JPH0297816A - Disposing method for heavy metal-contained dust - Google Patents

Disposing method for heavy metal-contained dust

Info

Publication number
JPH0297816A
JPH0297816A JP25041288A JP25041288A JPH0297816A JP H0297816 A JPH0297816 A JP H0297816A JP 25041288 A JP25041288 A JP 25041288A JP 25041288 A JP25041288 A JP 25041288A JP H0297816 A JPH0297816 A JP H0297816A
Authority
JP
Japan
Prior art keywords
covering layer
layer
heavy metal
molten
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25041288A
Other languages
Japanese (ja)
Inventor
Susumu Shimura
進 志村
Hiroshi Goto
後藤 拡
Hitoshi Tsuzuki
仁 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25041288A priority Critical patent/JPH0297816A/en
Publication of JPH0297816A publication Critical patent/JPH0297816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PURPOSE:To prevent volatilization of a noxious heavy metal from a molten slug surface by a method wherein the upper surface temperature of a covering layer is held at a value lower than a specified temperature. CONSTITUTION:In a direct energization type melting disposing furnace in which heavy metal-contained dust generated from a waste incinerator is disposed, a covering layer 12 formed, in order, from below with a molten slug layer 9, a molten salt layer 10, and a unmolten dust is formed. The covering layer 12 forms and approximately conical layer with a lower end 2a of a charge port 2 serving as an apex and a is formed in a manner to be accumulated on the molten slug 9. The portion, having a temperature of 650-1,000 deg.C or higher, of the lower part of the covering layer forms a molten salt layer 10. The thickness of the covering layer 12 can be variably regulated through vertical movement of the charge port 2, and a surface temperature is regulated to 100 deg.C or lower. Namely, when a molten slug level 9a is raised and the thickness of the covering layer 12 is decreased, regulation is made so that the thickness of the covering layer 12 is adjusted to a value higher than a given value through rising of the charge port 2, and this method regulates a surface temperature to 100 deg.C or lower. This method enables prevention of volatilization of a heavy metal.

Description

【発明の詳細な説明】 発明の目的 [産業上の利用分野] 本発明は、都市ごみなどの廃棄物焼却炉から発生する重
金属含有ダストを直接通電式溶融炉にて無害化処理する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detoxifying heavy metal-containing dust generated from waste incinerators such as municipal waste in a direct current melting furnace.

[従来の技術] 都市ごみなどの廃棄物は、一般に焼却炉にて焼却される
。その際に発生するダストは、電気集塵機等により捕捉
される。捕捉されたダストには、Pb、Cr、Zn、C
d、Hg、Asなどの有害重金属が含まれており、その
まま埋立て処分するとこれら有害重金属が地中へ溶出し
、二次公害を招く恐れがある。
[Prior Art] Waste such as municipal waste is generally incinerated in an incinerator. The dust generated at this time is captured by an electrostatic precipitator or the like. The captured dust contains Pb, Cr, Zn, C
It contains toxic heavy metals such as d, Hg, and As, and if it is disposed of as is in a landfill, these toxic heavy metals may leach into the ground and cause secondary pollution.

そこで、これらのダストをアーク式溶融炉や直接通電式
溶融炉にて溶融処理し、有害重金属を溶融スラグ中に封
じ込める方、法が発明されており、例えば特開昭58−
30382号公報記載の方法が知られている。
Therefore, methods have been invented to melt these dusts in an arc type melting furnace or a direct current type melting furnace to confine harmful heavy metals in the molten slag.
A method described in Japanese Patent No. 30382 is known.

[発明が解決しようとする課題] ところが、上記ダスト中に含まれるPb、  Zn。[Problem to be solved by the invention] However, Pb and Zn contained in the above dust.

Hg 、Cd + A s等は300〜1000℃程度
の比較的低温にて揮散するため、これら有害重金属が炉
外へ漏出するという問題があった。
Since Hg, Cd + As, etc. volatilize at a relatively low temperature of about 300 to 1000°C, there is a problem that these harmful heavy metals leak out of the furnace.

