JPH0297899A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0297899A
JPH0297899A JP24822688A JP24822688A JPH0297899A JP H0297899 A JPH0297899 A JP H0297899A JP 24822688 A JP24822688 A JP 24822688A JP 24822688 A JP24822688 A JP 24822688A JP H0297899 A JPH0297899 A JP H0297899A
Authority
JP
Japan
Prior art keywords
tube
flow
heat transfer
heat exchanger
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24822688A
Other languages
Japanese (ja)
Inventor
Aritaka Yamada
有孝 山田
Osao Kido
長生 木戸
Shinichi Ide
井手 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP24822688A priority Critical patent/JPH0297899A/en
Publication of JPH0297899A publication Critical patent/JPH0297899A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To prevent the deterioration of heat transfer performance due to the biased flow of refrigerant by a method wherein a hollow spiral plate, provided with a dam at the end thereof, is inserted into a heat transfer tube positioned at upstream side connected to the inlet port of the inflow tube of a flow distributor. CONSTITUTION:A hollow spiral plate 15, provided with a dam 21 at the end thereof, is inserted into a inflow heat transfer tube 14. According to this constitution, liquid phase B2 among the flows of refrigerant B, flowing through the inflow heat transfer tube 14 and separated into gas phase and liquid phase, is made to flow spirally along the inner surface of the heat transfer tube 14 by the hollow spiral plate 15 to prevent the flow of the same biased to the trough of the spiral part while the gas phase B1 of the refrigerant R is made to flow through the hollow part of the spiral plate 15 to accelerate it. The mixing of the gas phase with the liquid phase B2 on the inner surface of the tube is promoted by the extracting effect of the gas phase B1 accelerated by the dam 21 to restrain the adhesion of the refrigerant B to the wall surface of a branching section 26 and prevent the excessive flow of the liquid phase B2, heavier than the gas phase B1, into a lower outflow tube 24b by the affection of a gravity whereby the uniform distribution of the flow may be effected. On the other hand, the inner surface of the tube is covered at all times by the liquid phase B2, in which boiling heat transfer is generated, whereby the heat transfer coefficient of a heat exchanger may be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調機器や冷凍機器等の冷凍サイクルにおいて
、冷媒を均等に分流し、冷媒の偏流による伝熱性能の低
下を防止した熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat exchanger that distributes refrigerant evenly and prevents deterioration of heat transfer performance due to uneven flow of refrigerant in refrigeration cycles of air conditioners, refrigeration equipment, etc. It is.

従来の技術 近年、冷凍・空調用熱交換器の高効率化、コンパクト化
の要求から熱交換器の伝熱管細径化が進められている。
BACKGROUND OF THE INVENTION In recent years, the diameter of heat exchanger tubes in heat exchangers has been reduced to meet the demands for higher efficiency and more compact heat exchangers for refrigeration and air conditioning.

それに伴い冷媒回路が複数化された熱交換器が採用され
ているが、管内冷媒をそれぞれの回路に偏流することな
しに分流し、各回路での熱交換率を向上させることが技
術的にも重要である。
As a result, heat exchangers with multiple refrigerant circuits have been adopted, but it is technically possible to divide the refrigerant in the pipes into each circuit without causing it to flow unevenly, and to improve the heat exchange efficiency in each circuit. is important.

現在、この重要な分流の役割はその簡易性から熱交換器
回路の一部として使われている三方ベンドによって行な
われている。
Currently, this important shunting role is performed by a three-way bend, which is used as part of a heat exchanger circuit due to its simplicity.

以下、図面を参照しながら説明を行う。Description will be given below with reference to the drawings.

第5図は複数の冷媒回路を持つ熱交換器を示している。FIG. 5 shows a heat exchanger with multiple refrigerant circuits.

