JPH029780B2 - - Google Patents

Info

Publication number
JPH029780B2
JPH029780B2 JP61202682A JP20268286A JPH029780B2 JP H029780 B2 JPH029780 B2 JP H029780B2 JP 61202682 A JP61202682 A JP 61202682A JP 20268286 A JP20268286 A JP 20268286A JP H029780 B2 JPH029780 B2 JP H029780B2
Authority
JP
Japan
Prior art keywords
fermentation
lactic acid
substrate
conductivity
milk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61202682A
Other languages
Japanese (ja)
Other versions
JPS6359838A (en
Inventor
Hisashi Kawamoto
Koji Watanabe
Setsuro Kojima
Rika Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Corp
Original Assignee
DKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp filed Critical DKK Corp
Priority to JP20268286A priority Critical patent/JPS6359838A/en
Publication of JPS6359838A publication Critical patent/JPS6359838A/en
Publication of JPH029780B2 publication Critical patent/JPH029780B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

ア 産業上の利用分野 本発明は、乳酸菌及び乳酸菌と酵母を用いて醗
酵する食品の製造に係るものである。乳酸菌と酵
母により醗酵する食品の製造工程にあつて、醗酵
基質中の導電率を連続的に測定することにより、
常に一定の酸度、PHあるいは組織風味の醗酵食品
を収得することを目的とする。 イ 従来技術及びその問題点 乳酸菌及び又は酵母を利用し、醗酵させた食品
は多数である。例えば醗酵乳(ヨーグルト)、乳
酸菌飲料及びカルピスのような殺菌濃厚乳酸菌飲
料等がこれにあたり、世界的にみればケフイア、
クーミス等の乳酒がある。これらのものの製造方
法は、種類により、地域により、多種多様なもの
があり一様に論じることはできないが、一般的に
は次のような製造工程として知られている。 牛乳、脱脂乳に脱脂粉乳、濃縮乳等の乳製品を
補強添加する、あるいはこれら粉乳、濃縮乳、ク
リームなどの乳製品を還元したもの等の乳性原料
を主原料とし、必要に応じて、果汁、糖類、ゲル
化剤等を副原料とし、調合混和する。このものを
常法に従い、均質化、殺菌処理をなし、40〜45℃
に冷却後、ラクトバチルス、ブリガリカス
(Lactobacillus bulgaricus)と、ストレプトコ
ツカス、サーモフイラス(Streptococcus
thermophilus)の混合スターター又は、ラクト
バチルス、ユーグルチ(Lactobacillus jugurti)
の単独スターターを2〜3%接種し、乳酸醗酵さ
せることによつて製造される。 酵母を使用するケフイア、クーミス等にあつて
は、乳酸菌とともにキヤンデイダ、ケフイア
(Candida kefyr)等を同時に接種し、乳酸醗酵
とともに、酵母菌によるアルコール醗酵をさせて
製造するのである。 醗酵の停止は、通常醗酵培養されている基質の
冷却、又は過熱殺菌により行なわれるが、醗酵停
止時を決める判定は、乳酸酸度の測定、又はPHの
測定をもつて行なわれる。然し乍ら、これらの測
定による醗酵停止時の判定には欠点が多い。乳酸
酸度を判定し、醗酵停止時を判定する場合は、醗
酵されている基質の一部をサンプリングし、乳酸
酸度を測定するのであるが、サンプリングの時期
を誤ると、醗酵が進みすぎて、酸度が高くなり酢
つぱすぎたものとなり、アルコール臭が強くなつ
たりして品質を損なうことがある。また、滴定に
よる乳酸酸度の測定には手間がかかる。PHを測定
し、醗酵停止時を判定する場合は、PHメーターの
電極を醗酵されている基質中に取り付けて、連続
的にPH変化を監視すれば、醗酵停止時の判定を誤
ることはないが、PH電極はその構造上、電極の内
部液(塩化銀又は水銀を含有している)が微量で
はあるが基質中に流出するため、食品製造用の機
器としては不適当である。 ウ 問題点を解決するための手段 このような課題を解決するために、発明者は微
生物が代謝増殖する過程において、培地中の電解
質量が増し、導電率(コンダクタンス)が上昇す
る現象に着目した。導電率の測定は、PH測定の場
合と同様に、基質の醗酵を連続的に管理できると
ともに、PH測定のときのような電極の内部液の醗
酵基質中への流出といつた現象の全くない方法で
ある。 導電率を測定する場合、大別して2つの方法が
ある。1つは検出端に金属を用いて、金属自体が
直接醗酵基質に接触することにより導電率を測定
するもので、他の1つはトランスを絶縁材料で覆
つたものを検出端として、醗酵基質に接触させた
場合に、トランス間に流れる誘導電流から醗酵基
質の導電率を測定する電磁誘導を利用したもので
ある。 一般に基質内の導電率が小さい時は、前者の測
定法により、導電率が大きい時は、後者の測定法
によるが、いずれであつても醗酵基質内の導電率
を測定することにかわりはない。 エ 作用 牛乳等の乳性原料を主原料とし、常法に従い殺
菌処理その他をなし、乳酸菌及び又は酵母を接種
し醗酵すると、基質中の糖類が乳酸菌により分解
され、有機酸、炭酸ガス、アルコール等へと変化
する。この変化は電解質量の増大となり、導電率
が上昇する。あらかじめ求める乳酸酸度、PH、糖
の消費量、風味と、導電率との相関を求めておけ
ば醗酵停止時の判定を誤ることはない。 以下具体的な実施例にもとづき説明する。 オ 実施例 生乳を常法通り、150Kg/cm2で均質化し、120℃
2秒間の加熱殺菌し、これを冷却し、43℃に保持
し醗酵基質(ベース)とした。これにラクトバチ
ルス、ブリガリカスとストレプトコツカス、サー
モフイラスの等比混合スターターを3.0%(V/
V)接種し、均一に撹拌後、43℃に保持し醗酵さ
せた。このとき導電率計を醗酵タンク内部に設置
しておき、醗酵工程中の導電率の変化と、乳酸酸
度、PH及び温度の変化を併せて測定した。結果は
第1表に示した通りであり、これを図示したのが
第1図である。
A. Field of Industrial Application The present invention relates to the production of foods that are fermented using lactic acid bacteria and lactic acid bacteria and yeast. In the manufacturing process of foods that are fermented with lactic acid bacteria and yeast, by continuously measuring the electrical conductivity in the fermentation substrate,
The aim is to obtain fermented foods with constant acidity, pH, or texture. B. Prior art and its problems There are many foods that are fermented using lactic acid bacteria and/or yeast. Examples include fermented milk (yoghurt), lactic acid bacteria drinks, and sterilized concentrated lactic acid bacteria drinks such as Calpis.
There are milk liquors such as Kumis. The manufacturing methods for these products vary depending on the type and region, and cannot be discussed uniformly, but the following manufacturing processes are generally known. Dairy products such as skim milk powder and concentrated milk are added to milk and skim milk for reinforcement, or dairy products such as milk powder, concentrated milk, cream, etc. are reduced as the main raw material, and as necessary, Fruit juice, sugar, gelling agent, etc. are used as auxiliary raw materials and mixed together. This material is homogenized and sterilized according to conventional methods, and heated to 40 to 45℃.
