JPH029673B2 - - Google Patents

Info

Publication number
JPH029673B2
JPH029673B2 JP59199008A JP19900884A JPH029673B2 JP H029673 B2 JPH029673 B2 JP H029673B2 JP 59199008 A JP59199008 A JP 59199008A JP 19900884 A JP19900884 A JP 19900884A JP H029673 B2 JPH029673 B2 JP H029673B2
Authority
JP
Japan
Prior art keywords
reaction tank
cylindrical
photoreceptor
inner walls
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59199008A
Other languages
Japanese (ja)
Other versions
JPS6177056A (en
Inventor
Noboru Ebara
Toshiro Matsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59199008A priority Critical patent/JPS6177056A/en
Publication of JPS6177056A publication Critical patent/JPS6177056A/en
Publication of JPH029673B2 publication Critical patent/JPH029673B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 <発明の技術分野> 本発明はアモルフアスシリコン感光体製造用装
置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field of the Invention> The present invention relates to an improvement in an apparatus for manufacturing an amorphous silicon photoreceptor.

<発明の技術的背景とその問題点> 従来より、アモルフアスシリコン(以下aSiと
する)感光体を製造する装置としてプラズマ
CVD(以下P−CVD)装置が最も適した装置と
して用いられている。この装置は真空反応槽内に
感光体の基板を1個または複数個設置し、これを
接地し、一方、一般に基板を囲むような形状の電
極を設け、これに高周波電力を印加して真空反応
槽内に導入したモノシラン(SiH4)ガス等の原
料ガスを放電によりプラズマ状態にし、このプラ
ズマ中で発生する有効ラジカル(基)が基体上で
aSi膜として成膜されるように成した装置である。
<Technical background of the invention and its problems> Conventionally, plasma has been used as an apparatus for manufacturing amorphous silicon (hereinafter aSi) photoreceptors.
A CVD (hereinafter P-CVD) device is used as the most suitable device. In this device, one or more photoreceptor substrates are installed in a vacuum reaction tank, which is grounded, and an electrode, which is generally shaped to surround the substrate, is installed, and high-frequency power is applied to this to react in a vacuum. A raw material gas such as monosilane (SiH 4 ) gas introduced into the tank is turned into a plasma state by electric discharge, and the effective radicals (groups) generated in this plasma are generated on the substrate.
This device is designed to form an aSi film.

従来のaSi感光体製造装置は、容量結合型の円
筒形P−CVD装置を1基または複数基、円形に
又は直列に配置したものであり、夫々の基体は自
転することにより均一な膜厚のaSi膜を得るよう
工夫がされている。原料ガスの導入は一般に上部
からなされる。また多数の穴のある原料ガス噴出
管を反応槽に導入して、槽内で均質なガス濃度に
なるように、その多数の穴より原料ガスを導入す
るようにしたものも提案されている。また反応槽
の排気は、大部分の装置では反応槽の下部より排
気を行つている。
Conventional aSi photoreceptor manufacturing equipment consists of one or more capacitively coupled cylindrical P-CVD equipment arranged in a circle or in series, and each substrate rotates on its own axis to produce a uniform film thickness. Efforts have been made to obtain an aSi film. The raw material gas is generally introduced from the top. It has also been proposed that a raw material gas jetting pipe with many holes is introduced into the reaction tank, and the raw material gas is introduced through the many holes so that the gas concentration is homogeneous in the tank. In most devices, the reaction tank is evacuated from the bottom of the reaction tank.

しかし、この様な従来装置では、反応槽中を流
れるガス通路が短くなり、故に原料ガスが基体上
にaSi膜として転換される効率が低く、通常その
効率は高々十数パーセント程度である。また従来
の装置では複数個の基体に成膜する場合、基体が
夫々自転してはいるものの、反応槽中の全基体上
に均一均質なaSi膜を成膜することは非常に難し
いという欠点があつた。
However, in such a conventional device, the gas path flowing through the reaction tank is short, and therefore the efficiency with which the raw material gas is converted into the aSi film on the substrate is low, and the efficiency is usually about ten-odd percent at most. Furthermore, when depositing films on multiple substrates using conventional equipment, although each substrate rotates on its own axis, it is extremely difficult to deposit a uniform aSi film on all the substrates in the reaction tank. It was hot.

<発明の目的> 本発明は上記従来技術の欠点を解消し、均一均
質なaSi感光体を効率よく製造する装置を提供す
ることを目的としてなされたものである。
<Object of the Invention> The present invention has been made for the purpose of solving the above-mentioned drawbacks of the prior art and providing an apparatus for efficiently manufacturing a uniform and homogeneous aSi photoreceptor.

