JPH0296769A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0296769A
JPH0296769A JP25014888A JP25014888A JPH0296769A JP H0296769 A JPH0296769 A JP H0296769A JP 25014888 A JP25014888 A JP 25014888A JP 25014888 A JP25014888 A JP 25014888A JP H0296769 A JPH0296769 A JP H0296769A
Authority
JP
Japan
Prior art keywords
transfer layer
charge transfer
charge
halogen element
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25014888A
Other languages
Japanese (ja)
Inventor
Naomoto Ito
直基 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25014888A priority Critical patent/JPH0296769A/en
Publication of JPH0296769A publication Critical patent/JPH0296769A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08207Selenium-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To remarkably reduce negative charge of a photosensitive body by doping a charge transfer layer of an Se function separating laminated type photosensitive body with a halogen element. CONSTITUTION:The title electrophotographic sensitive body is constituted of a charge transfer layer 2 having >=30mum and <=90mum thickness consisting of an Se-As alloy contg. >=5atom.% and <=40atom.% As, a charge generating layer 3 having >=0.5mum and <=2.0mum thickness consisting of an Se-Te alloy contg. >=20atom.% and <=40atom.% Te, and a surface protective layer 4 having >=2mum and <=5Xm thickness consisting of an Se-As alloy contg. >=5atom.% and <=40atom.% As, all being laminated successively on an electroconductive substrate 1, wherein >=2,000 and <=10,000ppm halogen element is contained in the charge transfer layer 2. By doping the Se-As alloy forming the charge transfer layer 2 with a halogen element such as Cl, Br, I, etc., a shallow impurity level is formed in an energy band gap of the Se-As alloy due to the halogen element, injection efficiency into holes from the electroconductive substrate into the charge transfer layer 2 is improved, and hole mobility in the charge transfer layer 2 is also improved. Thus, negative charge on the surface of the photosensitive body is retarded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、反転現像方式を採る電子写真装置例えば電
子写真方式のプリンタやデジタル複写機などに用いられ
るSe系機能分離積層型電子写真感光体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an Se-based functionally separated laminated electrophotographic photoreceptor used in electrophotographic devices employing a reversal development method, such as electrophotographic printers and digital copying machines. Regarding.

〔従来の技術〕[Conventional technology]

電子写真装置においては、電子写真感光体(以下単に感
光体とも称する)を像形成部材とし、暗所での感光体表
面のコロナ放電による帯電、帯電された感光体表面への
像露光19よる静電潜像の形成、形成された静74潜像
のトナーによる現像、現像されたトナー像の紙への転写
、像転写の行われた紙の感光体表面からの分離、トナー
像の紙への定着というプロセスで画像形成が行われる。
In an electrophotographic apparatus, an electrophotographic photoreceptor (hereinafter also simply referred to as a photoreceptor) is used as an image forming member, and the surface of the photoreceptor is charged in a dark place by corona discharge, and the surface of the charged photoreceptor is statically charged by image exposure 19. Formation of an electrostatic latent image, development of the formed electrostatic 74 latent image with toner, transfer of the developed toner image to paper, separation of the paper on which the image has been transferred from the surface of the photoreceptor, transfer of the toner image to the paper Image formation is performed through a process called fixing.

紙分離後の感光体はAC除電、残留トナーの除去、光除
電などを行った後に再使用に供される。
After paper separation, the photoreceptor is subjected to AC charge removal, residual toner removal, optical charge removal, etc., and is then reused.

像形成プロセスは、帯電工程での感光体表面の帯電極性
により、プラス帯電方式とマイナス帯電方式とに分けら
れる。また、ポジ画像からホジ画像を得る正規現像方式
と、ネガ画像からポジ画像が得られる反転現像方式とが
あり、反転現像方式では、帯電工程における感光体表面
の帯電極性と、転写工程で紙の裏面のコロナ放電による
帯電、いわゆる分離帯電の極性とは互いに逆となる。
The image forming process is divided into a positive charging method and a negative charging method depending on the charging polarity of the surface of the photoreceptor in the charging step. In addition, there are two types of development methods: a regular development method that obtains a solid image from a positive image, and a reversal development method that obtains a positive image from a negative image. The polarities of charging due to corona discharge on the back surface, so-called separation charging, are opposite to each other.

