JPH0296815A - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JPH0296815A
JPH0296815A JP63250585A JP25058588A JPH0296815A JP H0296815 A JPH0296815 A JP H0296815A JP 63250585 A JP63250585 A JP 63250585A JP 25058588 A JP25058588 A JP 25058588A JP H0296815 A JPH0296815 A JP H0296815A
Authority
JP
Japan
Prior art keywords
current
circuit
harmonic
reactive
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63250585A
Other languages
Japanese (ja)
Inventor
Masamitsu Kumazawa
熊澤 正光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP63250585A priority Critical patent/JPH0296815A/en
Publication of JPH0296815A publication Critical patent/JPH0296815A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To facilitate design for precisely suppressing a higher harmonic and standardization by detecting reactive current components and high frequency current components in a load current, injecting a compensation higher harmonic current from an inverter circuit to a power system and suppressing the outflow of a higher harmonic current to the power system. CONSTITUTION:The reactive current components and the higher harmonic current components in the load current flowing from the power system to a load are respectively detected in an reactive current/higher harmonic current detection circuit 6. A firing angle operation circuit 7 calculates the firing angles of thyristors 3B and 3C for causing the compensation reactive current cancelling the reactive current components in the load current to flow as the synthesis current of a lagging circuit 3 and a phase advancing capacitor 4, and energizes the thyristors 3B and 3C by the calculated firing angle. Consequently, the reactive current components in the load current are cancelled by the compensation reactive current flowing as the synthesis current of the lagging circuit 3 and the phase advancing capacitor 4, and the outflow of the reactive current to the power system is suppressed. Thus, the automatic and optimum suppression of the higher harmonic is performed and design for precisely suppressing the higher harmonic is facilitated, whereby standardization is facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高調波補償を行うアクティブフィルタを兼
ねた無効電力補償装置に関するもので、リアクトル電流
をサイリスタで位相制御することにより負荷に流れる無
効電流を補償するとともに、負荷より発生する高調波お
よび無効電力補償に伴って生成される高調波を補償する
無効電力補償装置にかかる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a reactive power compensator that also serves as an active filter for performing harmonic compensation. The present invention relates to a reactive power compensator that compensates for current as well as harmonics generated by a load and harmonics generated due to reactive power compensation.

〔従 来 の 技 術〕[Traditional techniques]

従来の無効電力補償装置は、第3図に示すように、電力
系統51より給電される負荷52に対し、位相制御を行
う遅相回路53と進相回路54とを並列接続している。
In the conventional reactive power compensator, as shown in FIG. 3, a phase delay circuit 53 and a phase advance circuit 54 that perform phase control are connected in parallel to a load 52 that is supplied with power from a power system 51.

遅相同B53は、リアクトル53Aとサイリスタ53B
、53Cの逆並列回路との直列回路で構成され、電力系
統51から遅相無効1ii流電流し、サイリスタ53B
、53Cの点弧角の制御によって遅相無効電流を増減で
きるようになっている。また、進相回路54は、容量固
定の進相コンデンサ54A、54B。
Slow homology B53 includes reactor 53A and thyristor 53B
, 53C is configured in series with an anti-parallel circuit of thyristor 53B.
, 53C, it is possible to increase or decrease the slow phase reactive current. Further, the phase advance circuit 54 includes phase advance capacitors 54A and 54B with fixed capacitance.

54Cおよびこれらに各々直列接続したりアクドル54
D、 54B、 54Fからなり、電力系統51がら一
定の進相無効電流電流す。
54C and each connected in series with each other or the accelerator 54
D, 54B, and 54F, and a constant phase-advanced reactive current flows through the power system 51.

したがって、電力系統51には、遅相回路53を通して
流れる遅相無効電流と進相回路54を通して流れる進相
無効電流との和が無効電流として流れることになり、遅
相無効電流の絶対値が進相無効電流の絶対値より小さけ
れば合成ti*として進相無効電流が流れ、逆に遅相無
効電流の絶対値が進相無効電流の絶対値より大きければ
合成電流として遅相無効電流が流れ、遅相無効電流と進
相無効電流の絶対値が同じであれば、無効電流は全く流
れないことになる。この結果、サイリスタ53B、53
Cの点弧角の制;nによって、負荷2に流れる無効電流
を打ち消す補償用無効電流として、進相無効電流および
遅相無効電流の何れも任意に出力することができる。
Therefore, the sum of the slow phase reactive current flowing through the slow phase circuit 53 and the phase advancing reactive current flowing through the phase advancing circuit 54 flows as a reactive current in the power system 51, and the absolute value of the slow phase reactive current increases. If the absolute value of the phase reactive current is smaller than the absolute value of the phase reactive current, a phase leading reactive current flows as a composite ti*, and conversely, if the absolute value of the phase lag reactive current is larger than the absolute value of the phase leading reactive current, a phase lag reactive current flows as a composite current, If the absolute values of the lagging reactive current and the advancing reactive current are the same, no reactive current will flow at all. As a result, thyristors 53B, 53
By controlling the firing angle of C; n, either a leading phase reactive current or a slowing phase reactive current can be arbitrarily output as a compensating reactive current that cancels out the reactive current flowing through the load 2.

この際、無効電流検出回路55が変流器56を介して負
荷電流ILを検出するとともに、変圧器57を介して系
統電圧V、を検出し、負荷tffl I Lおよび系統
電圧V、に基づいて負荷電流IL中の無効i!電流成分
系統電圧V、に対して位相が190度ずれた電流成分)
を積出し、検出した無効電流成分を打ち消す補償無効1
afLが遅相回路53および進相回路54の合成電流と
して流れるようにサイリスタ53B、53Cの点弧角を
制御する。
At this time, the reactive current detection circuit 55 detects the load current IL via the current transformer 56, and also detects the grid voltage V via the transformer 57, and based on the load tffl I L and the grid voltage V, Invalid i in load current IL! Current component (current component whose phase is shifted by 190 degrees with respect to the system voltage V)
Compensation invalidation 1 that cancels the detected reactive current component
The firing angles of the thyristors 53B and 53C are controlled so that afL flows as a combined current of the phase delay circuit 53 and the phase advance circuit 54.