<発明の構成> 上記の目的を達成するため、本発明のアモルフ
アスシリコン感光体製造用装置はプラズマCVD
装置の反応槽を円心円状の外壁及び内壁を有する
円筒形となし、この円筒形反応槽内に円筒形導体
からなる複数の感光体基体を上記の外壁及び内壁
より略等距離の位置の同一円周上に夫々等しい間
隔を置いて円筒形導体の軸方向を円筒形反応槽の
中心軸と平行になるように配設し、プラズマ発生
用の高周波電力を上記の感光体基体に印加し、接
地電位に設定された上記の外壁及び内壁と上記の
感光体基体との間でプラズマを発生せしめるよう
に成したことを特徴としている。
<Configuration of the Invention> In order to achieve the above object, an apparatus for manufacturing an amorphous silicon photoconductor of the present invention uses plasma CVD.
The reaction tank of the apparatus is cylindrical with circular outer and inner walls, and a plurality of photoreceptor substrates made of cylindrical conductors are placed in the cylindrical reaction tank at positions approximately equidistant from the outer and inner walls. The cylindrical conductors are arranged at equal intervals on the same circumference so that their axial directions are parallel to the central axis of the cylindrical reaction tank, and high-frequency power for plasma generation is applied to the photoreceptor substrate. The present invention is characterized in that plasma is generated between the above-mentioned outer wall and inner wall, which are set at a ground potential, and the above-mentioned photoreceptor base.

<発明の実施例> 以下、図面を参照して本発明の一実施例を詳細
に説明する。
<Embodiment of the Invention> Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は実施例装置の概略構成を示す図、第2
図は実施例装置の反応槽の構成例を示す水平断面
図、第3図は第2図におけるA−A′断面を示す
図である。
FIG. 1 is a diagram showing the schematic configuration of the embodiment device, and FIG.
The figure is a horizontal cross-sectional view showing an example of the structure of the reaction tank of the embodiment apparatus, and FIG. 3 is a cross-sectional view taken along the line A-A' in FIG.

第1図において、1は原料ガスボンベ、2はガ
ス流量制御部、3は反応槽、4,4,…は反応槽
3内に配置された円筒形導体、5はメカニカルブ
ースタポンプ系、6は排ガス処理部、7は高周波
電源、8はマツチングボツクスであり、反応槽3
に対して原料ガスボンベ1から原料ガスがガス流
量制御部2を通つて導入される。排ガスはメカニ
カルブースターポンプ系5を経て排ガス処理部6
に入り処理される。また高周波電力は高周波電源
7からマツチングボツクス8を介して後述するよ
うに反応槽3内の各円筒形導体4,4,…に印加
され、反応槽3内の円心円状に配置された内、外
側電極部は接地される。前記反応槽3は第2図に
示すように円心二重円筒状に形成されている。そ
して外側周壁11の内側面に外側電極21が形成
あるいは近接して設けられ、また内側周壁12の
外側面に内側電極22が形成あるいは近接して設
けられている。したがつて外側電極21と内側電
極22もまた反応槽10と円心の2重円筒状電極
を構成している。また、上記内側電極22を備え
た内側周壁12は第3図に示すように開閉自在に
設けられた上蓋23に固着されており、反応槽3
の底面には図示しない駆動源に連結された導電性
回動軸24が反応槽3の底面中央部に絶縁部材2
5を介して回転自在に挿通され、この回動軸24
は導電性ギア26が固定され、この導電性ギア2
6の周囲に外側周壁11と絶縁部材27によつて
絶縁された状態で複数の回転ギア28,28,…
が配設され、その回転軸29,29,…が電極2
1,22より等距離の同一円周上に夫々等しい間
隔を置いて配置されるように構成されている。そ
して、円筒形の導体からなる各感光体基体4,
4,…の中心軸を回転ギア28,28,…の回転
軸29,29,…一致させて配設することによ
り、外側電極21と内側電極22間に、該電極2
1,22より等距離の同一円周上に夫々等しい間
隔を置いて、夫々の軸方向を電極21,22の中
心軸と平行にして円筒形の導体からなる感光体基
体4,4,…が反応槽3内に複数個配設されるこ
とになる。そして各感光体基体4,4,…は図示
しない駆動源及び第3図に示すギア機構26,2
8等により、各感光体基体4,4,…が置かれた
円周上を自転しながら公転することになる。第2
図ではQ矢符方向に自転し、P矢符方向に公転す
る場合を示している。原料ガスの反応槽3内への
導入口40と反応槽3からの排出口50は反応槽
3の外側周壁11に相互に180゜の相対位置をもつ
て設けられている。
In Fig. 1, 1 is a raw material gas cylinder, 2 is a gas flow rate controller, 3 is a reaction tank, 4, 4, ... are cylindrical conductors placed in the reaction tank 3, 5 is a mechanical booster pump system, and 6 is an exhaust gas. A processing section, 7 is a high frequency power supply, 8 is a matching box, and a reaction tank 3.
In contrast, raw material gas is introduced from a raw material gas cylinder 1 through a gas flow rate control section 2 . Exhaust gas passes through a mechanical booster pump system 5 to an exhaust gas treatment section 6
and processed. Further, high frequency power is applied from a high frequency power source 7 via a matching box 8 to each cylindrical conductor 4, 4,... in the reaction tank 3 as described later, and arranged in a circular shape within the reaction tank 3. The inner and outer electrode parts are grounded. As shown in FIG. 2, the reaction tank 3 is formed into a double cylindrical shape with a circular center. An outer electrode 21 is formed on or adjacent to the inner surface of the outer peripheral wall 11, and an inner electrode 22 is formed on or adjacent to the outer surface of the inner peripheral wall 12. Therefore, the outer electrode 21 and the inner electrode 22 also constitute a double cylindrical electrode with a circular center in relation to the reaction vessel 10. Further, the inner circumferential wall 12 provided with the inner electrode 22 is fixed to an upper lid 23 provided so as to be openable and closable as shown in FIG.
An electrically conductive rotating shaft 24 connected to a drive source (not shown) is mounted on the bottom of the reaction tank 3, and an insulating member 2 is connected to the center of the bottom of the reaction tank 3.
5, and is rotatably inserted through the rotating shaft 24.
A conductive gear 26 is fixed, and this conductive gear 2
A plurality of rotating gears 28, 28, .
are arranged, and the rotating shafts 29, 29,...
1 and 22 are arranged at equal intervals on the same circumference and equidistant from each other. Each photoreceptor base 4 made of a cylindrical conductor,
By aligning the central axes of the rotating gears 28, 28, 29, 29, . . . with the central axes of the rotating gears 28, 28, .
Photoreceptor substrates 4, 4, . . . made of cylindrical conductors are arranged at equal intervals on the same circumference equidistant from electrodes 1 and 22, with their axial directions parallel to the central axes of electrodes 21 and 22. A plurality of them will be arranged in the reaction tank 3. Each photoreceptor base 4, 4, . . . is connected to a drive source (not shown) and a gear mechanism 26, 2 shown in FIG.
8, etc., each photoreceptor substrate 4, 4, . . . revolves around the circumference on which it is placed while rotating. Second
The figure shows a case where it rotates in the direction of the Q arrow and revolves in the direction of the P arrow. An inlet 40 for introducing raw material gas into the reaction tank 3 and an outlet 50 for exiting the reaction tank 3 are provided on the outer circumferential wall 11 of the reaction tank 3 at a relative position of 180° to each other.

上記の如き構成において、高周波電源7から供
給される高周波電力は回動軸24、ギア機構2
6,28等を介して反応槽3本体より絶縁されて
いる各感光体基体4,4,…に印加され、接地電
位にある円心円状の内壁12及び外壁11との間
の空間にプラズマが発生し、基体4,4,…上に
aSi膜が成膜される。
In the above configuration, the high frequency power supplied from the high frequency power supply 7 is transmitted to the rotation shaft 24 and the gear mechanism 2.
6, 28, etc., to each photoreceptor substrate 4, 4, ... which is insulated from the reaction tank 3 body, and plasma is applied to the space between the circular inner wall 12 and outer wall 11, which are at ground potential. occurs, and on the substrate 4, 4,...
An aSi film is deposited.

また原料ガス1の流れる通路が長く、数本の基
体4,4,…の周辺をガス1が通過することにな
り、排気されるまでに、原料ガスが有効に利用さ
れ、その利用効率が大幅に改善されることにな
る。
In addition, the path through which the raw material gas 1 flows is long, and the gas 1 passes around several substrates 4, 4,..., so that the raw material gas is effectively used before being exhausted, greatly increasing its utilization efficiency. This will be improved.

また基体4が反応槽3内で自転及び公転を同時
に行なつていることにより均質なaSi膜が反応槽
3内の全ての基体4上に成膜される。
Further, since the substrates 4 simultaneously rotate and revolve within the reaction tank 3, a homogeneous aSi film is formed on all the substrates 4 in the reaction tank 3.

更に基体4を高周波側に接続し、基体4と対向
する外壁及び内壁を接地電位にすることによつ
て、プラズマの陽光柱部分が基体4に近接するこ
とになり、成膜速度が上昇することになる。
Furthermore, by connecting the base 4 to the high frequency side and setting the outer and inner walls facing the base 4 to the ground potential, the positive column of the plasma comes close to the base 4, increasing the film formation rate. become.

次に、実際の具体的数値を挙げて本発明の一実
施例について述べると、反応槽3内に例えば10cm
径のAl円筒の基体4を8本、内外電極21,2
2間に配置し、基体4,4,…の自転速度を4〜
10回/分、公転速度を1〜2.5回/分で行なうよ
うに設計した。そして、13.56MHzで約400Wの高
周波電力を公転の軸24を介して反応槽3内の8
本の基体4,4,…に均等に印加し、反応槽3の
内外壁を接地し、モノシラン(SiH4)ガスのみ
を原料ガスとして用いて0.3Torrの槽内ガス圧で
プラズマ放電を行つた。この際基体4,4,…は
約250℃に加熱されている。
Next, to describe an embodiment of the present invention by citing actual specific values, for example, 10cm
8 Al cylinder bases 4 with the same diameter, and inner and outer electrodes 21, 2
2, and the rotation speed of the bases 4, 4, ... is set between 4 and 2.
It was designed to perform 10 revolutions/min, with a revolution speed of 1 to 2.5 revolutions/min. Then, a high frequency power of about 400 W at 13.56 MHz is transmitted to the 8
Plasma discharge was performed at a gas pressure in the tank of 0.3 Torr using only monosilane (SiH 4 ) gas as a raw material gas, with the inner and outer walls of the reaction tank 3 grounded, and with a gas pressure in the tank of 0.3 Torr. . At this time, the substrates 4, 4, . . . are heated to about 250°C.

この条件で得た全基体4,4,…上のaSiは均
質で均一な厚さとなつた。膜厚からガスのaSiへ
の転換効率を推定すると約30%となり、従来装置
の約3倍の効率となり、また基体側へ高周波電力
を印加し、外壁及び内壁を接地電位にすることに
よつて成膜速度が約40%向上した。
The aSi on all the substrates 4, 4, . . . obtained under these conditions was homogeneous and had a uniform thickness. Estimating the conversion efficiency of gas to aSi from the film thickness, it is approximately 30%, which is approximately three times the efficiency of conventional equipment. The film deposition speed was improved by approximately 40%.

<発明の効果> 以上のように本発明によれば、基体を高周波側
に接続し、基体に対向する反応槽の外壁及び内壁
を接地電位とすることによつて、プラズマの陽光
柱部分が基体に近接させることが可能となり、そ
の結果として成膜速度の大幅な向上を計ることが
出来る。
<Effects of the Invention> As described above, according to the present invention, the positive column of plasma is connected to the substrate by connecting the substrate to the high frequency side and setting the outer and inner walls of the reaction tank facing the substrate to the ground potential. As a result, the film formation rate can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の概略構成を示
す図、第2図は本発明の一実施例装置の反応槽の
構成例を示す水平断面図、第3図は第2図におけ
るA−A′断面を示す図である。 3…反応槽、4…感光体基体、7…高周波電
源、11…外側周壁、12…内側周壁、21…外
側電極、22…内側電極。
FIG. 1 is a diagram showing a schematic configuration of an apparatus according to an embodiment of the present invention, FIG. 2 is a horizontal sectional view showing an example of the configuration of a reaction tank of an apparatus according to an embodiment of the present invention, and FIG. 3 is an A in FIG. 2. It is a diagram showing a −A′ cross section. 3... Reaction tank, 4... Photoreceptor base, 7... High frequency power supply, 11... Outer circumferential wall, 12... Inner circumferential wall, 21... Outer electrode, 22... Inner electrode.