Se系光導電性材料はホール易動度の大きい材料であり
、かかる材料からなる感光層を有するSe系機能分離積
層型電子写真感光体(以下、単にSe感光体とも称する
)は、導電性支持基体上に、電荷移動層、TL電荷発生
層順次積層した構成を基本構成とし、感光体の表面近傍
に電荷発生層があり、プラス帯電方式で使用される。
Se-based photoconductive materials are materials with high hole mobility, and Se-based functionally separated laminated electrophotographic photoreceptors (hereinafter also simply referred to as Se photoreceptors) having photosensitive layers made of such materials have a conductive support. The basic structure is that a charge transfer layer and a TL charge generation layer are sequentially laminated on a substrate, and the charge generation layer is located near the surface of the photoreceptor, and is used in a positive charging system.

電子写真方式のプリンタやデジタル複写機においては、
露光光源として一般にレーザーやLEDが用いられ、そ
の寿命の点から像形成プロセスは通常反転現像方式が採
られる。このような電子写真装置にSeg光体が用いら
れる場合には上述のようにプラス帯電方式の画像形成プ
ロセスが採られる。従って、画像形成に際してSe感光
体表面には、転写工程で、マイナスコロナ放電によるマ
イナス極性の分離帯電が行われ、また、紙分離工程およ
びAC除電工程ではACコロナ放電の帯電が行われる。
In electrophotographic printers and digital copiers,
Generally, a laser or an LED is used as an exposure light source, and from the viewpoint of its lifespan, a reversal development method is usually adopted for the image forming process. When a Seg light body is used in such an electrophotographic apparatus, a positive charging type image forming process is adopted as described above. Therefore, during image formation, the surface of the Se photoreceptor is separately charged with negative polarity by negative corona discharge in the transfer process, and charged by AC corona discharge in the paper separation process and AC neutralization process.

Se感光体はマイナス極性の帯電に対しては暗抵抗が大
きいうえに、感光体内部にマイナスの空間電荷を形成し
やすいために、引き続いての画像形成プロセスの帯電工
程におけるプラス帯電電位が低くなる。また、Se感光
体のエネルギーバンドギャップ中に深くトラップされた
電子により光感度に変化が生じる。通常、電子写真装置
では連続して画像出しを行う場合、転写工程と紙分離工
程のコロナ放電は中断することはなく連続して行われて
いる。トナー像を転写する紙としてカット紙を用いると
、通紙中はこれらの工程における感光体表面への帯電は
カット紙を介して行われるが、次々と通紙されてくるカ
ット紙とカット紙の間では感光体表面がカット紙に覆わ
れずに露呈し、この部分では感光体表面への帯電は直接
行われることになる。このようにして、転写工程と紙分
離工程において、感光体表面のカット紙で覆われていた
部分と覆われていなかった部分とで、表面帯電電荷量や
感光体にかかる電界に差が生じ、引き続いての帯電工程
において、プラス帯電電位の低下に差が現れ、また、光
感度にも差が生じ、得られる画像上に濃度差が生じるこ
とになる。
The Se photoconductor has a large dark resistance against negative polarity charging, and also tends to form negative space charges inside the photoconductor, resulting in a low positive charging potential in the subsequent charging step of the image forming process. . In addition, the photosensitivity changes due to electrons deeply trapped in the energy bandgap of the Se photoreceptor. Normally, when images are produced continuously in an electrophotographic apparatus, the corona discharges in the transfer process and the paper separation process are performed continuously without interruption. When cut paper is used as the paper to which the toner image is transferred, the surface of the photoreceptor is charged via the cut paper during these steps during paper passing, but the difference between the cut paper and the cut paper that is passed one after another is In between, the surface of the photoreceptor is exposed without being covered by the cut paper, and the surface of the photoreceptor is directly charged in this area. In this way, in the transfer process and paper separation process, differences occur in the amount of surface charge and the electric field applied to the photoconductor between the part of the photoconductor surface that was covered with the cut paper and the part that was not covered. In the subsequent charging step, a difference appears in the decrease in the positive charging potential, and a difference also occurs in the photosensitivity, resulting in a difference in density on the resulting image.