第6図はその中で使用されている三方ベンドの形状を示
し、第7図から第8図は熱交換器を冷凍サイクル連転し
た際の伝熱管および三方ベンド内部の冷媒状態を示す。
FIG. 6 shows the shape of the three-way bend used therein, and FIGS. 7 to 8 show the state of the refrigerant inside the heat exchanger tube and the three-way bend when the heat exchanger is continuously operated in the refrigeration cycle.

第5図から第8図において、1は熱交換器で、流人伝熱
管2および流出伝熱管3を備えている。4は前記流人伝
熱管2と流出伝熱管3を繋ぐ三方ベンドである。7は伝
熱フィンであり一定間隔で伝熱管に圧接されている。三
方ベンド4は、両端な略直角に折曲した流出口9を備え
た略円弧状の流出管10と、前記流出管10の略中央部
での略直状の流入管11とから構成されており、前記流
入管11は一端が流出口9と同一方向を向いた流入口8
、他端が流出管10への分岐部12となっている。
5 to 8, reference numeral 1 denotes a heat exchanger, which is equipped with a flowing heat exchanger tube 2 and an outflow heat exchanger tube 3. 4 is a three-way bend connecting the flowing heat exchanger tube 2 and the outflow heat exchanger tube 3. Reference numeral 7 denotes heat transfer fins which are pressed against the heat transfer tubes at regular intervals. The three-way bend 4 is composed of a substantially arc-shaped outflow pipe 10 having a substantially right-angled outflow port 9 at both ends, and a substantially straight inflow pipe 11 at a substantially central portion of the outflow pipe 10. The inflow pipe 11 has an inflow port 8 with one end facing in the same direction as the outflow port 9.
, the other end serves as a branch portion 12 to the outflow pipe 10.

以上のように構成された熱交換器について、以下その動
作を説明する。
The operation of the heat exchanger configured as above will be described below.

熱交換器1へ流入した冷媒Aは流人伝熱管2を通過し気
相A1と液相A2との二相流となって三方ベンドの流入
口8から三方ベンド4へ流入し、流入管11を経た後分
岐部12で上部流出管10aと下部流出管10bへ分流
され、それぞれ流出口9a、9bを経て流出伝熱管3a
、3bへ流出していくこととなる。
The refrigerant A that has flowed into the heat exchanger 1 passes through the heat exchanger tubes 2, becomes a two-phase flow of gas phase A1 and liquid phase A2, flows from the inlet 8 of the three-way bend to the three-way bend 4, and flows through the inlet tube 11. After that, the flow is divided into an upper outflow pipe 10a and a lower outflow pipe 10b at the branching part 12, and the outflow heat exchanger tube 3a passes through the outflow ports 9a and 9b, respectively.
, 3b.

発明が解決しようとする課題 しかしながら上記のような構成では、冷媒Aは流人伝熱
管2を流れている時気液二相に分離しているが均質な気
液割合にならず重力gの影響により気相A1より重い液
相A2が伝熱管下部を多く流れる。さらに三方ベンド4
に流入し流入管11内を流れ、分岐部12で分流する時
に気相A1より重い液相A2が重力gと分岐部12壁面
への付着により下部流出管10bへ多く流れ過ぎて、冷
媒Aの伝熱管3a、3bへの均等な分流ができない。こ
のため熱交換器1の各回路区分1aと1bでは熱交換量
が異なり熱交換率の低下をきたすと共に管外被冷却流体
の温度の違いにより後流の機器に悪彰響を及ぼすという
課題を有していた。
Problems to be Solved by the Invention However, in the above configuration, the refrigerant A separates into two phases, gas and liquid, when flowing through the heat exchanger tube 2, but the ratio of gas and liquid does not become homogeneous and due to the influence of gravity g. The liquid phase A2, which is heavier than the gas phase A1, flows through the lower part of the heat exchanger tube. More three-way bend 4
When the liquid phase A2, which is heavier than the gaseous phase A1, flows into the lower outflow pipe 10b due to gravity g and adhesion to the wall surface of the branching part 12, too much of the liquid phase A2 flows into the lower outflow pipe 10b, causing the refrigerant A to flow into the lower outlet pipe 10b. Equal flow cannot be divided into the heat exchanger tubes 3a and 3b. For this reason, the amount of heat exchanged differs between the circuit sections 1a and 1b of the heat exchanger 1, resulting in a decrease in the heat exchange efficiency, and the difference in temperature of the cooling fluid enveloping the tubes has a negative effect on downstream equipment. had.

