する排気バイパス通路を有する過給機
関において、排気バイパス通路中の排気集合槽、該排気
集合槽の後の排気流量調節絞り装置、該排気集合槽の後
にて切換弁を介して排気ガスエネルギで駆動される排気
タービンおよび該排気タービンに接続されて駆動される
空気圧縮機から成る排気タービン駆動空気圧縮ユニット
、該排気タービン駆動空気圧縮ユニットの空気圧縮機が
大気から吸入して圧縮した空気を前記過給機の排気ター
ビン出口の排気ガスにより加熱する空気加熱装置、該空
気加熱装置の後にて切換弁を介して流体を加熱する熱交
換器、前記の加熱された圧縮空気と大気とを混合して温
度を調節して温風を送る送風装置を備え、該送風装置は
、空気圧縮機と空気冷却器および空気膨張機とで構成さ
れる空気冷凍機によって前記空気圧縮機の吐出圧縮空気
を低温に状態変化させた空気に大気と混合して温度調節
した冷風を送ることができることを特徴とするターボ過
給機関の排気ガスエネルギ回収装置。In a supercharged engine having an exhaust bypass passage branching from an exhaust pipe that communicates the engine body of the internal combustion engine and an exhaust turbine of a supercharger, an exhaust collecting tank in the exhaust bypass passage and an exhaust flow rate adjustment after the exhaust collecting tank an exhaust turbine-driven air compression unit consisting of a throttling device, an exhaust turbine driven by exhaust gas energy after the exhaust collecting tank via a switching valve, and an air compressor connected to and driven by the exhaust turbine; An air heating device that heats the air sucked from the atmosphere and compressed by the air compressor of the drive air compression unit using exhaust gas from the exhaust turbine outlet of the supercharger; and after the air heating device, fluid is supplied through a switching valve. It is equipped with a heat exchanger for heating, a blower device that mixes the heated compressed air with the atmosphere, adjusts the temperature, and sends warm air, and the blower device includes an air compressor, an air cooler, and an air expander. Exhaust air of a turbocharged engine, characterized in that the compressed air discharged from the air compressor is changed to a low temperature by an air refrigerator, and is mixed with the atmosphere to send temperature-controlled cold air. Gas energy recovery equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63156990A JPH029906A (en) | 1988-06-27 | 1988-06-27 | Exhaust gas energy recovering device of turbosupercharge engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63156990A JPH029906A (en) | 1988-06-27 | 1988-06-27 | Exhaust gas energy recovering device of turbosupercharge engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH029906A true JPH029906A (en) | 1990-01-12 |
Family
ID=15639764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63156990A Pending JPH029906A (en) | 1988-06-27 | 1988-06-27 | Exhaust gas energy recovering device of turbosupercharge engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH029906A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6705549B2 (en) | 2001-05-25 | 2004-03-16 | Shodensha Corporation, Ltd. | Constant flow apparatus |
JP2007016792A (en) * | 2002-05-21 | 2007-01-25 | Man B & W Diesel As | Supercharging type large internal combustion engine |
JP2007239864A (en) * | 2006-03-08 | 2007-09-20 | Fuji Seiko Kk | Constant flow rate valve |
US20160333773A1 (en) * | 2013-12-19 | 2016-11-17 | Volvo Truck Corporation | Internal combustion engine system |
-
1988
- 1988-06-27 JP JP63156990A patent/JPH029906A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6705549B2 (en) | 2001-05-25 | 2004-03-16 | Shodensha Corporation, Ltd. | Constant flow apparatus |
JP2007016792A (en) * | 2002-05-21 | 2007-01-25 | Man B & W Diesel As | Supercharging type large internal combustion engine |
JP2007239864A (en) * | 2006-03-08 | 2007-09-20 | Fuji Seiko Kk | Constant flow rate valve |
US20160333773A1 (en) * | 2013-12-19 | 2016-11-17 | Volvo Truck Corporation | Internal combustion engine system |
US10161300B2 (en) * | 2013-12-19 | 2018-12-25 | Volvo Truck Corporation | Internal combustion engine system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5893946A (en) | Apparatus for recirculating exhaust gas | |
CN104963732B (en) | Combined cycle energy supplying system | |
JPS6138328B2 (en) | ||
CN105698432A (en) | Multi-functional-mode CO2 refrigeration and power generation combined circulating system and mode switching control method | |
CN205747566U (en) | A kind of Two-stage Compression high temperature heat pump system | |
CN207065926U (en) | The gas engine heat pump system that a kind of waste heat efficiently utilizes | |
CN103958850B (en) | Cooling system for two-step supercharging engine | |
US11604011B2 (en) | Gas heat pump system | |
KR101997785B1 (en) | A gas heat-pump system | |
US7104062B2 (en) | Device for thermally controlling the intake air of the internal combustion engine of a motor vehicle | |
CN109186116B (en) | Air circulation heat pump system adopting turbocharger | |
JPH029906A (en) | Exhaust gas energy recovering device of turbosupercharge engine | |
CN207496426U (en) | Pure [ electric ] motor coach heat pump air conditioning system | |
JPH06213521A (en) | Method and device for combining cooling and heating processes for air condioning of room | |
US20220056837A1 (en) | Gas engine heat pump | |
CN112361654A (en) | Heat pump driven by gas engine | |
CN112361653B (en) | Heat pump driven by gas engine | |
CA1126523A (en) | Combined engine cooling system and waste-heat driven heat pump | |
KR102216716B1 (en) | Gas heat-pump system | |
US11959442B2 (en) | Low-pressure EGR system with condensate management | |
KR20190046080A (en) | Gas heat-pump system | |
JPH0441932A (en) | Hot air supply device for turbo supercharging engine with fuel combustion device | |
JPH01305274A (en) | Air supply cooler/heater for turbo-supercharger | |
US2467167A (en) | Auxiliary make-up circuit for gas turbine plants | |
KR101993721B1 (en) | A gas heat-pump system |