JPH0297635A - Die alloy for hot press forming - Google Patents
Die alloy for hot press formingInfo
- Publication number
- JPH0297635A JPH0297635A JP24830588A JP24830588A JPH0297635A JP H0297635 A JPH0297635 A JP H0297635A JP 24830588 A JP24830588 A JP 24830588A JP 24830588 A JP24830588 A JP 24830588A JP H0297635 A JPH0297635 A JP H0297635A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- press forming
- hot press
- contg
- die alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 35
- 239000000956 alloy Substances 0.000 title claims abstract description 35
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 229910052758 niobium Inorganic materials 0.000 abstract description 2
- 230000000737 periodic effect Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 11
- 238000003466 welding Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000005266 casting Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- 229910001315 Tool steel Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は鋼片の熱間プレス成形に使用される金型の材料
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a material for a mold used for hot press forming of steel billets.
鋼片の熱間プレス成形用金型として、従来よりJIS
G4404 5KD6(0,37C−5Cr−1,25
Mo−0,4V−Fe)等の合金工具鋼の鍛造材、また
はJIS G4303 S U 5431 (0,I
C−16Cr −2Ni−0,5Mo)等のマンテンサ
イド系ステンレス鋼の鋳造材等が使用されてきた。JIS has been used as a mold for hot press forming of steel pieces.
G4404 5KD6 (0,37C-5Cr-1,25
Forged material of alloy tool steel such as Mo-0,4V-Fe) or JIS G4303 S U 5431 (0,I
Cast materials of mantenside stainless steel such as C-16Cr-2Ni-0,5Mo) have been used.
近時、熱間プレス成形の高温・高速度化が進み、これに
使用される金型は、表面温度の上−昇、約850°C前
後の高温度からの急冷の繰返し等、苛酷な使用環境にさ
らされている。このため、合金工具鋼の鍛造材やマンテ
ンサイド系ステンレス鋼鋳造材からなる従来の金型では
、熱疲労による劣化が早く、そのメンテナンスに大きな
負担を強いられている。In recent years, hot press forming has become hotter and faster, and the molds used for this process have to undergo harsh use, such as rising surface temperatures and repeated rapid cooling from high temperatures of around 850°C. exposed to the environment. For this reason, conventional molds made of alloy tool steel forgings or mantenside stainless steel castings deteriorate quickly due to thermal fatigue, and their maintenance is a heavy burden.
本発明は、近時のプレス成形の高温・高速度化に耐える
熱疲労特性の改良された金型用合金を提供するものであ
る。The present invention provides an alloy for molds with improved thermal fatigue properties that can withstand the high temperatures and speeds of recent press forming.
【課題を解決するための手段および作用〕本発明の熱間
プレス成形用金型合金は、C: 0.05〜0.25%
、Cr:10〜30%、Mo:0゜5〜10%、Fe:
5%以下、残部実質的にNi、またはNtの一部が、N
b:0.5〜10%、Ti:0.1〜1%、/l:o、
5〜10%、B+Zr:0.1〜1%の群から選ばれる
1種ないしは2種以上の元素、合計10%以下で置換さ
れた化学成分組成を有するNi基合金である。[Means and effects for solving the problems] The hot press forming mold alloy of the present invention contains C: 0.05 to 0.25%.
, Cr: 10~30%, Mo: 0°5~10%, Fe:
5% or less, the remainder is substantially Ni or a part of Nt is N
b: 0.5-10%, Ti: 0.1-1%, /l:o,
It is a Ni-based alloy having a chemical composition in which one or more elements selected from the group of 5 to 10% and B+Zr: 0.1 to 1% are substituted in a total of 10% or less.
本発明合金の成分限定理由は次のとおりである。The reasons for limiting the components of the alloy of the present invention are as follows.
N i : Ba1ance
Nuは、高温強度にすぐれた金属であり、Crとの合金
化により本発明合金を高温耐酸化性にすぐれたものとし
、またTi、Ajl!等の元素と合金化して析出強化作
用による高温強度の向上に大きな効果を示す。Ni: Balance Nu is a metal with excellent high-temperature strength, and when alloyed with Cr, the alloy of the present invention has excellent high-temperature oxidation resistance. When alloyed with other elements, it has a great effect on improving high-temperature strength through precipitation strengthening.