After cooling, Lactobacillus bulgaricus, Streptococcus, Streptococcus
mixed starter of Lactobacillus thermophilus or Lactobacillus jugurti
It is produced by inoculating 2 to 3% of a single starter and carrying out lactic acid fermentation. In the case of kefir, kefyr, etc., which use yeast, they are produced by simultaneously inoculating lactic acid bacteria with Candida kefyr, etc., and carrying out lactic acid fermentation and alcohol fermentation using yeast bacteria. Fermentation is usually stopped by cooling the substrate being cultured for fermentation or by heating and sterilizing it, but the determination of when to stop fermentation is made by measuring the acidity of lactic acid or the pH. However, there are many drawbacks to determining when fermentation has stopped using these measurements. To determine lactic acid acidity and determine when fermentation has stopped, a portion of the fermented substrate is sampled and the lactic acid acidity is measured. However, if sampling is done at the wrong time, fermentation may proceed too much and the acidity may drop. This can lead to a higher level of alcohol content, resulting in a product that is too vinegary and has a strong alcohol odor, which can impair its quality. Furthermore, measuring lactic acid acidity by titration is time-consuming. When measuring PH and determining when fermentation has stopped, attaching the electrode of the PH meter to the fermented substrate and continuously monitoring the PH changes will prevent errors in determining when fermentation has stopped. Due to its structure, PH electrodes are unsuitable as food manufacturing equipment because the internal liquid of the electrode (containing silver chloride or mercury) leaks into the substrate, albeit in a small amount. C. Means for solving the problems In order to solve these problems, the inventor focused on the phenomenon that during the metabolic growth process of microorganisms, the amount of electrolyte in the culture medium increases and the conductance increases. . Conductivity measurement allows continuous control of the fermentation of the substrate in the same way as PH measurement, and there is no phenomenon such as leakage of the internal liquid of the electrode into the fermentation substrate as in PH measurement. It's a method. When measuring electrical conductivity, there are roughly two methods. One method uses a metal as the detection end, and the metal itself directly contacts the fermentation substrate to measure the conductivity. This method uses electromagnetic induction to measure the conductivity of the fermentation substrate from the induced current flowing between the transformers when the substrate is brought into contact with the transformer. Generally, when the conductivity in the substrate is small, the former method is used, and when the conductivity is large, the latter method is used, but in either case, the conductivity in the fermentation substrate is still measured. . D. Effect When milk or other raw materials are used as the main raw material, sterilized according to conventional methods, inoculated with lactic acid bacteria and/or yeast, and fermented, the sugars in the substrate are decomposed by the lactic acid bacteria, resulting in organic acids, carbon dioxide, alcohol, etc. Changes to. This change results in an increase in the amount of electrolyte, leading to an increase in electrical conductivity. If you calculate the correlation between the lactic acid acidity, PH, sugar consumption, flavor, and conductivity in advance, you will not make a mistake in determining when to stop fermentation. A description will be given below based on specific examples. Example: Raw milk was homogenized at 150Kg/ cm2 in the usual manner, and heated to 120℃.
The mixture was heat sterilized for 2 seconds, cooled, and kept at 43°C to serve as a fermentation substrate (base). To this, add a 3.0% (V/
V) After inoculating and stirring uniformly, the mixture was kept at 43°C and fermented. At this time, a conductivity meter was installed inside the fermentation tank, and changes in conductivity during the fermentation process as well as changes in lactic acid acidity, PH, and temperature were measured. The results are shown in Table 1, which is illustrated in FIG.

【表】 醗酵のなかで、導電率10500μS/cmのところで
急冷し、醗酵を停止した。このとき乳酸酸度0.8
%で風味的にも良好なものであつた。 カ 効果 このように導電率を連続的に測定することによ
り、醗酵停止時の測定を誤ることなく、また従来
法に比べて衛生的であり、かつ簡便なものであつ
た。
[Table] During fermentation, the fermentation was stopped by rapid cooling when the conductivity reached 10,500 μS/cm. At this time, lactic acid acidity is 0.8
%, and the flavor was also good. Effects By measuring the electrical conductivity continuously in this way, there was no error in the measurement when the fermentation was stopped, and it was more hygienic and simpler than the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は醗酵工程中の導電率、乳酸酸度、
PH及び温度の変化を示したものである。 −〇−……導電率 −●−……乳酸酸度 −△−……PH −▲−……温度
Figure 1 shows the electrical conductivity, lactic acid acidity, and
This shows changes in pH and temperature. −〇−……Conductivity −●−……Lactic acid acidity −△−……PH −▲−……Temperature

Claims (1)

【特許請求の範囲】[Claims] 1 牛乳、脱脂乳等の乳性原料に、要すれば果
汁、蔗糖、ゲル化剤等を添加した基質に、乳酸菌
及び又は酵母を使用して醗酵する過程で、基質中
の導電率(コンダクタンス)の変化を連続的に測
定することにより醗酵停止時を知る食品の醗酵管
理法。
1. In the process of fermentation using lactic acid bacteria and/or yeast on a substrate prepared by adding fruit juice, sucrose, gelling agent, etc. to a dairy raw material such as milk or skim milk, the electrical conductivity (conductance) in the substrate is determined. A food fermentation management method that allows you to know when fermentation has stopped by continuously measuring changes in .
JP20268286A 1986-08-30 1986-08-30 Method for controlling fermentation of food Granted JPS6359838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20268286A JPS6359838A (en) 1986-08-30 1986-08-30 Method for controlling fermentation of food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20268286A JPS6359838A (en) 1986-08-30 1986-08-30 Method for controlling fermentation of food