ここで、上記公報記載の如く、直接通電式溶融炉におい
てダストを溶融処理する方法においては、炉内へ供給さ
れたダストの未溶融物により溶融スラグ表面にカバリン
グ層が形成されることが知られている。しかしながら、
カバリング層は処理工程中に過渡的に形成されるもので
あり、この表面温度を規定していなかった。そのため、
重金属がカバリング層表面から直接揮散し、あるいは、
溶融スラグから揮散する重金属がカバリング層を突き抜
けて、炉外へ漏出するという問題があった。
As described in the above publication, it is known that in the method of melting dust in a direct current melting furnace, a covering layer is formed on the surface of the molten slag by unmelted dust supplied into the furnace. ing. however,
The covering layer is formed transiently during the processing process, and its surface temperature is not regulated. Therefore,
Heavy metals are directly volatilized from the surface of the covering layer, or
There was a problem in that heavy metals volatilized from the molten slag penetrated the covering layer and leaked out of the furnace.

R皿辺璽滅 そこで、本願発明者は、鋭意検討の結果、上記カバリン
グ層を所定の条件にて形成することにより、有害重金属
が溶融スラグ表面から揮散することを防止する以下の構
成よりなる方法を発明したのである。
Therefore, as a result of intensive studies, the inventor of the present application has developed a method comprising the following structure, which prevents harmful heavy metals from volatilizing from the surface of molten slag by forming the above-mentioned covering layer under predetermined conditions. He invented it.

[課題を解決するための手段] 即ち、本発明の要旨と・するところは、直接通電式溶融
炉にて、廃棄物焼却炉から発生する重金属含有ダストを
処理するに当たり、炉内の溶滓上に未溶融のダストによ
るカバリング層を形成する重金属含有ダストの処理方法
において、上記カバリング層の上面温度を100℃以下
に保つことを特徴とする重金属含有ダストの処理刃を去
にある。
[Means for Solving the Problems] That is, the gist of the present invention is to provide a method for treating heavy metal-containing dust generated from a waste incinerator in a direct energized melting furnace. In the method for treating heavy metal-containing dust, which forms a covering layer of unmelted dust, there is provided a treatment blade for heavy metal-containing dust, characterized in that the temperature of the upper surface of the covering layer is maintained at 100° C. or less.

本発明方法は、例えは、第1図に示す如き直接通電式溶
融炉にて重金属含有ダストを処理する際に適用される。
The method of the present invention is applied, for example, when processing heavy metal-containing dust in a direct current melting furnace as shown in FIG.

第1図は直接通電式溶融炉の断面略図で1は例えば5i
n2 Al2O3ZrO2系や5iO2−A1203−
Cr203系の耐火材料、例えば耐火レンガにより密閉
構築された炉本体で、これには廃棄物の消却時に発生し
たダストの投入口2、排気管3、水平方向に出没自在な
電極5.5、上段の溶滓排出口6、下段の溶滓排出ロア
などが設けられている。投入口2は図示矢印の如く上下
に摺動し、ダスト投入高さ可変とされている。また、2
つの溶滓排出口6.7は炉体構造の許容範囲でなるべく
落差をつけて設けられる。上記電極5.5は電圧調整用
電源トランス8を通して交流電流が流され、投入口2か
ら投入されたダストが溶融して、生成した溶融スラグ層
9自体が導体となり、これにジュール熱を発生させ、内
部加熱により溶融状態を保持させる機能をなすものであ
る。その材料の代表例としてはモリブデン電極が、また
他の例として黒鉛、鉄、酸化スズ、タングステン電極な
どがあげられる。第1図の直接通電式溶融処理炉により
、廃棄物焼却炉で発生したダストを処理するに当っては
該ダストをダスト投入口2より炉本体1に入れ、溶融状
態とし、溶融スラグ層9を生成させるが、この場合の溶
融スラグ層9の温度は投入したダストの種類によって異
なるも、およそ1000〜1400℃の範囲である。そ
の際、炉本体1に取り付けである電極5.5を予め溶滓
中に没入させ交流電流を通し、これを導体として発生す
るジュール熱により溶融状態を維持させる。
Figure 1 is a schematic cross-sectional view of a direct current melting furnace, where 1 is, for example, 5i.
n2 Al2O3ZrO2 series and 5iO2-A1203-
The furnace body is hermetically constructed using a Cr203-based refractory material, such as refractory bricks, and includes an inlet 2 for dust generated when extinguishing waste, an exhaust pipe 3, an electrode 5.5 that can be retracted in the horizontal direction, and an upper stage. A slag discharge port 6, a lower slag discharge lower, etc. are provided. The inlet 2 slides up and down as shown by the arrow in the figure, and the dust inlet height is variable. Also, 2
The two slag discharge ports 6.7 are provided with a head difference as much as possible within the allowable range of the furnace structure. An alternating current is passed through the electrode 5.5 through the voltage regulating power transformer 8, and the dust introduced from the inlet 2 is melted, and the generated molten slag layer 9 itself becomes a conductor, which generates Joule heat. , which functions to maintain a molten state by internal heating. A typical example of the material is a molybdenum electrode, and other examples include graphite, iron, tin oxide, and a tungsten electrode. When processing dust generated in a waste incinerator using the direct energization type melting furnace shown in FIG. The temperature of the molten slag layer 9 in this case varies depending on the type of dust introduced, but is in the range of about 1000 to 1400°C. At that time, the electrode 5.5 attached to the furnace body 1 is immersed in the slag in advance and an alternating current is passed through it, and the molten state is maintained by the Joule heat generated using this as a conductor.

このときの電流は投入したダストの性質にもよるが、お
よそ700〜1200KWH/l (被処理物)の範囲
である。溶融スラグN9は主成分が水に難溶性のCab
、A120a、SiO2、F e203等の酸化物より
なり、比重が2.5〜2.9で、融点が1000〜14
00℃と高く、かつ、その温度における粘度が10’c
p程度の物性のものであり、また上記溶融スラグ層9上
方には、溶融スラグ層9と同一組成の未溶融の固化物を
含み、主体が水に可溶性のKCI、NaC1等のアルカ
リ金属の塩類からなり、比重が1.9〜2.1と上記溶
融スラグ層9よりは軽く、かつ、融点が650〜100
0℃で、その温度における粘度がlcpと流動性の極め
て大きい溶融塩層10が形成される。次に溶融スラグ層
9は炉本体1に設けられた2つの溶滓排出口のうち、低
い位置に設けられている下段の単孔体の溶滓排出ロアか
ら出滓させ、無害化された重金属類と共に搬送固化させ
る一方、溶融塩層10は高い位置に設けられた上段の溶
滓排出口6から出滓させその主成分である塩類が水に可
溶性の性質であることを利用して水を満たしたピット(
図示せず)に放出溶解させる。
The current at this time is in the range of approximately 700 to 1200 KWH/l (object to be treated), although it depends on the nature of the applied dust. The main component of molten slag N9 is Cab, which is poorly soluble in water.
, A120a, SiO2, Fe203, etc., with a specific gravity of 2.5 to 2.9 and a melting point of 1000 to 14
As high as 00℃, and the viscosity at that temperature is 10'c
The upper part of the molten slag layer 9 contains an unmelted solidified substance having the same composition as the molten slag layer 9, and is mainly composed of water-soluble alkali metal salts such as KCI and NaCl. The molten slag layer 9 has a specific gravity of 1.9 to 2.1, which is lighter than the molten slag layer 9, and a melting point of 650 to 100.
At 0° C., a molten salt layer 10 is formed which has a viscosity of lcp and extremely high fluidity at that temperature. Next, the molten slag layer 9 is discharged from the lower single-hole slag discharge lower of the two slag discharge ports provided in the furnace body 1, and detoxified heavy metals are removed. The molten salt layer 10 is transported and solidified together with the molten salt layer 10, and the molten salt layer 10 is discharged from the upper slag discharge port 6 provided at a high position, and the water is removed by taking advantage of the fact that the salts, which are the main components of the slag, are soluble in water. Filled pit (
(not shown).