C: 0.05〜0.25%
Cは、合金の強度確保のために、少なくとも0゜05%
を必要とする。しかし、0.25%をこえると、靭性の
低下を不足をきたすので、0.25%を上限とする。C: 0.05-0.25% C is at least 0.05% to ensure the strength of the alloy.
Requires. However, if it exceeds 0.25%, the toughness decreases, so the upper limit is set at 0.25%.
Cr:10へ30%
Crは、合金表面に高温で安定な酸化皮膜を形成し、合
金の耐酸化性を高める。この効果を得るために10%以
上の添加を必要とする。しかし、30%をこえると、靭
性の低下をまねく。よって10〜30%とする。Cr: 10 to 30% Cr forms an oxide film that is stable at high temperatures on the alloy surface and increases the oxidation resistance of the alloy. To obtain this effect, addition of 10% or more is required. However, if it exceeds 30%, it will lead to a decrease in toughness. Therefore, it is set at 10 to 30%.
Mo:0.5〜10%
Moは、オーステナイトに固溶しマトリックスの強化に
奏効する。その効果は0.5%以上の添加により得られ
るが、10%をこえると、耐酸化性および靭性の低下の
原因となる。このため、0.5〜10%とする。Mo: 0.5-10% Mo is dissolved in austenite and is effective in strengthening the matrix. This effect can be obtained by adding 0.5% or more, but if it exceeds 10%, it causes a decrease in oxidation resistance and toughness. Therefore, the content is set at 0.5 to 10%.
Fe二5%以下
Feは、本発明合金の構成成分として必要な元素ではな
く、合金製造上不可避的に付随する不純分元素である。Fe25% or less Fe is not a necessary element as a constituent of the alloy of the present invention, but is an impurity element that inevitably accompanies the production of the alloy.
この不純分の混入許容上限が高い程、原料選別・製錬・
コスト等の面で有利である。The higher the allowable upper limit of contamination of impurities, the higher the
This is advantageous in terms of cost, etc.
本発明合金においては、5%までであれば、高温強度や
耐酸化性に影響を与えないので、5%を−L限として混
在を許容する。In the alloy of the present invention, up to 5% does not affect high temperature strength or oxidation resistance, so 5% is allowed as the -L limit.
本発明合金は所望により添加される以下の元素の1種ま
たは2挿具」−を含有する。2種以上の元素を複合含有
する場合の合計量の上限を10%としたのは、それを越
えると、強化作用のほか、耐酸化性の低下、非金属介在
物の増加による強度低下、および流動性低下等による製
造性の低下等をきたすからである。The alloy of the present invention contains one or two of the following elements added as desired. The reason why the upper limit for the total amount of two or more elements is set at 10% is that if it exceeds the upper limit, in addition to the strengthening effect, oxidation resistance will decrease, strength will decrease due to an increase in non-metallic inclusions, and This is because manufacturability is lowered due to lower fluidity and the like.
Nb:0.5〜10%
Nbは、炭化物を形成し、その析出硬化作用により合金
の高温強度を高める。その効果は0.5%以上の添加に
より得られるが、10%をこえると合金の耐酸化性が低
くなるので、10%を上限とする。Nb: 0.5-10% Nb forms carbides and increases the high-temperature strength of the alloy due to its precipitation hardening effect. This effect can be obtained by adding 0.5% or more, but if it exceeds 10%, the oxidation resistance of the alloy decreases, so 10% is the upper limit.
T i : 0.1〜1%
Tiは、合金溶製時の脱酸作用、および細晶粒微細化作
用により合金の強度を高める。その効果は0,1%以上
の添加によりあられれる。しかし、1%をこえると、却
って強度の低下を招くので、1%をこえてはならない。Ti: 0.1 to 1% Ti increases the strength of the alloy by deoxidizing the alloy and refining the crystal grains. The effect can be obtained by adding 0.1% or more. However, if it exceeds 1%, the strength will deteriorate, so it should not exceed 1%.
AE:0.5〜10%
AEは、高温域において安定な酸化皮膜を形成し、合金
の耐酸化性改善に著効を奏する。この安定な酸化皮膜の
形成は0.5%以上の添加により可能となる。しかし1
0%をこえると、合金溶湯の流動性が悪くなり、鋳造性
が損なわれるので10%を上限とする。AE: 0.5 to 10% AE forms a stable oxide film in a high temperature range and is highly effective in improving the oxidation resistance of the alloy. Formation of this stable oxide film becomes possible by adding 0.5% or more. But 1
If it exceeds 0%, the fluidity of the molten alloy deteriorates and castability is impaired, so the upper limit is set at 10%.