Claims (1)

【特許請求の範囲】 1 プラズマCVD装置の反応槽を同心円状の外
壁及び内壁を有する円筒形となし、 該円筒形反応槽内に円筒形導体からなる複数の
感光体基体を上記外壁及び内壁より略等距離の位
置の同一円周上に夫々等しい間隔を置いて円筒形
導体の軸方向を円筒形反応槽の中心軸と平行にな
るように配設し、上記外壁及び内壁を接地電位に
設定し、 プラズマ発生用の高周波電力を上記感光体基体
に印加し、 接地電位に設定された上記外壁及び内壁と上記
感光体基体との間でプラズマを発生せしめるよう
に成したことを特徴とするアモルフアスシリコン
感光体製造用装置。 2 原料ガスの反応槽への導入口と反応槽からの
排出口は前記円筒形反応槽の外壁側周面に180゜の
相対位置をもつて設けられていることを特徴とす
る特許請求の範囲第1項記載のアモルフアスシリ
コン感光体製造用装置。
[Scope of Claims] 1. The reaction tank of the plasma CVD apparatus is cylindrical with concentric outer and inner walls, and a plurality of photoreceptor substrates made of cylindrical conductors are disposed within the cylindrical reaction tank from the outer and inner walls. The cylindrical conductors are arranged at equal intervals on the same circumference at positions approximately equidistant from each other so that their axial directions are parallel to the central axis of the cylindrical reaction tank, and the outer and inner walls are set to ground potential. and applying high-frequency power for plasma generation to the photoreceptor base to generate plasma between the outer and inner walls set at ground potential and the photoreceptor base. Equipment for manufacturing asilicon photoreceptors. 2. Claims characterized in that the inlet of the raw material gas into the reaction tank and the outlet from the reaction tank are provided at a relative position of 180° on the outer wall side circumferential surface of the cylindrical reaction tank. 2. The apparatus for manufacturing an amorphous silicon photoreceptor according to item 1.
JP59199008A 1984-09-21 1984-09-21 Producing device of amorphous silicon photosensitive body Granted JPS6177056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59199008A JPS6177056A (en) 1984-09-21 1984-09-21 Producing device of amorphous silicon photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59199008A JPS6177056A (en) 1984-09-21 1984-09-21 Producing device of amorphous silicon photosensitive body

Publications (2)

Publication Number Publication Date
JPS6177056A JPS6177056A (en) 1986-04-19
JPH029673B2 true JPH029673B2 (en) 1990-03-02

Family

ID=16400570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59199008A Granted JPS6177056A (en) 1984-09-21 1984-09-21 Producing device of amorphous silicon photosensitive body

Country Status (1)

Country Link
JP (1) JPS6177056A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160868A (en) * 2001-11-27 2003-06-06 Kobe Steel Ltd Plasma film-forming apparatus or in-line plasma film- forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112263A (en) * 1975-03-28 1976-10-04 Hitachi Ltd Semiconductor surface processor base
JPS5546056A (en) * 1978-09-29 1980-03-31 Hitachi Ltd Electronic fuel injection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112263A (en) * 1975-03-28 1976-10-04 Hitachi Ltd Semiconductor surface processor base
JPS5546056A (en) * 1978-09-29 1980-03-31 Hitachi Ltd Electronic fuel injection device

Also Published As

Publication number Publication date
JPS6177056A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
WO2019148823A1 (en) Device and method for improving uniformity of film thickness
JPH04264715A (en) Vertical batch treatment device
JPS61110768A (en) Device for manufacturing amorphous silicon photosensitive body
JPH029673B2 (en)
JPS6010618A (en) Plasma cvd apparatus
JPH029672B2 (en)
JPH06136543A (en) Plasma cvd apparatus
JPS6153429B2 (en)
JPS6153431B2 (en)
JPS5871369A (en) Producing device for photosensitive body
JPS5889943A (en) Plasma cvd device
JP2958850B2 (en) Plasma CVD apparatus and method for manufacturing amorphous silicon photoreceptor using the same
JPH0364466A (en) Production of amorphous silicon-based semiconductor film
KR20080082076A (en) Gas injection device having heating means and substrate processing apparatus comprising the same
JPS59217614A (en) Apparatus for forming amorphous silicon film
JPH05217915A (en) Plasma cvd device
JPS58132755A (en) Method and device for production of amorphous silicon photoreceptor
JPS59213439A (en) Capacity coupling type glow discharge decomposition apparatus
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JP2920637B2 (en) Glow discharge decomposition equipment
JPH01162768A (en) Hydrogenated amorphous silicon film forming device
JPH0689892A (en) Plasma cvd device
JPH0211771A (en) Glow discharge cracking device
JP2558469B2 (en) Glow discharge decomposition equipment
JPS624872A (en) Film formation device