本発明は上記課題に鑑み、冷媒の均等な分流を行なえる
熱交換器を提供するものである。
In view of the above-mentioned problems, the present invention provides a heat exchanger that can evenly divide refrigerant.

課題を解決するための手段 上記課題を解決するために本発明の熱交換器は、流人伝
熱管の管内および三方ベンド流入管の管内に、端部に堰
部をもつ中空螺旋板を挿入した構成を備えたものである
Means for Solving the Problems In order to solve the above problems, the heat exchanger of the present invention has a structure in which a hollow spiral plate having a dam at the end is inserted into the flow tube and the three-way bend inflow tube. It is equipped with the following.

作用 本発明は上記した構成によって、流人伝熱管を流れる気
液分離した冷媒の流れのうち伝熱管底部を多く流れよう
とする液相を中空螺旋板により伝熱管内面に沿って螺旋
状に流し底部へのil流を防ぐと共に中空螺旋板の中空
部分に気相をながして加速する。さらに出口端の頭部で
加速された気相の抽出効果によって管内面の液相との気
液混合を促進し、冷媒の分岐部壁面への付着を抑えると
共に、気相より重い液相が重力の影響で下部流出管へ多
く流れ過ぎるを防ぎ、均等分流が行なえることとなる。
According to the above-described structure, the present invention allows the liquid phase, which tends to flow mostly at the bottom of the heat transfer tube, of the gas-liquid separated refrigerant flowing through the heat transfer tube to be caused to spirally flow along the inner surface of the heat transfer tube using the hollow spiral plate. At the same time, the gas phase is accelerated by flowing into the hollow part of the hollow spiral plate. Furthermore, the extraction effect of the gas phase accelerated at the head of the outlet end promotes gas-liquid mixing with the liquid phase on the inner surface of the tube, suppresses adhesion of the refrigerant to the branch wall, and allows the liquid phase, which is heavier than the gas phase, to This prevents too much water from flowing into the lower outflow pipe and allows for equal flow distribution.

また管内面は熱伝達率の高い沸騰熱伝達をおこす液相で
常に覆われるため熱伝達率を向上させることができる。
Furthermore, since the inner surface of the tube is always covered with a liquid phase that causes boiling heat transfer with a high heat transfer coefficient, the heat transfer coefficient can be improved.

実施例 以下本発明の実施例を図面を参照しながら説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図から第3図は本発明の実施例における熱交換器の
形状を示すもので、第4図は熱交換器を冷凍サイクル運
転した際の流人伝熱管及び三方ベンド内部の冷媒状態を
示す。第1図から第4図において、13は熱交換器で、
流人伝熱管14および流出伝熱管16を備えている。1
7は前記流人伝熱管14と流出伝熱管16を繋ぐ三方ベ
ンドで従来例と同じ形状をしている。20は伝熱フィン
であり一定間隔で伝熱管に圧接されている。前記流人伝
熱管14および三方ベンド17の管内には端部に頭部2
1をもつ中空螺旋板15が挿入されている。 以上のよ
うに構成された熱交換器について、以下その動作につい
て説明する。
Figures 1 to 3 show the shape of a heat exchanger in an embodiment of the present invention, and Figure 4 shows the state of the refrigerant inside the flow-through heat transfer tube and three-way bend when the heat exchanger is operated in a refrigeration cycle. . In Figures 1 to 4, 13 is a heat exchanger;
It is provided with a floating heat exchanger tube 14 and an outflow heat exchanger tube 16. 1
Reference numeral 7 denotes a three-way bend that connects the flowing heat exchanger tube 14 and the outflow heat exchanger tube 16, and has the same shape as the conventional example. Reference numeral 20 denotes heat transfer fins which are pressed against the heat transfer tubes at regular intervals. A head 2 is provided at the end of the heat transfer tube 14 and the three-way bend 17.
A hollow spiral plate 15 with 1 is inserted. The operation of the heat exchanger configured as above will be described below.

熱交換器13に流入した冷媒Bは流人伝熱管14を通過
し気相B1と液相B2との二相流となって三方ベンドの
流入口22から三方ベンド17へ流入し、流入管25を
経た後分岐部26で上部流出管24aと下部流出管24
bへ分流され、それぞれ流出口23a、23bを経て流
出伝熱管16a、16bへ流出していくこととなる。そ
の際、冷媒Bは流人伝熱管内14を流れるときには管外
からの加熱、蒸発により気相B1の割合を増しながら中
空螺旋板15の中空部分を流れる。一方、重力りの影響
で流人伝熱管14の底部を偏って流れがちな液相B2は
中空螺旋板15によって流人伝熱管内面を螺旋状に流れ
るように導かれる。また液相B2の一部は中空螺旋板1
5の内側エツジの効果により高速の気相B1に引き込ま
れ小滴となって中空部を流れる。このようにして伝熱管
内周辺口は液相が流れ中心部は気相と小滴の液相が同伴
した均質な二相流が流れ、液相が管底部t−偏って流れ
ることを防ぐことができる。
The refrigerant B that has flowed into the heat exchanger 13 passes through the heat exchanger tube 14 and becomes a two-phase flow of gas phase B1 and liquid phase B2, flows into the three-way bend 17 from the inlet 22 of the three-way bend, and flows through the inflow tube 25. After passing through the branch part 26, an upper outflow pipe 24a and a lower outflow pipe 24 are connected.
b, and flow out to the outflow heat exchanger tubes 16a, 16b via the outflow ports 23a, 23b, respectively. At this time, when the refrigerant B flows through the inside of the heat transfer tube 14, it flows through the hollow portion of the hollow spiral plate 15 while increasing the proportion of the gas phase B1 due to heating and evaporation from outside the tube. On the other hand, the liquid phase B2, which tends to flow unevenly at the bottom of the heat exchanger tube 14 due to the influence of gravity, is guided by the hollow spiral plate 15 so as to flow spirally on the inner surface of the heat exchanger tube. Also, a part of the liquid phase B2 is contained in the hollow spiral plate 1.
Due to the effect of the inner edge of No. 5, it is drawn into the high-speed gas phase B1 and flows through the hollow portion in the form of small droplets. In this way, the liquid phase flows at the peripheral opening of the heat transfer tube, and a homogeneous two-phase flow consisting of the gas phase and the liquid phase of small droplets flows at the center, and the liquid phase is prevented from flowing unevenly at the bottom of the tube. Can be done.

このようにして導かれた流れは中空螺旋板の出口端頭部
によって管内周辺部を流れる液相はせきとめられ、中空
を流れる高速の気相と共に中空孔から分岐部27に向か
って吹き出す、この際、液相は加速された気相の抽出効
果により小滴に飛散され均質に気液混合される。このた
め冷媒Bの分岐部27壁面への付着を抑えると共に、気
相B1より重い液相B2が重力りの影響で下部流出管1
6bへ多く流れ過ぎるを防ぐことができ、流出伝熱管1
6a、16bへの分流を均等に近づけることができる。
In the flow guided in this way, the liquid phase flowing around the inside of the tube is stopped by the outlet end head of the hollow spiral plate, and is blown out from the hollow hole toward the branch part 27 together with the high-speed gas phase flowing in the hollow. , the liquid phase is dispersed into droplets due to the accelerated extraction effect of the gas phase, and the gas and liquid are mixed homogeneously. Therefore, adhesion of the refrigerant B to the wall surface of the branch section 27 is suppressed, and the liquid phase B2, which is heavier than the gas phase B1, flows into the lower outlet pipe 1 due to the influence of gravity.
6b can be prevented from flowing too much to the outflow heat exchanger tube 1.
The divided flows to 6a and 16b can be equally distributed.

均等な冷媒の分流を得た熱交換器13の各回路部分13
a、13bは同等の熱交換性能を示し、偏流による熱交
換器性能の低下を防ぐと共に管外被冷却流体の大きな温
度差の生じることを防ぐことができる。
Each circuit section 13 of the heat exchanger 13 with equal refrigerant distribution
a and 13b exhibit equivalent heat exchange performance, and can prevent deterioration of heat exchanger performance due to drifting, and can also prevent a large temperature difference from occurring in the tube-enveloped cooling fluid.

発明の効果 以上のように本発明は、流人伝熱管および三方ベンド流
入管内に端部に頭部なもつ中空螺旋板を設置し各冷媒回
路への均等な分流を行なうことにより、偏流による伝熱
性能の低下を排除した高効率でかつ各冷媒回路で管外被
冷却流体に大きな温度差な生じない熱交換器を提供する
ことができる。
Effects of the Invention As described above, the present invention improves heat transfer by uneven flow by installing a hollow spiral plate with a head at the end in the flow-through heat transfer tube and the three-way bend inflow tube to distribute the flow equally to each refrigerant circuit. It is possible to provide a heat exchanger that is highly efficient without deterioration in performance and that does not cause a large temperature difference in the tube jacket cooling fluid in each refrigerant circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱交換器の概略斜視図、第2図は第1
図の端部に頭部をもつ中空螺旋板を設置した流人伝熱管
および三方ベンドの断面図、第3図は第1図の伝熱管と
三方ベンドの接続状態を示す平面図、第4図は第3図の
使用状態における冷媒の流れを示す断面図、第5図は従
来の熱交換器の概略形状を示す斜視図、第6図は三方ベ
ンドの斜視図、第7図は第6図の三方ベンドの熱交換器
への配管状態を示す平面図、第8図は第7図の使用状態
における冷媒の流れを示す断面図である。 15・・・・中空螺旋板、17・・・・三方ベンド、2
1・・・・頭部。 代理人の氏名 弁理士 粟野重孝 はか1名−−−黙 
父 快 a ・−流入C1熊営 一中空螺N板 一流出伝哄管 一ミ万ベンド −a 都 第 2 図 14・・−流人伝熱管 I5 ・・−+ti 塩&板 +7一−二号ベツド Eノー雇 郭 告 第1図 16−・−流出伝熱管 き −・・ 流 記 ! 14−・−流λ伍晩管 15−・・中空式IN夜 17−・−ミ方ぺ1ド 21−・・ 堰  部 24・・−流出管 ど・・・流入管 島−・−分IIf部 告
FIG. 1 is a schematic perspective view of the heat exchanger of the present invention, and FIG.
Figure 3 is a cross-sectional view of the Flowing Heat Transfer Tube and three-way bend in which a hollow spiral plate with a head is installed at the end, Figure 3 is a plan view showing the connection state of the heat exchanger tube and three-way bend in Figure 1, Figure 4 is Fig. 3 is a sectional view showing the flow of refrigerant in the operating state, Fig. 5 is a perspective view showing the general shape of a conventional heat exchanger, Fig. 6 is a perspective view of a three-way bend, and Fig. 7 is the same as Fig. 6. FIG. 8 is a plan view showing the state of piping to the three-way bend heat exchanger, and FIG. 8 is a sectional view showing the flow of refrigerant in the operating state of FIG. 7. 15...Hollow spiral plate, 17...Three-way bend, 2
1...Head. Name of agent: Patent attorney Shigetaka Awano Haka 1 person --- Mute
Father Kai a ・-Inflow C1 Bearing 1 Hollow screw N plate Ichi-ryu Output tube 10000 bends-a Tokyo No. 2 Figure 14...-Flower heat exchanger tube I5 ・-+ti Salt & board +7 1-2 bed E-no-employment notice Figure 1 16-- Outflow heat exchanger tube -... Flow record! 14--Flow λ5 night tube 15--Hollow IN night 17--Mikado 21--Weir section 24...-Outflow pipe...Inflow pipe island--Minute IIf report

Claims (1)

【特許請求の範囲】[Claims]  分流器の流入管入口に繋る上流側に位置する伝熱管内
に端部に堰部をもつ中空螺旋板を挿入したことを特徴と
する熱交換器。
1. A heat exchanger characterized in that a hollow spiral plate having a dam at the end is inserted into a heat transfer tube located on the upstream side connected to an inflow pipe inlet of a flow divider.
JP24822688A 1988-09-30 1988-09-30 Heat exchanger Pending JPH0297899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24822688A JPH0297899A (en) 1988-09-30 1988-09-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24822688A JPH0297899A (en) 1988-09-30 1988-09-30 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH0297899A true JPH0297899A (en) 1990-04-10

Family

ID=17175051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24822688A Pending JPH0297899A (en) 1988-09-30 1988-09-30 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0297899A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176336A1 (en) * 2011-06-24 2012-12-27 三菱電機株式会社 Plate heater and refrigeration cycle device
WO2024000030A1 (en) * 2022-06-29 2024-01-04 Algesacooling Pty Ltd An improved refrigeration evaporator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176336A1 (en) * 2011-06-24 2012-12-27 三菱電機株式会社 Plate heater and refrigeration cycle device
GB2505829A (en) * 2011-06-24 2014-03-12 Mitsubishi Electric Corp Plate heater and refrigeration cycle device
JP5665983B2 (en) * 2011-06-24 2015-02-04 三菱電機株式会社 Plate heat exchanger and refrigeration cycle apparatus
US9772145B2 (en) 2011-06-24 2017-09-26 Mitsubishi Electric Corporation Flat plate heat exchanger having fluid distributor inside manifold
GB2505829B (en) * 2011-06-24 2017-12-27 Mitsubishi Electric Corp Plate heat exchanger and refrigeration cycle apparatus
WO2024000030A1 (en) * 2022-06-29 2024-01-04 Algesacooling Pty Ltd An improved refrigeration evaporator

Similar Documents

Publication Publication Date Title
TW484004B (en) Condenser for a refrigerant
JPS5623700A (en) Heat exchanger
JPH10267468A (en) Distribution header
JPH04295599A (en) Heat exchanger
JPH03177761A (en) Heat exchanger
JPH0297899A (en) Heat exchanger
JPH085195A (en) Heat exchanger
JPH0614782U (en) Heat exchanger
JP2006317098A (en) Flow divider
JPH0875316A (en) Branch pipe structure for heat exchanger for air conditioner
JPH0367968A (en) Heat exchanger for condensing refrigerant
JPS593356Y2 (en) heat exchanger piping equipment
CN211234040U (en) Radiator, vehicle and engineering machinery
JPS593251Y2 (en) Heat exchanger
JP2000314573A (en) Heat exchanger for air conditioner
JPH0612363Y2 (en) Cooling water supply device for heat exchanger
JPH02115668A (en) Evaporator
JPH10132427A (en) Heat-exchanger
JPH0297859A (en) Flow merging device
JPH01196495A (en) Water cooler
JPH03214000A (en) Laminated heat exchanger
JP2695269B2 (en) Stacked heat exchanger
JPH02140569A (en) Refrigerant branch device
JPH01123963A (en) Refrigerant diverter
JPS60221692A (en) Heat exchanger