B+Zr:0.1〜1%
BおよびZrは、脱酸、脱窒、および脱硫作用により合
金の高温強度改善に寄与する。この効果はBとZrの合
計ff10.1%以上の添加によりあらられるが、1%
をこえると、非金属介在物の増量により清浄度が低下し
、強度低下をきたすので、1%を上限とする。なお、B
とZrとを複合使用することとしたのは、単独使用の場
合に比べて、高温強度(クリープ速度、ラブチャー時間
、およびクリープ伸び)に対する影響が大きいからであ
る。この点から、ZrとBの複合割合は、l:3〜1:
5(重量比)とするのが好ましい。B+Zr: 0.1-1% B and Zr contribute to improving the high-temperature strength of the alloy through deoxidation, denitrification, and desulfurization effects. This effect appears when the total ff of B and Zr is added at 10.1% or more, but when 1%
If it exceeds 1%, the cleanliness will decrease due to an increase in the amount of non-metallic inclusions, and the strength will decrease, so the upper limit is set at 1%. In addition, B
The reason why it was decided to use a combination of Zr and Zr is that their influence on high temperature strength (creep rate, Loveture time, and creep elongation) is greater than when they are used alone. From this point, the composite ratio of Zr and B is 1:3 to 1:
5 (weight ratio) is preferable.
本発明合金からなる熱間プレス成形用金型は、鋳造(置
注鋳造、加圧鋳造等)により、または鍛造(加工温度:
約1100〜1200°C)により製造することができ
る。また別法として、本発明合金を溶接材料として使用
し、別途準備された他種材料(例えばJIS G 44
045KD−6、同G 4303 S U 3431等
)の表面に溶接肉盛を行って肉盛層(例えば層厚5〜3
0mm)で被覆された金型として製造することもできる
。溶接肉盛を行う場合の肉盛材料の形態は任意であるが
、例えば、合金粉末(平均粒径約100μm前後であっ
てよい)をフープ(例えばニッケルフープ)に充填し、
スウエージング加工を施したコアードワイヤとして使用
される。そのほか粉末のまま、または棒状の肉盛材とし
て使用することもむろん可能であり、肉盛施工は肉盛材
料の形態に応じてMIG溶接、TIG溶接、被覆アーク
溶接、プラズマ粉体溶接法等により行えばよい。A mold for hot press forming made of the alloy of the present invention can be produced by casting (in-place casting, pressure casting, etc.) or by forging (processing temperature:
(approximately 1100 to 1200°C). Alternatively, the alloy of the present invention may be used as a welding material, and other materials prepared separately (for example, JIS G 44
045KD-6, G 4303 S U 3431, etc.) by welding overlay on the surface of the overlay (for example, layer thickness 5 to 3).
It can also be manufactured as a mold coated with 0mm). The form of the overlay material when performing weld overlay is arbitrary, but for example, alloy powder (which may have an average particle size of about 100 μm) is filled into a hoop (for example, a nickel hoop),
Used as cored wire with swaging process. In addition, it is of course possible to use it as a powder or as a bar-shaped overlay material, and overlay construction can be performed by MIG welding, TIG welding, covered arc welding, plasma powder welding, etc. depending on the form of the overlay material. Just go.
裏施拠上
電気炉溶製した合金溶湯を置注鋳造に付し、その鋳造材
(キールブロック)に機械加工を加えて円柱状試験片(
Φ10 X 1201 、 mm)を調製した。The molten alloy melted in an electric furnace on the back side is cast in place, and the cast material (keel block) is machined to create a cylindrical test piece (
Φ10×1201 mm) was prepared.
比較例としてマルテンサイト系ステンレス鋳造材、およ
びオリジナル材であるJISSKD6相当の鍛造材から
それぞれ試験片を調製した。As a comparative example, test pieces were prepared from a martensitic stainless steel cast material and a forged material equivalent to JISSKD6, which is an original material.