上記遅相回路53および進相回路54により、所望の補
償無効電流電流す際に、遅相回路53における位相制御
の関係から、遅相回路53に高調波電流が必ず流れ、こ
の他に負rtI52にも高調波ii流が流れる。このよ
うな高調波電流の電力系統51への流出を抑制するため
に、進相回路54では単体の進相コンデンサを用いずに
、複数に分割した進相コンデンサ54A、54B、54
Cを用い、各々にリアクトル54D、54E、54Fを
直列接続し、受動型の高調波フィルタとして作用させて
いる。
When the phase delay circuit 53 and the phase advance circuit 54 generate a desired compensation reactive current, a harmonic current necessarily flows through the phase delay circuit 53 due to the relationship of phase control in the phase delay circuit 53, and in addition to this, a harmonic current flows through the phase delay circuit 53. A harmonic II current also flows. In order to suppress the outflow of such harmonic currents to the power system 51, the phase advance circuit 54 does not use a single phase advance capacitor, but uses divided phase advance capacitors 54A, 54B, 54.
reactors 54D, 54E, and 54F are connected in series to each of them to act as a passive harmonic filter.

〔発明が解決しようとするii!!り この無効電力補償装置装置は、進相コンデンサ54A。[The invention tries to solve ii! ! the law of nature This reactive power compensator device includes a phase advance capacitor 54A.

54B、54Cおよびリアクトル54D、54E、54
Fよりなる受動型の高調波フィルタで遅相回路53およ
び負荷52から発生する高JJ1波電流の電力系統51
への流出を抑制する構成であるので、電力系統51例の
高調波状態および負荷52からの高調波発生!1(無効
電力との相関も含めて)を十分に把握した上で高調波フ
ィルタの回路定数を設定しないと、高調波を十分に抑制
できなかったり、または上記高調波フィルタに過大な高
調波電流が流れ、高調波フィルタの損傷を招くおそれが
ある。
54B, 54C and reactors 54D, 54E, 54
A power system 51 with a high JJ single wave current generated from a slow phase circuit 53 and a load 52 using a passive harmonic filter consisting of F.
Since the configuration suppresses the outflow to the power system, the harmonic state of the power system 51 and the generation of harmonics from the load 52! If the circuit constants of the harmonic filter are not set with a thorough understanding of 1 (including the correlation with reactive power), the harmonics may not be suppressed sufficiently, or the harmonic filter may generate excessive harmonic current. may flow and cause damage to the harmonic filter.

しかしながら、前記した電力系統51例の高調波状態お
よび負荷52からの高調波発生量の把握が容易でなく、
高調波フィルタの回路定数の設計が困難で、高調波を的
確に抑制するための設計が困難であった。
However, it is not easy to understand the harmonic state of the above-mentioned power system 51 and the amount of harmonics generated from the load 52.
It has been difficult to design the circuit constants of a harmonic filter, and it has been difficult to design a design for accurately suppressing harmonics.

また、高調波フィルタは、電力系統51例の高調波状態
および負荷52からの高調波発生量が一定でないことか
ら、設置される無効電力補償装置毎に高調波フィルタの
容量が異なり、標準化が困難であつた。
In addition, since the harmonic state of the power system 51 and the amount of harmonics generated from the load 52 are not constant, the harmonic filter capacity differs depending on the installed reactive power compensator, making it difficult to standardize the harmonic filter. It was hot.

したがつて、この発明の目的は、高調波を的確に抑制す
るための設計が容易で、標準化が容易な無効電力補償装
置を提供することである。
Therefore, an object of the present invention is to provide a reactive power compensator that is easy to design and easy to standardize for accurately suppressing harmonics.

C課題を解決するための手段〕 この発明の無効電力補償装置は、電力系統より給電され
る負荷に、リアクトルおよびサイリスタの直列回路から
なる遅相回路を並列接続し、遅相回路に進相コンデンサ
を並列接続している。また、共振周波数を電力系統基本
波周波数に一致させた直列共振回路を進相コンデンサの
中性点側端子と電力系統中性点との間に介挿している。
Means for Solving Problem C] The reactive power compensator of the present invention connects a slow-phase circuit consisting of a series circuit of a reactor and a thyristor in parallel to a load supplied with power from an electric power system, and connects a phase-leading capacitor to the slow-phase circuit. are connected in parallel. Further, a series resonant circuit whose resonant frequency matches the power system fundamental wave frequency is inserted between the neutral point side terminal of the phase advance capacitor and the power system neutral point.

そして、電力系統より負荷へ漬れる負荷電流中の無効電
流成分および高調波電流成分を検出する無効電流・高調
波型fL槍出回路を設け、無効電流・高調波電流検出回
路で検出された負荷電流中の無効電流成分を打ち消す補
償無効電流を遅相回路および進相コンデンサの合成電流
として流すためのサイリスタの点弧角を算出し、算出し
た点弧角でサイリスタを導通させる点弧角演算回路を設
けている。
Then, a reactive current/harmonic type fL output circuit is provided to detect reactive current components and harmonic current components in the load current flowing from the power system to the load, and the load detected by the reactive current/harmonic current detection circuit is installed. A firing angle calculation circuit that calculates the firing angle of the thyristor to flow compensation reactive current that cancels the reactive current component in the current as a composite current of the phase delay circuit and the phase advance capacitor, and conducts the thyristor at the calculated firing angle. has been established.

また、進相コンデンサと直列共振回路との接続点から電
力系統へ補償高調波電流を注入するインバータ回路を設
け、遅相回路のi流中に含まれサイリスタの点弧角に対
応じて含有量が異なる高調波電流成分を算出する高調波
演算回路を設け、無効1t2It・高調波’[流槍出回
路で検出された負rt1電流中の高調波電流成分と高調
波演算回路により演算された遅相回路の電流中の高調波
電流成分とを加算する加算器を設けている。
In addition, an inverter circuit is installed that injects a compensating harmonic current into the power system from the connection point between the phase-advancing capacitor and the series resonant circuit, and the content of A harmonic calculation circuit that calculates harmonic current components with different values is provided, and the harmonic current components in the negative rt1 current detected by the invalid 1t2It/harmonic '[nagarashide circuit and the delay calculated by the harmonic calculation circuit] An adder is provided to add the harmonic current components in the current of the phase circuit.

さらに、この加算器の出力に対応じてインバータ回路の
スイッチング素子のオンオフのタイミングを決める指令
値を演算し、指令値の演算結果に応じてインバータ回路
のスイッチング素子をオンオフ制御することにより負荷
電流中の高調波電流成分と遅相回路の電流中の高調波電
流成分とをインバータ回路から電力系統へ注入される補
償高調波電流で打ち消させるインバータ指令値演算回路
を設けている。
Furthermore, a command value that determines the on/off timing of the switching element of the inverter circuit is calculated in accordance with the output of this adder, and the switching element of the inverter circuit is controlled on/off according to the calculation result of the command value. An inverter command value calculation circuit is provided that cancels the harmonic current components of the current component and the harmonic current component in the current of the slow phase circuit with a compensation harmonic current injected from the inverter circuit into the power system.

〔作   用〕[For production]

この発明の構成においては、無効電流・高調波電流検出
回路にて電力系統より負荷へ流れる負荷電流中の無効電
流成分および高調波電流成分がそれぞれ検出される0点
弧角演算回路は、負荷電流中の無効電流成分を打ち消す
補償無効電流を遅相回路および進相コンデンサの合成電
流として流すためのサイリスタの点弧角を算出し、算出
した点弧角でサイリスタを導通させることになる。この
結果、負r@′lIi流中の無効電流成分が遅相回路お
よび進相コンデンサの合成電流として流れる補償無効電
流で打ち消されることになり、無効it流の電力系統へ
の流出が抑制される。
In the configuration of the present invention, the zero firing angle calculation circuit detects the reactive current component and the harmonic current component in the load current flowing from the power system to the load in the reactive current/harmonic current detection circuit. The firing angle of the thyristor is calculated so that a compensating reactive current that cancels out the reactive current component inside the circuit flows as a composite current of the phase delay circuit and the phase advance capacitor, and the thyristor is made conductive at the calculated firing angle. As a result, the reactive current component in the negative r@'lIi current is canceled by the compensating reactive current flowing as a combined current of the phase delay circuit and the phase advance capacitor, and the outflow of the reactive IT current to the power system is suppressed. .

一方、負荷電流中の高調波電流成分および遅相回路の電
流中の高調波電流成分は、つぎに述べるアクティブフィ
ルタ機能によって電力系統への流出が抑制される。
On the other hand, the harmonic current components in the load current and the harmonic current components in the current of the slow phase circuit are suppressed from flowing into the power system by the active filter function described below.

遅相回路の電流中に含まれる高調被電2it成分は、サ
イリスタの点弧角に応じて含有量が異なるが、その高調
波電流成分が高調波演算回路で算出され、この高調波電
流成分と無効電流・高調波電流槍出回路で検出された負
@電流中の高調波電流成分とが加″l!器で加算される
。そして、インバータ指令値演算回路にて、加算器の出
力に対応じてインバータ回路のスイッチング素子のオン
オフのタイミングを決める指令値が演算され、指令値の
演算結果に応じてインバータ回路のスイッチング素子が
オンオフ制御される。これによって、負荷電流中の高調
波電流成分と遅相回路の電流中の高調波電流成分とをイ
ンバータ回路から進相コンデンサを通して電力系統へ注
入される補償高調波1i流が打ち消すことになる。
The content of the harmonic energized 2it component contained in the current of the slow phase circuit differs depending on the firing angle of the thyristor, but the harmonic current component is calculated by the harmonic calculation circuit, and this harmonic current component and The harmonic current component in the negative current detected by the reactive current/harmonic current output circuit is added by the adder.Then, the inverter command value calculation circuit corresponds to the output of the adder. Then, a command value that determines the on/off timing of the switching element of the inverter circuit is calculated, and the switching element of the inverter circuit is controlled on/off according to the result of the calculation of the command value.As a result, harmonic current components in the load current and The harmonic current component in the current of the slow phase circuit is canceled out by the compensation harmonic current 1i that is injected from the inverter circuit into the power system through the phase advance capacitor.

この際、進相コンデンサの中性点側端子と電力系統中性
点との間に直列共振回路を介挿し、進相コンデンサと直
列共振回路との接続点にインバータ回路からl*i電流
を注入する構成であるので、進相コンデンサと直列共振
回路とが電力系統の基本波電圧成分のインバータ回路へ
の印加を阻止するための注入回路として作用することに
なる。
At this time, a series resonant circuit is inserted between the neutral point side terminal of the phase advance capacitor and the power grid neutral point, and l*i current is injected from the inverter circuit into the connection point between the phase advance capacitor and the series resonance circuit. Therefore, the phase advance capacitor and the series resonant circuit act as an injection circuit for blocking the application of the fundamental wave voltage component of the power system to the inverter circuit.

なお、インバータ回路から出力される補償高調波電流は
、進相コンデンサ側と直列共振回路側とに分流すること
になるので、注入回路の伝達関数演算をインバータ指令
値演算回路で合わせて行っている。また、電力系統から
進相コンデンサを通して流れる進相無効電流に対しては
直列共振回路は無いのと同じで、無効電流補償に対する
悪影響はない。
Note that the compensation harmonic current output from the inverter circuit is divided into the phase advance capacitor side and the series resonant circuit side, so the transfer function calculation of the injection circuit is performed together in the inverter command value calculation circuit. . Furthermore, since there is no series resonant circuit for the phase-advanced reactive current flowing from the power system through the phase-advanced capacitor, there is no adverse effect on reactive current compensation.

〔実 施 例〕〔Example〕

この発明の一実施例を第1図および第2図に基づいて説
明する。この無効電力補償装置は、第1図および第2図
に示すように、電力系統」より給電される負荷2に遅相
回路3を並列接続し、遅相回路3に進相コンデンサ4を
並列接続している。
An embodiment of the present invention will be described based on FIGS. 1 and 2. As shown in FIGS. 1 and 2, this reactive power compensator has a load 2 supplied with power from the power system connected in parallel with a slow phase circuit 3, and a phase advance capacitor 4 connected in parallel with the slow phase circuit 3. are doing.

また、直列共振回路5を進相コンデンサ4の中性点側端
子と電力系統中性点Xとの間に介挿している。この場合
、遅延回路3は、リアクトル3Aとサイリスタ3B、3
Cの逆並列回路との直列回路からなる。また、直列共振
口15は、リアクトル5Aおよびコンデンサ5Bの直列
回路からなり、共振周波数を電力系統基本波周波数(5
0Hzまたは60Hz)に一致させている。また、進相
コンデンサ4と直列共振回路5とは高調波補償のための
注入回路12を構成する。
Further, a series resonant circuit 5 is inserted between the neutral point side terminal of the phase advancing capacitor 4 and the power system neutral point X. In this case, the delay circuit 3 includes the reactor 3A and the thyristors 3B and 3.
It consists of a series circuit with an anti-parallel circuit of C. The series resonance port 15 is made up of a series circuit of a reactor 5A and a capacitor 5B, and the resonance frequency is set to the power system fundamental frequency (5
0Hz or 60Hz). Further, the phase advancing capacitor 4 and the series resonant circuit 5 constitute an injection circuit 12 for harmonic compensation.

そして、無効電流・高調波電流検出回路6と点弧角演算
回路7とインバータ回B8と高調波演算回路9と加算器
lOとインバータ指令値演算回路11とを設けている。
A reactive current/harmonic current detection circuit 6, a firing angle calculation circuit 7, an inverter circuit B8, a harmonic calculation circuit 9, an adder IO, and an inverter command value calculation circuit 11 are provided.

上記の無効電流・高調波電流検出回路6は、変流器14
および変圧器15を介して電力系統1より負荷2へ流れ
る負荷電流fL中の無効電流成分および高調波[波成分
を検出する。また、点弧角演算回路7は、無効電流・高
調波電流検出回路6で検出された負荷電流IL中の無効
1流成分を打ち消す補償無効電流を遅相回路3および進
相コンデンサ4の合成電流として流すためのサイリスタ
3B、3Cの点弧角を算出し、算出した点弧角でサイリ
スタ38.3C−t−導通させる。
The above-mentioned reactive current/harmonic current detection circuit 6 includes a current transformer 14
The reactive current component and the harmonic [wave component] in the load current fL flowing from the power system 1 to the load 2 via the transformer 15 are detected. In addition, the firing angle calculation circuit 7 converts the compensating reactive current that cancels the reactive first current component in the load current IL detected by the reactive current/harmonic current detection circuit 6 into a composite current of the phase delay circuit 3 and the phase advance capacitor 4. The firing angles of the thyristors 3B and 3C are calculated to cause the current to flow, and the thyristors 38.3C-t- are made conductive at the calculated firing angles.

また、インバータ回18は、リアクトル13を通し注入
回路12における進相コンデンサ4と直列共振回路5と
の接続点から電力系統1へ補償高調波電流を注入する。
Further, the inverter circuit 18 injects a compensation harmonic current into the power system 1 from the connection point between the phase advance capacitor 4 and the series resonant circuit 5 in the injection circuit 12 through the reactor 13 .

高調波演算回路9は、遅相回路3のxi中に含まれサイ
リスタ3B、3Cの点弧角に対応じて含有量が異なる高
調波を波成分を算出する。加算器10ば、無効電流・高
調波電流検出回路6で検出された負荷電流IL中の高調
波電流成分と高調波演算回路9により演算された遅相回
路3の′r!L流中の高調波電流成分とを加算する。イ
ンバータ指令値演算回路11は、加算器10の出力に対
応じてインバータ回路8のスイッチング素子のオンオフ
のタイミングを決める指令値を演算し、指令値の演算結
果に応じてインバータ回路8のスイッチング素子をオン
オフ制illすることにより負荷電流IL中の高調波電
流成分と遅相回路3の電流中の高調波T4.流成分色を
インバータ回路8から電力系統Iへ注入される補償高調
波電流で打ち消させる。
The harmonic calculation circuit 9 calculates wave components of harmonics included in the xi of the phase delay circuit 3 and having different contents depending on the firing angles of the thyristors 3B and 3C. The adder 10 calculates the harmonic current component in the load current IL detected by the reactive current/harmonic current detection circuit 6 and the 'r! of the slow phase circuit 3 calculated by the harmonic calculation circuit 9. The harmonic current components in the L current are added. The inverter command value calculation circuit 11 calculates a command value that determines the on/off timing of the switching elements of the inverter circuit 8 according to the output of the adder 10, and operates the switching elements of the inverter circuit 8 according to the calculation result of the command value. By controlling the on/off illumination, harmonic current components in the load current IL and harmonics T4 in the current of the phase delay circuit 3 are reduced. The color of the current component is canceled by the compensation harmonic current injected from the inverter circuit 8 into the power system I.

つぎに、この無効電力補償装置の動作を説明する。この
無効電力補償装置においては、無効電流・高調波電流検
出回路6にて電力系統lより負荷2へ流れる負荷tlJ
LIL中の無効電流成分および高調波電流成分がそれぞ
れ検出される0点弧角演算回路7は、負荷電流LL中の
無効電流成分を打ち消す補r!i無効tl流を遅相回路
3および進相コンデンサ4の合成電流として流すための
サイリスタ3B、3Cの点弧角を算出し、算出した点弧
角でサイリスタ3B、3Gを導通させることになる。
Next, the operation of this reactive power compensator will be explained. In this reactive power compensator, the reactive current/harmonic current detection circuit 6 detects a load tlJ flowing from the power system l to the load 2.
The zero firing angle calculation circuit 7, which detects the reactive current component and harmonic current component in LIL, cancels out the reactive current component in the load current LL. The firing angles of the thyristors 3B and 3C are calculated to cause the i-ineffective tl current to flow as a composite current of the phase delay circuit 3 and the phase advance capacitor 4, and the thyristors 3B and 3G are made conductive at the calculated firing angles.

この結果、負荷電流■、中の無効電流成分が遅相回路3
および進相コンデンサ4の合成電流とじて流れる補償無
効電流で打ち消されることになり、無効電流の電力系V
ciへの流出が抑制される。
As a result, the reactive current component in the load current
The power system V
Outflow to ci is suppressed.

一方、負荷電流IL中の高調波1i流成分および遅相回
路3の電流中の高調波電流成分は、つぎに述べるアクテ
ィブフィルタ機能によって電力系統1への流出が抑制さ
れる。
On the other hand, the harmonic 1i current component in the load current IL and the harmonic current component in the current of the slow phase circuit 3 are suppressed from flowing into the power system 1 by the active filter function described below.

遅相回路3の電流中に含まれる高調波電流成分は、サイ
リスタ3B、3Cの点弧角に応じて含有量が異なるが、
その高調波電流成分が高調波演算回路9で算出され、こ
の高調波電流成分と無効電流・高調波電流検出回路6で
検出された負荷電流■ゆ中の高調波電流成分とが加算器
10で加算される。そして、インバータ指令値演算回路
IIにて、加算器10の出力に対応じてインバータ回路
8のスイッチング素子のオンオフのタイミングを決める
指令値が演算され、指令値の演算結果に応じてインバー
タ回路8のスイッチング素子がオンオフ制御される。こ
れによって、負荷電流IL中の高調波電流成分と遅相回
路3の電流中の高調波電流成分とをインバータ回路8か
らリアクトルl3および進相コンデンサ4を通して電力
系統1へ注入される補償高調波電流が打ち消すことにな
る。
The harmonic current component contained in the current of the slow phase circuit 3 differs in content depending on the firing angle of the thyristors 3B and 3C.
The harmonic current component is calculated by the harmonic calculation circuit 9, and the adder 10 calculates the harmonic current component and the harmonic current component of the load current detected by the reactive current/harmonic current detection circuit 6. will be added. Then, in the inverter command value calculation circuit II, a command value that determines the on/off timing of the switching elements of the inverter circuit 8 is calculated in accordance with the output of the adder 10, and a command value that determines the on/off timing of the switching elements of the inverter circuit 8 is calculated in accordance with the output of the adder 10. The switching element is controlled to be turned on or off. As a result, a harmonic current component in the load current IL and a harmonic current component in the current of the phase-lag circuit 3 are combined into a compensation harmonic current that is injected from the inverter circuit 8 into the power system 1 through the reactor l3 and the phase-advanced capacitor 4. will be canceled out.

この際、進相コンデンサ4の中性点側端子と電力系統中
性点Xとの間に直列共振回路5を介挿し、進相コンデン
サ4と直列共振回路5との接続点にインバータ回路8か
ら補償高調波電流を注入する構成であるので、進相コン
デンサ4と直列共振回路5とが電力系統lの基本波電圧
成分のインバータ回路8への印加を阻止するための注入
回路12として作用することになる。
At this time, a series resonant circuit 5 is inserted between the neutral point side terminal of the phase advance capacitor 4 and the power system neutral point Since the configuration is such that a compensating harmonic current is injected, the phase advance capacitor 4 and the series resonant circuit 5 act as an injection circuit 12 for blocking the application of the fundamental voltage component of the power system I to the inverter circuit 8. become.

なお、インバータ回路8から出力される補償高調波電流
は、進相コンデンサ4側と直列共振回路5側とに分流す
ることになるので、注入回路12の伝達関数演算をイン
バータ指令値演算回路11で合わせて行っている。また
、電力系統1から進相コンデンサ4を通して流れる進相
無効電流に対しては直列共振回路5は無いのと同じで、
無効電流補償に対する悪影響はない。
Note that the compensation harmonic current output from the inverter circuit 8 is divided into the phase advance capacitor 4 side and the series resonant circuit 5 side, so the transfer function calculation of the injection circuit 12 is performed by the inverter command value calculation circuit 11. We are doing it together. Also, it is the same as if there is no series resonant circuit 5 for the phase advancing reactive current flowing from the power system 1 through the phase advancing capacitor 4.
There is no adverse effect on reactive current compensation.

つぎに、無効電流・高調波電流検出回路61点弧角演算
回路7、高調波演算回路9.加算器10およびインバー
タ指令(a演算回路11の構成および動作を詳しく説明
する。
Next, reactive current/harmonic current detection circuit 61 firing angle calculation circuit 7, harmonic calculation circuit 9. The configuration and operation of the adder 10 and the inverter command (a calculation circuit 11) will be explained in detail.

まず、無効電流・高調波1121i!L検出回路6は、
高速フーリエ変換を行って負荷電流IL中の無効電流成
分および高調波t′/JL成分を検出する構成であり、
電力系統1の系統電圧Vsを変圧器15および電圧検出
回路21によって検出し、この系統電圧■sを位相同期
回路(PLL回路)22に入力することで、系統電圧V
、の周波数を逓倍してなる基準クロックを作成している
First, reactive current/harmonics 1121i! The L detection circuit 6 is
It is configured to detect reactive current components and harmonic t'/JL components in load current IL by performing fast Fourier transform,
By detecting the system voltage Vs of the power system 1 by the transformer 15 and the voltage detection circuit 21, and inputting this system voltage ■s to the phase locked circuit (PLL circuit) 22, the system voltage Vs is detected by the transformer 15 and the voltage detection circuit 21.
A reference clock is created by multiplying the frequency of .

一方、負荷電流■、を変流器14および負荷電流検出回
路23で検出し、上記の基準クロックを用いてサンプル
ホールド・A/D変換回路24にて負荷電流■ゎをサン
プリングし、さらにA/D変換してメモリ (RAM)
25に格納する。この場合、サンプリング動作は例えば
基本波の1周期間行われ、例えば256点または512
点等の一定間隔のデータがメモリ25に格納される。そ
して、CPUおよびデジタルシグナルプロセッサ(DS
P)からなる処理回路26がメモリ(ROM)27に格
納された高速フーリエ変換プログラム等に従ってメモリ
25の格納データに対してフーリエ変換を行って無効電
流成分の振幅および各次高調波電流成分の振幅および位
相を算出し、得られた無効電流成分の振幅および各次高
調波電流成分の振幅および位相をメモリ (RAM)2
Bに書き込む、なお、タイミングコントローラ29は、
処理回路26の指示により位相同期回路22から得られ
る基準クロックに基づいてサンプルホールド・A/D変
換回824およびメモリ25のタイミングをコントロー
ルする。
On the other hand, the load current ■ is detected by the current transformer 14 and the load current detection circuit 23, and the load current ■ゎ is sampled by the sample-hold/A/D conversion circuit 24 using the above reference clock. D conversion and memory (RAM)
25. In this case, the sampling operation is performed for one cycle of the fundamental wave, for example, at 256 points or 512 points.
Data such as points and the like are stored in the memory 25 at regular intervals. The CPU and digital signal processor (DS)
The processing circuit 26 consisting of P) performs Fourier transform on the data stored in the memory 25 according to the fast Fourier transform program etc. stored in the memory (ROM) 27 to obtain the amplitude of the reactive current component and the amplitude of each harmonic current component. The amplitude of the reactive current component and the amplitude and phase of each harmonic current component are stored in memory (RAM)2.
Note that the timing controller 29 writes to B.
The timing of the sample-hold/A/D conversion circuit 824 and the memory 25 is controlled based on the reference clock obtained from the phase synchronization circuit 22 according to instructions from the processing circuit 26 .

つぎに、点弧角演算回路7は、負荷電流IL中の無効電
流成分の振幅と、この無効を分色分を打ち消すための補
傷無効電流電流すためのサイリスタ3B、3Cの点弧角
との関係を示す負荷無効電流−点弧角対応表を内蔵して
いて、無効電流・高調波1i流検出回路6のメモリ28
から読み出された負荷′WL流IL中の無効電流成分の
振幅に対応したサイリスタ3B、3Cの点弧角をfL荷
無効電流−点弧角対応表から読み出し、位相同期回路2
2の基準クロックに基づき上記読み出しだ点弧角のタイ
ミングで点弧パルスを発生する。この点弧パルスは、サ
イリスタ点弧アンプ30で増幅されてサイリスタ3B、
3Cの各ゲートに加えられ、前記点弧角のタイミングで
サイリスタ3B、3Cが導通ずることになる。
Next, the firing angle calculation circuit 7 calculates the amplitude of the reactive current component in the load current IL and the firing angle of the thyristors 3B and 3C for supplying a complementary reactive current to cancel out the reactive current component. The memory 28 of the reactive current/harmonic 1i current detection circuit 6 has a built-in load reactive current-firing angle correspondence table showing the relationship between
The firing angles of the thyristors 3B and 3C corresponding to the amplitude of the reactive current component in the load 'WL flow IL read out from the fL load reactive current-firing angle correspondence table are read out from the phase synchronization circuit 2.
Based on the reference clock No. 2, a firing pulse is generated at the timing of the read firing angle. This ignition pulse is amplified by the thyristor ignition amplifier 30 and the thyristor 3B,
3C, and the thyristors 3B and 3C become conductive at the timing of the firing angle.

つぎに、高調波演算回路9は、負荷電流IL中の無効電
流成分の振幅とこの無効電流成分を打ち消す無効補償電
流を作成する際に生成される各次高調波電流成分の振幅
および位相との関係、言い換えればサイリスタ3B、3
Cの点弧角とサイリスタ3B、3Gの点弧によって生成
される各次高調波電流成分の振幅および位相との関係を
示す負rfI無効電流−高調波it流対応表c点弧角−
高調波電流対応表)を内蔵してあり、無効電流・高調波
電流検出回路6のメモリ28から読み出された負荷電流
IL中の無効電流成分の振幅に対応した各次高調波電流
成分を負荷無効電流−高調波電流対応表から読み出す。
Next, the harmonic calculation circuit 9 calculates the difference between the amplitude of the reactive current component in the load current IL and the amplitude and phase of each harmonic current component generated when creating a reactive compensation current that cancels out this reactive current component. relationship, in other words, thyristor 3B, 3
Negative rfI reactive current-harmonic IT flow correspondence table showing the relationship between the firing angle of C and the amplitude and phase of each harmonic current component generated by the firing of thyristors 3B and 3G C firing angle-
It has a built-in harmonic current correspondence table), and loads each harmonic current component corresponding to the amplitude of the reactive current component in the load current IL read out from the memory 28 of the reactive current/harmonic current detection circuit 6. Read from the reactive current-harmonic current correspondence table.

加算器10は、高調波演算回路9から出力される各次高
調波電流成分の振幅および位相と無効電流・高調波電流
検出回路のメモリ28から読み出された各次高調波電流
成分の振幅および位相に基づいて、各次高調波電流成分
をベクトル的に加算する。
The adder 10 calculates the amplitude and phase of each harmonic current component output from the harmonic calculation circuit 9 and the amplitude and phase of each harmonic current component read from the memory 28 of the reactive current/harmonic current detection circuit. Each harmonic current component is added vectorially based on the phase.

インバータ指令4i11演)E回路11は、CPUおよ
びDSPからなる処理回路31と各種プログラムを格納
したメモリ (ROM)32とインバータ回路8へ給電
する直流電源16の電圧を検出する直流電圧検出回路3
3とからなる。そして、処理回路31は、加算器10か
ら与えられる各次高調波電流成分の振幅および位相に基
づいて、各次高調波電分色分毎に注入回路12およびリ
アクトル13等の伝達関数演算を行い、演算結果に応じ
てインバータ回路8のスイッチング素子のオンオフを行
うための方形波信号を出力する。この方形波信号は、イ
ンバータ駆動用アンプ34で増幅されてインバータ回路
8のスイッチング素子の制m極に加えられる。なお、イ
ンバータ回路8の出力電圧は、直流電源16の電圧の高
低によっても異なるので、処理回路31において、直流
を源16の電圧の変化を補正する演算も合わせて行われ
る。
Inverter command 4i11 performance) E circuit 11 includes a processing circuit 31 consisting of a CPU and a DSP, a memory (ROM) 32 storing various programs, and a DC voltage detection circuit 3 that detects the voltage of a DC power supply 16 that supplies power to the inverter circuit 8.
It consists of 3. Then, the processing circuit 31 calculates the transfer function of the injection circuit 12, the reactor 13, etc. for each harmonic electric color component based on the amplitude and phase of each harmonic current component given from the adder 10. , outputs a square wave signal for turning on and off the switching elements of the inverter circuit 8 according to the calculation results. This square wave signal is amplified by the inverter driving amplifier 34 and applied to the switching element of the inverter circuit 8. Note that since the output voltage of the inverter circuit 8 varies depending on the level of the voltage of the DC power source 16, the processing circuit 31 also performs calculations to correct changes in the voltage of the DC power source 16.

上記の結果、インバータ回路8からリアクトル13およ
び注入回路12を通して電力系統lに注入される補償高
調波電流が負tyt?XIL中の高調波電流成分および
遅相回路3の電流中の高調波電流成分を丁度打ち消すこ
とになり、電力系統1への高調波電流の流出が抑制され
る。
As a result of the above, the compensation harmonic current injected from the inverter circuit 8 into the power system l through the reactor 13 and the injection circuit 12 is negative tyt? The harmonic current component in the XIL and the harmonic current component in the current of the slow phase circuit 3 are exactly canceled out, and the outflow of the harmonic current to the power system 1 is suppressed.

この無効電力補償装置は、無効電流・高調波電流検出回
路6で負荷電流I、中の無効電流成分および高調波電流
成分を検出し、負荷電流IL中の高調波を波成分および
遅相回路3のサイリスタ3B、3Cの点弧角の制御に伴
って生成されろ高調波電流を打ち消す補償高調波電流を
インバータ回路8から電力系統1へ注入して電力系統1
への高調波電流の流出を抑制しているため、電力系統1
の高調波状態および負荷の高調波状態を予め把握するこ
となく、自動的かつ最適に高調波抑制が行われることに
なり、高調波を的確に抑制するための設計が容易で、標
準化が容易である。
This reactive power compensator detects reactive current components and harmonic current components in a load current I with a reactive current/harmonic current detection circuit 6, and detects harmonics in the load current IL as wave components and a phase delay circuit 3. A compensating harmonic current is injected from the inverter circuit 8 into the power system 1 to cancel the harmonic current generated by controlling the firing angles of the thyristors 3B and 3C.
Power grid 1
Harmonics are automatically and optimally suppressed without having to know in advance the harmonic status of the load and the harmonic status of the load, making it easy to design for accurate harmonic suppression and easy to standardize. be.

また、補償高調波TM、流の注入のための注入回路12
として進相コンデンサ4を兼用しているため、部品数を
削減できる。
Also, the injection circuit 12 for injection of the compensation harmonic TM, current
Since the phase advance capacitor 4 is also used as the phase advance capacitor 4, the number of parts can be reduced.

〔発 明 の 効 果〕〔Effect of the invention〕

この発明の無効電力補償装置によれば、無効−電流・高
調波電流検出回路で負荷電流中の無効電流成分および高
調波電流成分を検出し、負荷電流中の高調波電流成分お
よび遅相回路のサイリスタの点弧角の制御に伴って生成
される高調波電流を打ち消す補償高調波電流をインバー
タDIから電力系統へ注入して電力系統への高調波電流
の流出を抑制しているため、電力系統の高調波状態およ
び負荷の高調波状態を予め把握することなく、自動的か
つ最適に高調波抑制が行われることになり、高調波を的
確に抑制するための設計が容易で、標準化が容易である
According to the reactive power compensator of the present invention, the reactive current/harmonic current detection circuit detects the reactive current component and the harmonic current component in the load current, and detects the harmonic current component in the load current and the lagging phase circuit. A compensation harmonic current is injected from the inverter DI into the power grid to cancel out the harmonic current generated by controlling the firing angle of the thyristor, thereby suppressing the outflow of harmonic current into the power grid. Harmonics are automatically and optimally suppressed without having to know in advance the harmonic status of the load and the harmonic status of the load, making it easy to design for accurate harmonic suppression and easy to standardize. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成を示すブロック図、
第2図は第1図の要部の具体的な構成を示すブロック図
、第3図は従来の無効電力補償装置の一例の構成を示す
ブロック図である。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.
FIG. 2 is a block diagram showing a specific configuration of the main part of FIG. 1, and FIG. 3 is a block diagram showing the configuration of an example of a conventional reactive power compensator.

Claims (1)

【特許請求の範囲】[Claims]  リアクトルおよびサイリスタの直列回路からなり電力
系統より給電される負荷に並列接続された遅相回路と、
この遅相回路に並列接続した進相コンデンサと、共振周
波数が電力系統基本波周波数に一致し前記進相コンデン
サの中性点側端子と電力系統中性点との間に介挿した直
列共振回路と、前記電力系統より負荷へ流れる負荷電流
中の無効電流成分および高調波電流成分を検出する無効
電流・高調波電流検出回路と、前記無効電流・高調波電
流検出回路で検出された前記負荷電流中の無効電流成分
を打ち消す補償無効電流を前記遅相回路および進相コン
デンサの合成電流として流すための前記サイリスタの点
弧角を算出し、算出した点弧角で前記サイリスタを導通
させる点弧角演算回路と、前記進相コンデンサと前記直
列共振回路との接続点から電力系統へ補償高調波電流を
注入するインバータ回路と、前記遅相回路の電流中に含
まれ前記サイリスタの点弧角に対応して含有量が異なる
高調波電流成分を算出する高調波演算回路と、前記無効
電流・高調波電流検出回路で検出された前記負荷電流中
の高調波電流成分と前記高調波演算回路により演算され
た前記遅相回路の電流中の高調波電流成分とを加算する
加算器と、この加算器の出力に対応して前記インバータ
回路のスイッチング素子のオンオフのタイミングを決め
る指令値を演算し、指令値の演算結果に応じて前記イン
バータ回路のスイッチング素子をオンオフ制御すること
により前記負荷電流中の高調波電流成分と前記遅相回路
の電流中の高調波電流成分とを前記インバータ回路から
前記電力系統へ注入される補償高調波電流で打ち消させ
るインバータ指令値演算回路とを備えた無効電力補償装
置。
A slow phase circuit consisting of a series circuit of a reactor and a thyristor connected in parallel to a load supplied with power from the power system;
A phase advance capacitor connected in parallel to this phase delay circuit, and a series resonant circuit whose resonance frequency matches the power system fundamental wave frequency and which is inserted between the neutral point side terminal of the phase advance capacitor and the power system neutral point. a reactive current/harmonic current detection circuit that detects reactive current components and harmonic current components in a load current flowing from the power system to the load; and the load current detected by the reactive current/harmonic current detection circuit. A firing angle of the thyristor is calculated so that a compensating reactive current that cancels out the reactive current component in the thyristor flows as a composite current of the phase delay circuit and the phase advance capacitor, and the firing angle of the thyristor is made conductive at the calculated firing angle. an arithmetic circuit; an inverter circuit that injects a compensation harmonic current into the power system from a connection point between the phase advance capacitor and the series resonant circuit; and an inverter circuit included in the current of the phase lag circuit and corresponding to the firing angle of the thyristor. a harmonic calculation circuit that calculates harmonic current components with different contents; and a harmonic calculation circuit that calculates harmonic current components in the load current detected by the reactive current/harmonic current detection circuit and the harmonic current components that are calculated by the harmonic calculation circuit. an adder that adds the harmonic current components in the current of the slow phase circuit; and a command value that determines the on/off timing of the switching elements of the inverter circuit corresponding to the output of this adder; The harmonic current components in the load current and the harmonic current components in the current of the slow phase circuit are transferred from the inverter circuit to the power system by controlling the switching elements of the inverter circuit on and off according to the calculation result of A reactive power compensator including an inverter command value calculation circuit that cancels the injected compensation harmonic current.
JP63250585A 1988-10-03 1988-10-03 Reactive power compensator Pending JPH0296815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250585A JPH0296815A (en) 1988-10-03 1988-10-03 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250585A JPH0296815A (en) 1988-10-03 1988-10-03 Reactive power compensator

Publications (1)

Publication Number Publication Date
JPH0296815A true JPH0296815A (en) 1990-04-09

Family

ID=17210077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250585A Pending JPH0296815A (en) 1988-10-03 1988-10-03 Reactive power compensator

Country Status (1)

Country Link
JP (1) JPH0296815A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664597A2 (en) * 1994-01-25 1995-07-26 Thomcast Ag Device for compensating high harmonics and/or the power factor of a non linear load connected to an alternative power network
CN103580035A (en) * 2013-07-17 2014-02-12 山东思达电气有限公司 Static reactive compensation method
CN105790716A (en) * 2016-05-03 2016-07-20 苏州泰思特电子科技有限公司 High frequency attenuation oscillation wave voltage generator
CN106018893A (en) * 2016-05-03 2016-10-12 苏州泰思特电子科技有限公司 Oscillatory wave high voltage generator applied to electrical test
CN106018894A (en) * 2016-05-03 2016-10-12 苏州泰思特电子科技有限公司 Damped oscillation wave voltage generator applied to electromagnetic compatibility test

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664597A2 (en) * 1994-01-25 1995-07-26 Thomcast Ag Device for compensating high harmonics and/or the power factor of a non linear load connected to an alternative power network
EP0664597A3 (en) * 1994-01-25 1996-12-04 Thomcast Ag Turgi Device for compensating high harmonics and/or the power factor of a non linear load connected to an alternative power network.
CN103580035A (en) * 2013-07-17 2014-02-12 山东思达电气有限公司 Static reactive compensation method
CN105790716A (en) * 2016-05-03 2016-07-20 苏州泰思特电子科技有限公司 High frequency attenuation oscillation wave voltage generator
CN106018893A (en) * 2016-05-03 2016-10-12 苏州泰思特电子科技有限公司 Oscillatory wave high voltage generator applied to electrical test
CN106018894A (en) * 2016-05-03 2016-10-12 苏州泰思特电子科技有限公司 Damped oscillation wave voltage generator applied to electromagnetic compatibility test
CN105790716B (en) * 2016-05-03 2018-12-21 苏州泰思特电子科技有限公司 High frequency attenuation oscillating wave voltage generator
CN106018894B (en) * 2016-05-03 2019-01-11 苏州泰思特电子科技有限公司 EMC test attenuation oscillasion impulse voltage generator
CN106018893B (en) * 2016-05-03 2019-04-05 苏州泰思特电子科技有限公司 Oscillation wave high-voltage generator for electrical test

Similar Documents

Publication Publication Date Title
Qasim et al. Artificial-neural-network-based phase-locking scheme for active power filters
Kawamura et al. Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor
Karimi et al. An adaptive filter for synchronous extraction of harmonics and distortions
US4903184A (en) Reactive power controller
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
CN104882886A (en) LLCL filtering-based active power filter compound control method
CN110401195B (en) Closed loop compensation method, system and medium based on DFT rotation transformation
US5065304A (en) Controller for AC power converter
JPH0296815A (en) Reactive power compensator
CN106992548B (en) Control method for improving stability of grid-connected converter
Patjoshi et al. Performance analysis of shunt active power filter using PLL based control algorithms under distorted supply condition
Zou et al. Optimized harmonic detecting and repetitive control scheme for shunt active power filter in synchronous reference frame
CN109149579B (en) Control method for HAPF harmonic compensation and resonance suppression based on network side current sampling
CN114172344B (en) PWM topology control method and device and power supply system
CN106300355B (en) A kind of resonance control method that Active Power Filter-APF calculation amount simplifies
Tian et al. A selective harmonic optimization method for STATCOM in steady state based on the sliding DFT
JPH0642249Y2 (en) Reactive power compensator
Jiao et al. A double reduced order generalized integrator based algorithm for control of four-leg converter to enhance power quality
Bruyant et al. Simplified digital-analogical control for shunt active power filters under unbalanced conditions
KR102142288B1 (en) System for controlling grid-connected apparatus for distributed generation
JP2712388B2 (en) Reactive power compensator
JPS6111533B2 (en)
CN107359621B (en) Direct-current voltage stabilization method and system for active power factor correction of charging module
JPH06245387A (en) Controlling method for system interconnection and system circuit apparatus
JPH05211722A (en) Active filter for compensating power converter-generated harmonic current