ここで、炉内においては、図示の如く下より順に溶融ス
ラグ層9、溶融塩層10及び未溶融ダストからなるカバ
リング層12が形成されている。
Here, in the furnace, a covering layer 12 consisting of a molten slag layer 9, a molten salt layer 10, and unmelted dust is formed in order from the bottom as shown in the figure.

ここで、カバリング層12は投入口2の下端2aを頂点
とした略円錐状の層となって溶融スラグ9上に安息角に
て堆積形成され、その下部の温度650℃〜1000℃
以上の部分が溶融塩層10となる。カバリング層12の
厚さは投入口2を上下することにより可変調節すること
ができ、表面温度100℃以下となる様に調節される。
Here, the covering layer 12 becomes a substantially conical layer with the lower end 2a of the input port 2 as the apex, and is deposited on the molten slag 9 at an angle of repose, and the temperature of the lower part thereof is 650°C to 1000°C.
The above portion becomes the molten salt layer 10. The thickness of the covering layer 12 can be variably adjusted by moving the input port 2 up and down, and is adjusted so that the surface temperature is 100° C. or less.

即ち、溶融スラグレベル9aが上昇してカバリング層1
2の厚さが減少した場合は、投入口2を上昇させてカバ
リング層12を所定厚さ以上となる様調節することによ
り、表面温度を100℃以下に調節するのである。
That is, the molten slag level 9a increases and the covering layer 1
When the thickness of the covering layer 2 decreases, the surface temperature is adjusted to 100° C. or less by raising the inlet 2 and adjusting the covering layer 12 to a predetermined thickness or more.

尚、溶融スラグレベル9aは、図示しないレベル計又は
マイクロ波検出装置等にて知ることができる。また、炉
壁温度を検出し、例えば、1000℃レベルを知ること
により溶融スラグレベル9aを検出してもよい。さらに
、カバリング層12は投入口2の下端2aを頂点として
安息角にて形成されるため、その最小厚さ位置は図の如
く炉壁との接触部12aになることから、当該位置にて
温度を直接計測して表面温度100℃以下を保てる様に
投入口2の下端2aの高さを調節することとしてもよい
The molten slag level 9a can be determined using a level meter or a microwave detection device (not shown). Alternatively, the molten slag level 9a may be detected by detecting the furnace wall temperature and knowing the 1000° C. level, for example. Furthermore, since the covering layer 12 is formed at an angle of repose with the lower end 2a of the inlet 2 as the apex, its minimum thickness position is at the contact part 12a with the furnace wall as shown in the figure, so the temperature at that position is The height of the lower end 2a of the input port 2 may be adjusted so that the surface temperature can be maintained at 100° C. or less by directly measuring the temperature.

[作用] 上述の如く、カバリング層12の厚さを調節し、例えば
、後述実施例においては厚さ300 mm以上とするこ
とにより、カバリング112表面温度を100℃以下に
保つことができ、溶融スラグ9中に溶融された重金属が
揮散しようとしても、カバリング層12にて冷却捕捉さ
れる。また、表面温度100℃以下とするには相当量の
厚さを要することから、ガス抜けによる偏流の発生が防
止され重金属の揮散が抑えられる。
[Function] As described above, by adjusting the thickness of the covering layer 12 to, for example, 300 mm or more in the examples described later, the surface temperature of the covering 112 can be maintained at 100° C. or less, and the molten slag Even if the heavy metals molten in the metal layer 9 try to volatilize, they are cooled and trapped in the covering layer 12 . Furthermore, since a considerable thickness is required to keep the surface temperature below 100° C., the occurrence of drifting due to outgassing is prevented, and the volatilization of heavy metals is suppressed.

[発明の効果コ 以上の如く、本発明によれは、カバリング層を所定以上
の厚さに調節して表面温度を100℃以下に保つことに
より、有害重金属含有ダストの無害化処理において、こ
れら有害重金属が炉外へ漏出することを防止できる。
[Effects of the Invention] As described above, according to the present invention, by adjusting the thickness of the covering layer to a predetermined thickness or more and keeping the surface temperature below 100°C, dust containing harmful heavy metals can be detoxified. Heavy metals can be prevented from leaking out of the furnace.

[実施例] 次に、本発明の実施例につき説明し、その有益なる効果
を明らかにする。
[Example] Next, an example of the present invention will be described to clarify its beneficial effects.

実施例として、都市ごみ焼却炉にて発生し、電気集塵機
にて捕捉された重金属含有ダストを試料として第1図の
如き直接通電式溶融炉にてカバリング層厚さ100mm
、250mm、300mmの3種の試験を行った結果を
第2図、第3図に示す。
As an example, heavy metal-containing dust generated in a municipal waste incinerator and captured by an electrostatic precipitator was used as a sample, and a covering layer with a thickness of 100 mm was prepared in a direct current melting furnace as shown in Fig. 1.
, 250 mm, and 300 mm. The results of three types of tests are shown in FIGS. 2 and 3.

第2図は、炉内温度分布の計測結果を表し、図示の如く
カバリング層厚300mmの場合は表面温度100℃、
同じ<250mmの場合は200℃。
Figure 2 shows the measurement results of the temperature distribution inside the furnace. As shown in the figure, when the covering layer thickness is 300 mm, the surface temperature is 100 °C,
If the same <250mm, 200℃.

100mmの場合は310℃を示した。尚、カバリング
層厚は、溶融スラグレベル9a上の最小厚さである。
In the case of 100 mm, the temperature was 310°C. Note that the covering layer thickness is the minimum thickness above the molten slag level 9a.

各場合の重金属捕捉率を第3図に示す。The heavy metal capture rates in each case are shown in Figure 3.

図示の如く、カバリング層厚300mm(表面温度10
0℃)の場合には、カバリング層厚100mm、250
mm(表面温度310℃、200℃)の場合に比べ、P
b、Zn、Cd、Hg共に2倍〜3倍と高い捕捉率を呈
した。また、Znにおいてはほぼ全量の揮散防止が可能
である。
As shown in the figure, the covering layer thickness is 300 mm (surface temperature is 10 mm).
0°C), the covering layer thickness is 100mm, 250mm
mm (surface temperature 310℃, 200℃), P
b, Zn, Cd, and Hg all exhibited high capture rates of 2 to 3 times. Further, it is possible to prevent almost the entire amount of Zn from volatilizing.

このことから、カバリング層厚300mm以上、即ち、
カバリング層表面温度100℃以下に保つことにより重
金属の揮散防止効果が著しく向上することがわかる。
From this, it is found that the covering layer thickness is 300 mm or more, that is,
It can be seen that by keeping the surface temperature of the covering layer at 100° C. or lower, the effect of preventing volatilization of heavy metals is significantly improved.

尚、本発明は何ら実施例に限定されるものではなく、そ
の要旨を逸脱しない範囲において種々なる態様を採用で
きる。
It should be noted that the present invention is not limited to the embodiments in any way, and various embodiments can be adopted without departing from the gist thereof.

例えは、冷却帯11にて炉壁に沿う部分を冷却すること
により、カバリング層12の最小厚さ部分の溶融スラグ
レベル9aが上昇することを抑制してカバリング層12
の厚さが減少することを防止することとしてもよい。
For example, by cooling the portion along the furnace wall in the cooling zone 11, the molten slag level 9a of the minimum thickness portion of the covering layer 12 is suppressed from rising, and the covering layer 12 is cooled.
It is also possible to prevent the thickness from decreasing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いた直接通電式溶融炉の概略断面図
、第2図は実施例の温度分布計測結果のグラフ、第3図
は同じく重金属捕捉率のグラフである。 1・・・炉本体 2・・・投入口 3・・・排気管 6・・・上段排出口 8・・・電圧調整用電源 9・・・溶融スラグ 2a・・・下端 5・・・電極 7・・・下段排出口 トランス 9a・・・溶融スラグレベル l 0・・・溶融塩 1・・・冷却帯 12・・・カバリング層
FIG. 1 is a schematic cross-sectional view of the direct current melting furnace used in the example, FIG. 2 is a graph of the temperature distribution measurement results of the example, and FIG. 3 is a graph of the heavy metal capture rate. 1 Furnace body 2 Input port 3 Exhaust pipe 6 Upper discharge port 8 Voltage adjustment power supply 9 Molten slag 2a Lower end 5 Electrode 7 ...lower discharge outlet transformer 9a...molten slag level l 0...molten salt 1...cooling zone 12...covering layer

Claims (1)

【特許請求の範囲】[Claims] 直接通電式溶融炉にて、廃棄物焼却炉から発生する重金
属含有ダストを処理するに当たり、炉内の溶滓上に未溶
融のダストによるカバリング層を形成する重金属含有ダ
ストの処理方法において、上記カバリング層の上面温度
を100℃以下に保つことを特徴とする重金属含有ダス
トの処理方法。
In a method for processing heavy metal-containing dust generated from a waste incinerator in a direct current melting furnace, the above-mentioned covering method is used to form a covering layer of unmelted dust on the slag in the furnace. A method for treating dust containing heavy metals, characterized by keeping the temperature of the upper surface of the layer below 100°C.
JP25041288A 1988-10-04 1988-10-04 Disposing method for heavy metal-contained dust Pending JPH0297816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25041288A JPH0297816A (en) 1988-10-04 1988-10-04 Disposing method for heavy metal-contained dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25041288A JPH0297816A (en) 1988-10-04 1988-10-04 Disposing method for heavy metal-contained dust

Publications (1)

Publication Number Publication Date
JPH0297816A true JPH0297816A (en) 1990-04-10

Family

ID=17207508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25041288A Pending JPH0297816A (en) 1988-10-04 1988-10-04 Disposing method for heavy metal-contained dust

Country Status (1)

Country Link
JP (1) JPH0297816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229725A (en) * 1988-12-13 1990-09-12 Sorg Gmbh & Co Kg Method for operating glass melting furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229725A (en) * 1988-12-13 1990-09-12 Sorg Gmbh & Co Kg Method for operating glass melting furnace
JPH059378B2 (en) * 1988-12-13 1993-02-04 Betairigungen Zoruku Gmbh Unto Co Kg

Similar Documents

Publication Publication Date Title
AU729180B2 (en) Process for the vitrification of a pulverulent material and apparatus for implementing the process
JPH0297816A (en) Disposing method for heavy metal-contained dust
KR100219827B1 (en) Method for melting incineration residue and apparatus therefor
JPH067007B2 (en) Waste melting furnace slag facility
JP3744669B2 (en) Ash melting furnace
JPH0730893B2 (en) Incinerator ash melting device
JP3714384B2 (en) Ash melting furnace
JP3039590B2 (en) Plasma melting furnace and operation method thereof
JP2722529B2 (en) Detoxification method for heavy metal-containing dust
JP3253508B2 (en) Melting method of incinerated ash and fly ash
JP3589263B2 (en) Melting furnace for incineration residues containing salts
JP2009045561A (en) Rotary kiln and its operation method
JP4469751B2 (en) Waste melting method and apparatus
JP3921784B2 (en) Ash melting furnace
JPH1038247A (en) Melting furnace for incineration residue including salts
JPH046439B2 (en)
JP3743473B2 (en) Ash melting furnace tapping apparatus and tapping method
JP4174716B2 (en) Salt discharge method in ash melting furnace
JPS5819619A (en) Processing furnace for fusing waste
JPH06257725A (en) Plasma melting furnace and its operating method
JPH0755119A (en) Electric resistance melting furnace and its operation
JPH04354575A (en) Method for adjusting viscosity of molten slag
JP3195145B2 (en) Incineration ash melting and solidifying equipment
JPH07332864A (en) Waste melting furnace
JP2002059123A (en) Method of melting fly ash, incineration ash or waste