各試験片について、850°Cに加熱後、水冷(50°
C)する操作を繰返しピッチ19秒で行い、熱疲労によ
る破断が生じるまでの反復回数(破断回数)を求めた。For each test piece, after heating to 850°C, water cooling (50°
The operation described in C) was repeated at a repetition pitch of 19 seconds, and the number of repetitions (number of times of rupture) until rupture due to thermal fatigue occurred was determined.
第1表に各供試材の化学成分組成と熱疲労試験結果を示
す。rB+ZrJ欄の()内はB%である。賦香(Na
) 1〜10は発明例、Nα101はマルテンサイト系
ステンレス鋼、Nα102は5KD6相当材である。Table 1 shows the chemical composition and thermal fatigue test results of each sample material. The value in parentheses in the rB+ZrJ column is B%. Incense (Na)
) 1 to 10 are invention examples, Nα101 is martensitic stainless steel, and Nα102 is a material equivalent to 5KD6.
裏腹1
電気炉溶製した合金溶湯をアトマイズ法により粉末化し
、篩分けして平均粒径100μmの粉末を得、ニッケル
フープに充填しスウエージング加工を加えてコアードワ
イヤを調製した。これを肉盛材料とし、別途準備した5
KD6相当材からなる円柱状ブロックにMIG溶接法に
よる肉盛溶接を行って試験片(Nα21〜26)を製作
した。試験片の肉盛層厚(機械加工後)は7fflI1
1である。Underside 1 A molten alloy melted in an electric furnace was pulverized by an atomization method, sieved to obtain a powder with an average particle size of 100 μm, filled into a nickel hoop, and subjected to swaging processing to prepare a cored wire. This was used as overlay material and prepared separately.
Test pieces (Nα21 to 26) were fabricated by overlay welding using the MIG welding method on a cylindrical block made of a material equivalent to KD6. The build-up layer thickness of the test piece (after machining) is 7fflI1
It is 1.
各試験片につき、実施例1と同様の加熱・急冷を繰返す
熱疲労試験を行って破断回数を求めた。Each test piece was subjected to a thermal fatigue test in which heating and rapid cooling were repeated in the same manner as in Example 1 to determine the number of times it broke.
第2表に各試験片の肉盛層の化学成分組成と試験結果を
示す。Table 2 shows the chemical composition of the build-up layer of each test piece and the test results.
第1表および第2表に示したように、発明例はマルテン
サイト系ステンレス鋼(第1表Nα101)の約15〜
20倍以上、また合金工具鋼(第1表Nα102)の約
6〜10倍にも及ぶ耐熱疲労特性を有している。As shown in Tables 1 and 2, the invention examples are made of martensitic stainless steel (Nα101 in Table 1) of about 15 to
It has thermal fatigue resistance that is 20 times or more, and about 6 to 10 times that of alloy tool steel (Nα102 in Table 1).
〔発明の効果〕
本発明合金を用いて鋳造、鍛造または溶接肉盛等により
製造される熱間プレス成形用金型は、従来のステンレス
鋼や合金工具鋼1からなる金型を大きく凌く耐熱疲労特
性を有しており、近時の高温高速度プレス成形操業にお
いて安定した反復使用が可能であり、熱間プレス成形の
効率化・金型メンテナンスの軽減に大きく寄与する。[Effects of the Invention] The hot press forming mold manufactured by casting, forging, welding, etc. using the alloy of the present invention has a heat resistance that greatly exceeds that of conventional molds made of stainless steel or alloy tool steel 1. It has fatigue properties and can be used repeatedly and stably in modern high-temperature, high-speed press forming operations, greatly contributing to improving the efficiency of hot press forming and reducing mold maintenance.
出191人 久保田鉄工株式会社191 people Kubota Iron Works Co., Ltd.