Publications (2)

Publication Number Publication Date
JPS6359838A JPS6359838A (en) 1988-03-15
JPH029780B2 true JPH029780B2 (en) 1990-03-05

Family

ID=16461407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20268286A Granted JPS6359838A (en) 1986-08-30 1986-08-30 Method for controlling fermentation of food

Country Status (1)

Country Link
JP (1) JPS6359838A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100193465B1 (en) * 1993-12-28 1999-06-15 가타야마 도루 Packing Equipment
AU702567B2 (en) * 1996-03-13 1999-02-25 Novozymes Biopharma Dk A/S Fermentation control
DE59803273D1 (en) 1997-12-18 2002-04-11 Karl Keller FOOD PACKAGING AND COOKING METHOD FOR FOOD
JP5959142B2 (en) * 2010-08-23 2016-08-02 株式会社明治 In-line continuous measurement method and measuring apparatus for overrun of food and drink, and method for producing food and drink using the measurement method
JP5717084B2 (en) * 2010-08-23 2015-05-13 株式会社明治 In-line continuous measurement method and measuring apparatus for overrun of food and drink, and method for producing food and drink using the measurement method
JP6288457B2 (en) * 2014-12-25 2018-03-07 三井金属計測機工株式会社 Acidity measuring apparatus and method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CLINICAL MICROBIOLOGY=1978 *
JOURNAL OF FOOD PROTECTION=1985 *
NEW FOOD INDUSTRY=1978 *
NEW FOOD INDUSTRY=S53 *
TECHNICAL HANDBOOK OF MILK INDUSTRY=1977 *

Also Published As

Publication number Publication date
JPS6359838A (en) 1988-03-15

Similar Documents

Publication Publication Date Title
Tian et al. Effects of 4 probiotic strains in coculture with traditional starters on the flavor profile of yogurt
Nagaoka Yogurt production
Marshall et al. Methods for making kefir and fermented milks based on kefir
Beal et al. Combined effects of culture conditions and storage time on acidification and viscosity of stirred yogurt
Serra et al. Flavour profiles and survival of starter cultures of yoghurt produced from high-pressure homogenized milk
Vénica et al. Organic acids profiles in lactose-hydrolyzed yogurt with different matrix composition
Amani et al. The effect of proteolytic activity of starter cultures on technologically important properties of yogurt
Phalip et al. A method for screening diacetyl and acetoin‐producing bacteria on agar plates
EA028377B1 (en) Antimicrobial composition
CN108835258A (en) A kind of Low acid high protein fermentation cream and its production method
EP2175737A2 (en) Method for producing an acidified milk drink
JPH029780B2 (en)
WO2018151249A1 (en) Production method for low-acid fermented milk
Jordan et al. Production of acetolactate by Streptococcus diacetylactis and Leuconostoc spp.
Hansen et al. Saccharomyces cerevisiae as a starter culture in Mycella
Walsh et al. Diacetyl, acetoin, and acetaldehyde production by mixed-species lactic starter cultures
Shahani et al. B-Complex Vitamin Content of Cheese, II. Niacin, Pantothenic Acid, Pyridoxine, Biotin, and Folic Acid
ISMAIL et al. A beverage from separated buffalo milk fermented with kefir grains
JP2024518801A (en) Method for producing fermented milk products with improved texture and reduced post-acidification
CN114532400A (en) Streptococcus thermophilus and yoghourt prepared by using same
Marshall et al. Yoghurt made from single starter organisms using heat-or enzyme-treated milk or milk to which casein hydrolysate or sodium formate is added
Beyene et al. Evaluation of new isolates of lactic acid bacteria as a starter for cultured milk production
Mohammad et al. Influence of some polyvalent organic acids and salts on the colloidal stability of milk
Rysstad et al. Fermentation of goat's milk by two DL-type mixed strain starters
RU2698079C1 (en) Lactose-free yoghurt production method