このような問題点を解消するために、導電性支持基体と
電荷移動層との間にホールの注入が容易となるような薄
膜を設けてSeg光体がマイナスに帯電しに(いように
することが知られてる。
In order to solve these problems, a thin film that facilitates hole injection is provided between the conductive support substrate and the charge transfer layer to prevent the Seg light body from becoming negatively charged. It is known that

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述のような薄膜を設けると、これに接する
電荷移動層が界面から結晶しやすくなるという欠点があ
り、Se感光体の本来必要なプラス帯電性能が悪化する
という問題が生じる。このような薄膜を設け、しかも、
所要の特性を備えたSe感光体を安定して得ることは、
製造技術面でも困難な要因が多く、多くの問題点がある
However, when such a thin film is provided as described above, there is a drawback that the charge transfer layer in contact with the thin film tends to crystallize from the interface, resulting in a problem that the originally necessary positive charging performance of the Se photoreceptor is deteriorated. Providing such a thin film, and
To stably obtain a Se photoreceptor with the required characteristics,
There are many difficult factors in terms of manufacturing technology, and there are many problems.

この発明は、上述の点に鑑みてなされたものであって、
マイナス電荷が帯電しにくくて、反転現像方式の電子写
真装置に用いた場合に、転写工程や紙分離工程でのマイ
ナス帯電に起因する画像濃度差が発生しにくいSe系機
能分離積層型電子写真感光体を提供することを目的とす
る。
This invention was made in view of the above points, and
Se-based functionally separated layered electrophotographic photosensitive material that is difficult to charge with negative charges and is unlikely to cause image density differences due to negative charges during the transfer process or paper separation process when used in a reversal development type electrophotographic device. The purpose is to provide the body.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記の目的を達成するために、この発明によれば、導電
性支持基体上に5原子%以上40原子%以下のAsを含
むSe−As合金からなり膜厚30μm以上90μm以
下の電荷移動層と、20原子%以上40原子%以下のT
eを含むSe−Te合金からなり膜厚0.5μm以上2
.0μm以下の電荷発生層と、5原子%以上40原子%
以下のAsを含むSe−As合金からなり膜厚2μm以
上5μm以下の表面保護層とを順次積層してなる電子写
真感光体において、前記電荷移動層中に2000ppm
以上110000pp以下のハロゲン元素が含有されて
いる電子写真感光体とする。ハロゲン元素は電荷移動層
中に均一な濃度で含有されていてもよいが、導電性支持
基体界面近傍で高く基体からの距離が増すにつれて減少
する濃度勾配で含有されているとより好適である。
In order to achieve the above object, according to the present invention, a charge transfer layer made of an Se-As alloy containing 5 at% or more and 40 at% of As and having a thickness of 30 μm or more and 90 μm or less is formed on a conductive support substrate. , T of 20 atomic % or more and 40 atomic % or less
It is made of Se-Te alloy containing e and has a film thickness of 0.5 μm or more2
.. Charge generation layer of 0 μm or less and 5 at% or more and 40 at%
In an electrophotographic photoreceptor formed by sequentially laminating a surface protective layer made of the following Se-As alloy containing As and having a thickness of 2 μm or more and 5 μm or less, 2000 ppm in the charge transfer layer is provided.
The electrophotographic photoreceptor contains a halogen element of at least 110,000 pp or less. The halogen element may be contained in the charge transfer layer at a uniform concentration, but it is more preferable that the halogen element is contained in a concentration gradient that is high near the interface of the conductive supporting substrate and decreases as the distance from the substrate increases.

〔作用〕[Effect]

電荷移動層を形成するSe−As合金にC1,8r。 C1,8r in the Se-As alloy forming the charge transfer layer.

Iなどのハロゲン元素をドープすると、Se−As合金
のエネルギーバンドギャップ中にハロゲン元素による浅
い不純物準位が形成されて、導電性支持基体から′M電
荷移動層のホールの注入効率が良くなり、また、電荷移
動層中のホール易動度も大きくなる。その結果、感光体
表面のマイナス帯電が抑制されることになる。電荷移動
層へのハロゲン元素のドープ壜を多くすると、マイナス
帯電はより抑制されることになるが、反面、感光体表面
にプラス帯電したときの初期の暗減衰が増大するなど、
Seg光体本来の必要特性に悪影響を及ぼすようになる
。電荷移動層にドープするハロゲン元素に濃度勾配をも
たせる、すなわち、電荷移動層中の導電性支持基体界面
近傍のハロゲン元素の濃度を高くし、基体からの距離が
増すにつれて濃度を減少させると、このような悪影響を
避けてマイナス帯電を抑制することができ、より好適で
ある。
When doped with a halogen element such as I, a shallow impurity level is formed by the halogen element in the energy band gap of the Se-As alloy, improving the efficiency of hole injection from the conductive support substrate into the charge transfer layer. Moreover, the hole mobility in the charge transfer layer also increases. As a result, negative charging on the surface of the photoreceptor is suppressed. Increasing the amount of halogen element doped in the charge transfer layer will further suppress negative charging, but on the other hand, it will increase the initial dark decay when the photoreceptor surface is positively charged.
This will have an adverse effect on the essential characteristics of the Seg light body. By creating a concentration gradient in the halogen element doped into the charge transfer layer, that is, by increasing the concentration of the halogen element in the charge transfer layer near the interface of the conductive support substrate and decreasing the concentration as the distance from the substrate increases, this This is more suitable because negative charging can be suppressed while avoiding such adverse effects.

ハロゲン元素を基体界面近傍に高濃度にドープし、それ
以外のところには低い濃度で均一にドープすることも有
効である。
It is also effective to dope the halogen element at a high concentration near the substrate interface, and uniformly dope the other parts at a low concentration.

〔実施例〕〔Example〕

第1図はこの発明の感光体の一実施例の模式的断面図で
あって、導電性支持基体としてのアルミニウム支持基体
1上にSe系材料からなる電荷移動層2.電荷発生層3
8表面保護層4が順次積層された機能分離積層型感光体
を示す。
FIG. 1 is a schematic cross-sectional view of an embodiment of the photoreceptor of the present invention, in which a charge transfer layer 2 made of a Se-based material is placed on an aluminum support base 1 as a conductive support base. Charge generation layer 3
8 shows a functionally separated laminated photoreceptor in which surface protective layers 4 are sequentially laminated.

実施例1 次の製造工程で第1図に示した実施例のSe感光体を製
作した。切削加工1表面処理、洗浄したアルミニウム支
持基体lを真空蒸着装置内にセットし、基体1の温度を
約190℃に加熱して保持し、約I Xl、0−’To
rrにまで減圧した後、ハロゲン元素であるよう素(1
)をドープした^52Se、を装填した蒸発源を約40
0℃にまで加熱して、膜厚約70μnの電荷移動層2を
形成した。このとき、110000ppのよう素をドー
プした人52Se、を装填した蒸発源へと100ppr
nのよう素をドープしたAs、Se、を装填した蒸発源
Bとの2個の蒸発源を用い、最初、蒸発源Δを加熱して
高よう素1度の^s、Se、を選択的に蒸発させ、若干
遅れて蒸着/RBの加熱を開始して低よう素濃度のAs
2Se、を蒸発させ、蒸着される^s、Se。
Example 1 The Se photoreceptor of the example shown in FIG. 1 was manufactured using the following manufacturing process. Cutting process 1 The surface-treated and cleaned aluminum support substrate 1 is set in a vacuum evaporation device, and the temperature of the substrate 1 is heated to about 190°C and maintained at about IXl, 0-'To.
After reducing the pressure to rr, the halogen element iodine (1
) doped with ^52Se, an evaporation source loaded with about 40
It was heated to 0° C. to form a charge transfer layer 2 with a thickness of about 70 μm. At this time, 100 ppr was added to the evaporation source loaded with 52Se doped with 110,000 pp of iodine.
Using two evaporation sources, evaporation source B loaded with n iodine-doped As, Se, first, evaporation source Δ is heated to selectively evaporate 1 degree high iodine ^s, Se. The As
2Se is evaporated and ^s, Se is evaporated.

中のよう素濃度が最初はIOoooppmと高く、その
後時間とともに減少し、膜中のよう素濃度が第2図に示
すように基体界面側で高く、基体からの距離が増すにつ
れて減少しているプロフィルを持つ電荷移動層とした。
The iodine concentration in the film is initially high at IOoooppm, and then decreases over time.As shown in Figure 2, the iodine concentration in the film is high on the substrate interface side and decreases as the distance from the substrate increases. A charge transfer layer with a

次に、電荷発生層3としてTefi度30原子%のSe
−Te合金の膜厚約1μmの薄膜層をフラッ/ユ蒸着法
で形成し、さらにその上に、表面保護層4としてハロゲ
ン元素のドープされていない^52Se、を約3μm真
空蒸着して感光体としIこ。
Next, as the charge generation layer 3, Se with a Tefi degree of 30 at%
A thin film layer of -Te alloy with a thickness of about 1 μm is formed by a flash/yellow vapor deposition method, and on top of that, a surface protective layer 4 of ^52Se not doped with a halogen element is vacuum-deposited to a thickness of about 3 μm to form a photoreceptor. Toshi Iko.

実施例2 層構成、膜厚は実施例1と同様であるが、電荷移動層の
蒸発源にIOoooppmのよう素をドープした^s、
Se、を装填した蒸発源のみを使用し、電荷移動層中の
よう素濃度を均一とした感光体を作製した。
Example 2 The layer structure and film thickness were the same as in Example 1, but the evaporation source of the charge transfer layer was doped with IOoooppm iodine.
A photoreceptor with a uniform iodine concentration in the charge transfer layer was manufactured using only an evaporation source loaded with Se.

比較例 層構成、膜厚は実施例Iと同様であるが、電荷移動層を
よう素をドープしてないAs、Se、を蒸着して形成し
た感光体を作製した。
Comparative Example A photoreceptor was fabricated having the same layer structure and film thickness as in Example I, but in which the charge transfer layer was formed by vapor deposition of As or Se that was not doped with iodine.

実施例1,2および比較例の感光体について、プリンタ
の実機と同様にプラス帯電、n光、転写のマイナス帯電
、紙分離のAC帯電およびAC除電を行い、感光体表面
電位のンミコレーションを行った。初期のプラス帯電電
位を800Vにした場合、第1表に示す結果を得た。
The photoreceptors of Examples 1 and 2 and Comparative Example were subjected to positive charging, n-light, negative charging for transfer, AC charging for paper separation, and AC static elimination in the same way as in the actual printer, and the surface potential of the photoreceptor was umicolled. went. When the initial positive charging potential was set to 800V, the results shown in Table 1 were obtained.

第  1  表 第1表より、電荷移動層によう素をドープすると、感光
体のマイナス帯電は約1/2に減少し、引き続いてのプ
ラス帯電の低下を少なくできることが明らかである。ま
た、電荷移動層によう素をドープすると、プラス帯電の
初期暗減衰は増加するが、よう素のドープ量を基体界面
近傍で多く、基体から離れるにつれて減少させることに
より、このような暗減衰の増加を抑えて、しかもマイナ
ス帯電を少なくできることが判る。
Table 1 From Table 1, it is clear that when the charge transfer layer is doped with iodine, the negative charge of the photoreceptor is reduced by about 1/2, and the subsequent decrease in positive charge can be reduced. Additionally, when the charge transfer layer is doped with iodine, the initial dark decay of positive charge increases; however, by increasing the amount of iodine doped near the substrate interface and decreasing it as it moves away from the substrate, such dark decay can be suppressed. It can be seen that it is possible to suppress the increase and also to reduce the negative charge.

実施例1および2の感光体をプリンタに装着して印字テ
ストを行ったところ、濃度のばらつきが少ない良好な印
字が得られた。
When the photoreceptors of Examples 1 and 2 were installed in a printer and a printing test was conducted, good printing with little variation in density was obtained.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、Se系機能分離積層型感光体の電荷
移動層にハロゲン元素をドープすることにより、感光体
のマイナス帯電を大幅に減少させることができる。反転
現像方式の電子写真装置にこの発明によるSag光体を
使用することにより、転写工程1紙分離工程での感光体
表面のマイナス帯電量が少なくなるので、通紙の有無に
よるマイナス帯imのばらつきも少なくなり、マイナス
帯電量の差異による画像濃度差を大幅に減少させること
ができ、良好な画像が得られることにtlる。さらに、
電荷移動層のハロゲンドープ債に適切な濃度勾配を持た
せると、Se感光体本来の必要な特性を悪化させること
なくマイナス帯電を減少させることができ、より効果的
である。
According to this invention, by doping the charge transfer layer of the Se-based functionally separated layered photoreceptor with a halogen element, negative charging of the photoreceptor can be significantly reduced. By using the Sag light body according to the present invention in a reversal development type electrophotographic device, the amount of negative charge on the surface of the photoconductor in the paper separation process of transfer process 1 is reduced, so that variations in the negative band im due to whether or not paper is passed are reduced. Therefore, the difference in image density due to the difference in the amount of negative charge can be significantly reduced, and a good image can be obtained. moreover,
When the halogen-doped bond in the charge transfer layer has an appropriate concentration gradient, negative charging can be reduced without deteriorating the essential characteristics of the Se photoreceptor, which is more effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の〜実施例の感光体の模式的断面図、
第2図はこの発明に係わる電荷移動層中のよう素ドープ
量の濃度プロフィルの一例を示す線図である。 1 アルミニウム支持基体、2 電荷移動層、3 電荷
発生層、4 表面保護層。
FIG. 1 is a schematic cross-sectional view of a photoreceptor according to embodiments of the present invention;
FIG. 2 is a diagram showing an example of the concentration profile of the amount of iodine doped in the charge transfer layer according to the present invention. Reference Signs List: 1 aluminum support substrate, 2 charge transfer layer, 3 charge generation layer, 4 surface protection layer.

Claims (1)

【特許請求の範囲】 1)導電性支持基体上に、5原子%以上40原子%以下
のAsを含むSe−As合金からなり膜厚30μm以上
90μm以下の電荷移動層と、20原子%以上40原子
%以下のTeを含むSe−Te合金からなり膜厚0.5
μm以上2.0μm以下の電荷発生層と、5原子%以上
40原子%以下のAsを含むSe−As合金からなり膜
厚2μm以上5μm以下の表面保護層とを順次積層して
なる電子写真感光体において、前記電荷移動層中に20
00ppm以上10000ppm以下のハロゲン元素が
含有されていることを特徴とする電子写真感光体。 2)特許請求の範囲第1項記載の感光体において、電荷
移動層中のハロゲン元素の濃度が導電性支持基体界面近
傍で高く基体からの距離が増すにつれて減少する濃度勾
配をもつことを特徴とする電子写真感光体。
[Scope of Claims] 1) A charge transfer layer made of an Se-As alloy containing 5 at % or more and 40 at % As and having a thickness of 30 μm or more and 90 μm or less, on a conductive support substrate, and a charge transfer layer containing 20 at % or more and 40 at % or more. Made of Se-Te alloy containing less than atomic % of Te, film thickness 0.5
An electrophotographic photosensitive material formed by sequentially laminating a charge generation layer with a thickness of 2.0 μm or more and a surface protective layer made of an Se-As alloy containing 5 at. 20 in the charge transfer layer in the body.
An electrophotographic photoreceptor characterized in that it contains a halogen element in an amount of 00 ppm or more and 10,000 ppm or less. 2) The photoreceptor according to claim 1, characterized in that the concentration of the halogen element in the charge transfer layer is high near the interface of the conductive support substrate and has a concentration gradient that decreases as the distance from the substrate increases. Electrophotographic photoreceptor.
JP25014888A 1988-10-04 1988-10-04 Electrophotographic sensitive body Pending JPH0296769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25014888A JPH0296769A (en) 1988-10-04 1988-10-04 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25014888A JPH0296769A (en) 1988-10-04 1988-10-04 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0296769A true JPH0296769A (en) 1990-04-09

Family

ID=17203530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25014888A Pending JPH0296769A (en) 1988-10-04 1988-10-04 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0296769A (en)

Similar Documents

Publication Publication Date Title
US4297424A (en) Overcoated photoreceptor containing gold injecting layer
US3676117A (en) Method of electrophotography
US3685989A (en) Ambipolar photoreceptor and method of imaging
US3795513A (en) Method of storing an electrostatic image in a multilayered photoreceptor
JPS5860746A (en) Electrophotographic receptor
JPS5862667A (en) Electrophotographic method for plural copies
JPH0296769A (en) Electrophotographic sensitive body
JPS597095B2 (en) Denshishashinyoukankoutai
US3709683A (en) Infrared sensitive image retention photoreceptor
US4413044A (en) Electrophotographic copying process
US4330610A (en) Method of imaging overcoated photoreceptor containing gold injecting layer
JP4160687B2 (en) Photoconductor, process for producing the same, and image forming apparatus equipped with the photoconductor
JPH077215B2 (en) Electrophotographic photoconductor
GB2069165A (en) Electrophotogaphic record carrier
JPH0273389A (en) Electrophotographic image forming process
JPH058420B2 (en)
JP2913066B2 (en) Electrophotographic photoreceptor
JP2867530B2 (en) Positive charging / reversal development type electrophotographic photoreceptor for electrophotographic apparatus
JPH0568702B2 (en)
JPH02256084A (en) Electrophotography device
JP2001343770A (en) Photoreceptor and device for image formation
JPS6028662A (en) Amorphous silicon photosensitive body for electrophotography
JP2001209197A (en) Electrophotographic photoreceptor
JPH0157898B2 (en)
JPS5967539A (en) Electrophotographic receptor