Claims (1)
Mo:0.5〜10%、Fe:5%以下、残部実質的に
Niからなる熱間プレス成形用金型合金。 2、C:0.05〜0.25%、Cr:10〜30%、
Mo:0.5〜10%、Fe:5%以下、およびNb:
0.5〜10%、Ti:0.1〜1%、Al:0.5〜
10%、B+Zr:0.1〜1%から選ばれる1種ない
し2種以上の元素、合計10%以下、残部実質的にNi
からなる熱間プレス成形用金型合金。[Claims] 1. C: 0.05-0.25%, Cr: 10-30%,
A hot press forming die alloy consisting of Mo: 0.5 to 10%, Fe: 5% or less, and the remainder substantially Ni. 2, C: 0.05-0.25%, Cr: 10-30%,
Mo: 0.5-10%, Fe: 5% or less, and Nb:
0.5-10%, Ti: 0.1-1%, Al: 0.5-10%
10%, B + Zr: one or more elements selected from 0.1 to 1%, total 10% or less, the balance is substantially Ni
A mold alloy for hot press forming.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24830588A JPH0297635A (en) | 1988-09-30 | 1988-09-30 | Die alloy for hot press forming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24830588A JPH0297635A (en) | 1988-09-30 | 1988-09-30 | Die alloy for hot press forming |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0297635A true JPH0297635A (en) | 1990-04-10 |
Family
ID=17176100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24830588A Pending JPH0297635A (en) | 1988-09-30 | 1988-09-30 | Die alloy for hot press forming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0297635A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001062594A (en) * | 1999-08-26 | 2001-03-13 | Toshiba Corp | Alloy for pressurization molding die |
JP2006255767A (en) * | 2005-03-18 | 2006-09-28 | Sanyo Special Steel Co Ltd | Ni-RADICAL BUILDING UP POWDER FOR DIE USED IN HOT WORKING AND DIE FOR HOT WORKING |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS624849A (en) * | 1985-06-28 | 1987-01-10 | Daido Steel Co Ltd | Die for hot working al and al alloy |
-
1988
- 1988-09-30 JP JP24830588A patent/JPH0297635A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS624849A (en) * | 1985-06-28 | 1987-01-10 | Daido Steel Co Ltd | Die for hot working al and al alloy |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001062594A (en) * | 1999-08-26 | 2001-03-13 | Toshiba Corp | Alloy for pressurization molding die |
JP2006255767A (en) * | 2005-03-18 | 2006-09-28 | Sanyo Special Steel Co Ltd | Ni-RADICAL BUILDING UP POWDER FOR DIE USED IN HOT WORKING AND DIE FOR HOT WORKING |
JP4679942B2 (en) * | 2005-03-18 | 2011-05-11 | 山陽特殊製鋼株式会社 | Ni-based overlaying powder for molds used hot and hot molds |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105112728B (en) | Heat-resisting alloy for 700-DEG C ultra-supercritical steam turbine rotor and preparation method thereof | |
US5525779A (en) | Intermetallic alloy welding wires and method for fabricating the same | |
CN104630565B (en) | High-strength and high-plasticity Ni-Cr-Co based turbine disc blade material and preparation method thereof | |
CN1080328A (en) | The roll that metal forming is used | |
JP5601607B1 (en) | Metal powder, hot working tool, and method of manufacturing hot working tool | |
CN108602163A (en) | Ni base alloy solid wire for welding and Ni based alloy welding metals | |
US3807991A (en) | Ferritic stainless steel alloy | |
US4846885A (en) | High molybdenum nickel-base alloy | |
JPH0443977B2 (en) | ||
US6162307A (en) | BN-precipitation-strengthened low-carbon-ferritic heat-resistant steel excellent in weldability | |
CN106636850B (en) | High-temperature oxidation resistance high intensity mixes rare-earth alloy material and preparation method | |
JP2639849B2 (en) | Manufacturing method of high nitrogen ferritic heat resistant steel | |
JPS58176095A (en) | Co-base alloy for build-up welding for hard facing which provides excellent resistance to weld cracking | |
JP2005097689A (en) | Component material made of heat resistant alloy | |
JPH0297635A (en) | Die alloy for hot press forming | |
JP2899996B2 (en) | High V content high nitrogen ferritic heat resistant steel and method for producing the same | |
JPH0543773B2 (en) | ||
CN114231969A (en) | Wear-resistant composite coating for improving surface hardness of U-shaped roller and production process of U-shaped roller | |
JP2890073B2 (en) | High Nb-containing high nitrogen ferritic heat-resistant steel and method for producing the same | |
JPWO2018066573A1 (en) | Austenitic heat-resistant alloy and welded joint using the same | |
JP3938068B2 (en) | Ferritic heat resistant steel weld metal | |
JPH068487B2 (en) | Ferritic heat resistant steel with excellent toughness at weld bond | |
JPH02151377A (en) | Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere | |
JPH07103447B2 (en) | High purity heat resistant steel | |
JPH02151378A (en) | Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere |