JPH0296649A - Dehydrogenase electrode - Google Patents

Dehydrogenase electrode

Info

Publication number
JPH0296649A
JPH0296649A JP63250429A JP25042988A JPH0296649A JP H0296649 A JPH0296649 A JP H0296649A JP 63250429 A JP63250429 A JP 63250429A JP 25042988 A JP25042988 A JP 25042988A JP H0296649 A JPH0296649 A JP H0296649A
Authority
JP
Japan
Prior art keywords
electrode
dehydrogenase
carbon
glucose
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63250429A
Other languages
Japanese (ja)
Inventor
Mitsugi Senda
千田 貢
Tokuji Ikeda
篤治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP63250429A priority Critical patent/JPH0296649A/en
Publication of JPH0296649A publication Critical patent/JPH0296649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To enable measurement of nicotinamide adenine nucleotide or nicotinamide adenine dinucleotide phosphate with high sensitivity by modifying a carbon electrode with charge-transfer complexes and dehydrogenase. CONSTITUTION:A carbon electrode is modified with charge-transfer complexes and dehydrogenase. As for the carbon electrode, a paste-form electrode obtained by mixing the powder of carbon such as carbon black or carbon graphite with a nonpolar binder such as paraffin, is used. A platinum electrode, a silver/silver chloride electrode or the like is used as an opposite electrode. As for the charge- transfer complexes, moreover, Wurster salt or tetracyanoquinodimethane is used. As for the dehydrogenase, glucose-6-phosphate dehydrogenase, lactic dehydrogenase or the like is used. The carbon electrode can be modified simply by kneading the charge-transfer complexes and the dehydrogenase in the carbon- paste-form electrode.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、試料中のニコチンアミドアデニンジヌクレオ
チド(NADHもしくはNAD)又はニコチンアミドア
デニンジヌクレオチドリン酸(NADPHもしくはNA
DP)の濃度測定等に好適に用いられるデヒドロゲナー
ゼ電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to the use of nicotinamide adenine dinucleotide (NADH or NAD) or nicotinamide adenine dinucleotide phosphate (NADPH or NA) in a sample.
The present invention relates to a dehydrogenase electrode suitably used for measuring the concentration of DP).

(従来の技術) NADHもしくはNAD又はNADPHもしくはNAD
Pの定量は臨床化学分析2食品分析などにおける生化学
的分析手法の重要な手段を提供するものである。特に、
臨床化学分析ではこれらの定量は必要不可欠な手段とな
っており1例えば。
(Prior art) NADH or NAD or NADPH or NAD
Quantification of P provides an important means for biochemical analysis methods such as clinical chemistry analysis 2 food analysis. especially,
Quantification of these substances has become an indispensable means in clinical chemical analysis, for example.

血液等の生体試料中のタレアチンキナーゼ、グルタミン
酸オキサロ酢酸トランスアミナーゼ、グルタミン酸ピル
ビン酸トランスアミナーゼ等の各活性値の測定はこれら
の定量によって行われている。
The activity values of taleatine kinase, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, etc. in biological samples such as blood are measured by quantifying these.

このような分析においては、測定すべき物質に適当な物
質を作用させて定量しやすい形に導くことが行われてお
り、適当な物質として、最近酵素の使用が注目されるよ
うになり、多くの分析項目で酵素が主役を演するように
なっている。
In such analysis, an appropriate substance is applied to the substance to be measured to bring it into a form that is easy to quantify.Recently, enzymes have been attracting attention as suitable substances, and many are being used. Enzymes are now playing a leading role in analysis items.

この定量しやすい形としては、H10□あるいはNAD
(H)又はNADP(H)が採用されており。
The form that is easy to quantify is H10□ or NAD
(H) or NADP(H) is adopted.

酵素としてオキシダーゼを使用すると、H2O,を定置
することになり、脱水素酵素を使用すると。
When oxidase is used as an enzyme, H2O is stationary, and when dehydrogenase is used.

NAD (H)あるいはNADP (H)を定量するこ
とになる。両者を比較すると、前者は、化学量論性に問
題があること、溶存酸素量の影響を受けやすいこと、還
元性物質の影響を受けやすいこと等のために、原理的に
は後者の方が優れているとされている。後者の場合、N
ADHあるいはNADPHは、紫外部340nmに特徴
的な吸収スペクトルを有するので、340nmの吸光度
の増減を測定することによって定量が行われているが。
NAD (H) or NADP (H) will be quantified. Comparing the two, the latter is theoretically better because the former has problems with stoichiometry, is more susceptible to the amount of dissolved oxygen, and is more susceptible to reducing substances, etc. It is said to be excellent. In the latter case, N
Since ADH or NADPH has a characteristic absorption spectrum in the ultraviolet region of 340 nm, it is quantified by measuring the increase or decrease in absorbance at 340 nm.

高価な分光光度計を必要とするので、より簡便なNAD
(H)あるいはNADP (H)を定量するバイオセン
サの開発に期待がよせられている。例えば、NADHを
電極上で直接酸化する際の電流を測定する電極(1)の
開発が試みられている。
Since it requires an expensive spectrophotometer, NAD is more convenient.
There are high hopes for the development of a biosensor that can quantify (H) or NADP (H). For example, attempts have been made to develop an electrode (1) that measures the current when NADH is directly oxidized on the electrode.

また、これより信号(S)とノイズ(N)の比。Also, from this, the ratio of signal (S) to noise (N).

すなわちS/N比を改善する目的で、NADHを直接電
極上で酸化せずに、酵素に適当なメデイエータを組み合
わせて酸化還元反応を行い1間接的に電流を得る電極(
2)〔レビュー・オブ・ポーラログラフイー(Revi
ew of Polarography)  Vo13
1、31 (1985) )の開発等が試みられている
That is, for the purpose of improving the S/N ratio, NADH is not directly oxidized on the electrode, but an enzyme is combined with an appropriate mediator to perform a redox reaction, and an electrode (1) that indirectly obtains a current is used.
2) [Review of Polarography (Revi
ew of Polarography) Vo13
1, 31 (1985)).

一方9本発明者等は、すてにN A D (H)とジア
ホラーゼとビタミンにとデヒドロゲナーゼの囲者を固定
化したデヒドロゲナーゼ電極(3)を提案した〔レビュ
ー・オブ・ポーラログラフイー(Re−view of
 Polarography)  Vol 33 、 
20  (19B?)及び特開昭61−61050号公
報参照〕。
On the other hand, the present inventors have proposed a dehydrogenase electrode (3) in which NAD (H), diaphorase, vitamins, and a dehydrogenase surround are immobilized [Review of Polarography of
Polarography) Vol 33,
20 (19B?) and Japanese Unexamined Patent Publication No. 61-61050].

参照−本発明者等は、すでにジアホラーゼとジアホラー
ゼのメデイエータであるビタミンにとグルコース6−リ
ン酸デヒドロゲナーゼとの王者を電子の授受を電気信号
に変換する電極に固定化したデヒドロゲナーゼ電極(4
)を提案した(日本農芸化学会誌、62巻、3号、59
5頁、 1988年)。
Reference - The present inventors have already developed a dehydrogenase electrode (4) in which diaphorase and the king of diaphorase mediators, vitamin and glucose 6-phosphate dehydrogenase, are immobilized on an electrode that converts the transfer of electrons into electrical signals.
) was proposed (Journal of the Japanese Society of Agricultural Chemistry, Vol. 62, No. 3, 59)
5, 1988).

(発明が解決しようとする課題) 上記(1)の電極では、大きな電極加電圧(0,7v程
度)を必要とするため、電極加電圧以下の電解電圧値を
有する電解質が被測定液に共存している場合、この共存
物質による電解電流、すなわち不安定な暗電流が流れ、
S/N比が著しく悪くなり、実用上、多種の電解質を含
む被測定液中のNAD (H)の測定には使用できない
。また、上記(2)の電極では、電極の安定性に問題が
あるため、測定値の再現性が悪く、さらに、メデイエー
タが遊離の状態であるため、実用上の電極としては実現
されていない。
(Problem to be solved by the invention) Since the electrode in (1) above requires a large electrode applied voltage (approximately 0.7 V), an electrolyte with an electrolytic voltage value lower than the electrode applied voltage coexists in the liquid to be measured. When this occurs, an electrolytic current due to this coexisting substance, that is, an unstable dark current, flows.
The S/N ratio becomes extremely poor, and it cannot be practically used for measuring NAD (H) in a liquid to be measured containing various electrolytes. In addition, the electrode of (2) above has problems with electrode stability, resulting in poor reproducibility of measured values, and furthermore, the mediator is in a free state, so it has not been realized as a practical electrode.

そして、上記のいずれの電極も、NAD (H)あるい
はNADP(H)を高感度(数nMというオーダーまで
)で定量することができないのが実状である。
The reality is that none of the above electrodes can quantify NAD (H) or NADP (H) with high sensitivity (up to the order of several nM).

一方、上記(3)の電極は、酵素の基質(エタノール、
乳酸、グリセロール等)を数mMまで定量するもので、
この程度の感度では十分とはいえず、しかも、この電極
は、NAD (H)あるいはNADP (H)を定量す
るものではない。
On the other hand, the electrode in (3) above uses enzyme substrates (ethanol,
(lactic acid, glycerol, etc.) down to a few mM.
This level of sensitivity is not sufficient, and furthermore, this electrode is not intended to quantify NAD (H) or NADP (H).

さらに上記(3)の電極は、超高感度のNAD(11)
あるいはNADP (H)の測定を実現したものである
が、ジアホラーゼ及びビタミンKを固定化した電極であ
るため、高価で、かつ反応系がやや複雑になる傾向があ
り、必ずしもあらゆる測定系に最適であるというわけで
はない。
Furthermore, the electrode (3) above is an ultra-sensitive NAD (11)
Alternatively, this method realizes the measurement of NADP (H), but because it uses an electrode with immobilized diaphorase and vitamin K, it is expensive and the reaction system tends to be somewhat complicated, so it is not necessarily optimal for all measurement systems. That doesn't mean there is.

(課題を解決するための手段) 本発明者らは、このような課題を解決すべく鋭意研究を
進めてきたところ、カーボン電極を電荷移動錯体及びデ
ヒドロゲナーゼで修飾してなるデヒドロゲナーゼ電極が
、試料中のNAD (H)あるいはNADP (H)を
高感度で2節便で、かつ精度よく定量できるということ
を見出し1本発明を完成した。
(Means for Solving the Problems) The present inventors have conducted intensive research to solve these problems, and have discovered that a dehydrogenase electrode, which is a carbon electrode modified with a charge transfer complex and dehydrogenase, The inventors have discovered that it is possible to quantify NAD (H) or NADP (H) with high sensitivity, in two steps, and with high precision, and have completed the present invention.

すなわち2本発明は、カーボン電極を電荷移動錯体及び
デヒドロゲナーゼで修飾してなることを特徴とするNA
D (H)又はNADP (H)に対する感応性を有す
るデヒドロゲナーゼ電極を要旨とするものである。
That is, the present invention provides an NA characterized in that a carbon electrode is modified with a charge transfer complex and a dehydrogenase.
The subject matter is a dehydrogenase electrode that is sensitive to D (H) or NADP (H).

本発明に用いられるカーボン電極としては1例えば、カ
ーボンブラックあるいはカーボングラファイトなどの炭
素粉末を流動パラフィン等の非極性結合剤と混合して得
たペースト状電極があげられ、この電極を陽極とすれば
よい。
Examples of the carbon electrode used in the present invention include a paste-like electrode obtained by mixing carbon powder such as carbon black or carbon graphite with a non-polar binder such as liquid paraffin, and if this electrode is used as an anode, good.

また、陰極(対極)としては1種々の電極1例えば、白
金電極、銀/塩化銀電極、銀/酸化銀電極、水銀/塩化
第一水銀電極等を用いることができる。
Further, as the cathode (counter electrode), one of various electrodes 1 such as a platinum electrode, a silver/silver chloride electrode, a silver/silver oxide electrode, a mercury/mercurous chloride electrode, etc. can be used.

本発明に用いられる電荷移動錯体としては1例えば、ウ
ルスター塩あるいはセミキノイド、チオテトラセン、ク
ロラニール、テトラシアノエチレン、テトラシアノキノ
ジメタン、トリニトロベンゼンもしくはそれらの誘導体
を電子受容体とする塩があげられ、その中でもテトラシ
アノキノジメタンもしくはその誘導体の塩が特に好まし
い。
Examples of charge transfer complexes used in the present invention include Wurster salts or salts having semiquinoids, thiotetracene, chloranil, tetracyanoethylene, tetracyanoquinodimethane, trinitrobenzene, or derivatives thereof as electron acceptors; Among these, salts of tetracyanoquinodimethane or its derivatives are particularly preferred.

また、これらの塩における電子供与体としては硫酸イオ
ン、硝酸イオン、ハロゲンイオンなどが用いられ、ビニ
ルピリジン、ビニルイミダゾール。
Further, as electron donors in these salts, sulfate ions, nitrate ions, halogen ions, etc. are used, including vinylpyridine and vinylimidazole.

アミノスチレンなどのポリマー型の塩を電子供与体とし
て用いることもできる。
Polymeric type salts such as aminostyrene can also be used as electron donors.

本発明に用いられるデヒドロゲナーゼとしては。The dehydrogenase used in the present invention includes:

グルコース6−リン酸デヒドロゲナーゼ、乳酸デヒドロ
ゲナーゼ、リンゴ酸デヒドロゲナーゼ、アルコールデヒ
ドロゲナーゼ、グリセロールデヒドロケナーゼ、グルコ
ースデヒドロゲナーゼ、グルタミン酸デヒドロゲナーゼ
などがあげられ、これらは微生物由来のもの9動物由来
のもの等各種のものを使用することができるが、中でも
最適生育温度が50℃ないし85℃である微生物の産生
ずるものが好ましい。そのような微生物としては。
Examples include glucose 6-phosphate dehydrogenase, lactate dehydrogenase, malate dehydrogenase, alcohol dehydrogenase, glycerol dehydrogenase, glucose dehydrogenase, and glutamate dehydrogenase. Various types of these are used, including those derived from microorganisms and those derived from animals. Among them, those produced by microorganisms having an optimum growth temperature of 50°C to 85°C are preferred. As such a microorganism.

例えば、バチルス・ステアロサーモフィルス、バチルス
・サーモプロテオリテイクス、バチルス・アシドカルダ
リウス等のバチルス属、サーモアクチノマイセス属、サ
ーマス属、サーモミクロビウム属等の微生物があげられ
る。これらの中でも特に好ましい微生物としては、バチ
ルス・ステアロサーモフィルスがあげられ、その具体例
としてはATCC?933,7954.10194,1
2980、NCA1.503.UK563株(微工研菌
寄第7275号、FERMP−7275,昭和58年9
月29日寄託)等がある。
Examples include microorganisms of the genus Bacillus such as Bacillus stearothermophilus, Bacillus thermoproteolyteix, and Bacillus acidocaldarius, Thermoactinomyces, Thermus, and Thermomicrobium. Among these, a particularly preferred microorganism is Bacillus stearothermophilus, and a specific example thereof is ATCC? 933,7954.10194,1
2980, NCA1.503. UK563 strain (FERMP-7275, FERMP-7275, September 1982)
(Deposited on May 29th) etc.

また、上記デヒドロゲナーゼの基質としては。Also, as a substrate for the above dehydrogenase.

例えばグルコース6−リン酸デヒドロゲナーゼの場合に
はグルコース6−リン酸が、乳酸デヒドロゲナーゼの場
合には乳酸が、リンゴ酸デヒドロゲナーゼの場合にはリ
ンゴ酸が、アルコールデヒドロゲナーゼの場合にはアル
コールが、グリセロールデヒドロゲナーゼの場合にはグ
リセロールが。
For example, glucose 6-phosphate in the case of glucose 6-phosphate dehydrogenase, lactic acid in the case of lactate dehydrogenase, malate in the case of malate dehydrogenase, alcohol in the case of alcohol dehydrogenase, and alcohol in the case of glycerol dehydrogenase. In some cases, glycerol.

グルコースデヒドロゲナーゼの場合にはグルコースが、
グルタミン酸デヒドロゲナーゼの場合にはグルタミン酸
が用いられ、このような安価な物質が有効に用いられこ
とは本発明の特徴とするところでもある。
In the case of glucose dehydrogenase, glucose is
In the case of glutamate dehydrogenase, glutamic acid is used, and it is a feature of the present invention that such an inexpensive substance can be used effectively.

本発明でカーボン電極を電荷移動錯体及びデヒドロゲナ
ーゼで修飾するには1例えば前記したカーボンペースト
を電極とし、このペースト状電極に電荷移動錯体及びデ
ヒドロゲナーゼを練り込むことにより簡単に修飾するこ
とができるが、電荷移動錯体の場合は水不溶性担体に包
括した状態で修飾することもできる。
To modify a carbon electrode with a charge transfer complex and dehydrogenase in the present invention, 1. For example, the above-mentioned carbon paste can be used as an electrode, and the modification can be easily carried out by kneading the charge transfer complex and dehydrogenase into this paste-like electrode. In the case of a charge transfer complex, it can also be modified while being enclosed in a water-insoluble carrier.

また、デヒドロゲナーゼの場合にはそれを溶液とし、ペ
ースト状電極の表面に塗布又は滴下し。
In the case of dehydrogenase, it is made into a solution and applied or dropped onto the surface of a paste-like electrode.

溶媒を蒸発させることによって保持させ、さらにその表
面を半透膜のようなデヒドロゲナーゼは透過しないが、
デヒドロゲナーゼの基質は透過させる薄膜で被覆するこ
とが好ましい。
The solvent is retained by evaporation, and dehydrogenase, such as a semipermeable membrane, does not permeate the surface, but
Preferably, the dehydrogenase substrate is coated with a permeable thin film.

このような薄膜で被覆することにより、デヒドロゲナー
ゼは安定に保持される。このような半透膜としては1例
えば、セルロースアセテート膜。
By coating with such a thin film, dehydrogenase is stably maintained. One example of such a semipermeable membrane is a cellulose acetate membrane.

ニトロセルロース膜のようなセルロース系膜や各種の合
成高分子膜5天然高分子膜が用いられる。
Cellulose-based membranes such as nitrocellulose membranes, various synthetic polymer membranes, and natural polymer membranes are used.

また、デヒドロゲナーゼを上記薄膜に固定化して用いる
こともできる。この固定化方法としては例えば、千畑一
部編[固定化生体触媒j講談社(1986年)の12〜
67頁に記載されているような従来から公知の共有結合
法や吸着法を採用することができるし、また、架橋法あ
るいは包括法等いずれの方法も採用することができる。
Moreover, dehydrogenase can also be used by being immobilized on the above-mentioned thin film. This immobilization method is described, for example, in Chibata, ed. [Immobilized Biocatalysts J Kodansha (1986), 12-
Conventionally known covalent bonding methods and adsorption methods as described on page 67 can be employed, and any method such as a crosslinking method or an entrapment method can also be employed.

本発明のデヒドロゲナーゼ電極を用いてNAD(H)あ
るいはNADP (H)を測定するには例えば、カーボ
ンペースト電極にN−メチルフエナジウムー7.7.8
.8テトラシアノキノジメタン及びグルコース6−リン
酸デヒドロゲナーゼを固定化したデヒドロゲナーゼ電極
をグルコース6−リン酸を含有する緩衝液に浸し、測定
試料の添加によって生ずる電極電流の変化を測定すれば
よいし。
To measure NAD (H) or NADP (H) using the dehydrogenase electrode of the present invention, for example, N-methylphenadium-7.7.8
.. A dehydrogenase electrode on which 8-tetracyanoquinodimethane and glucose 6-phosphate dehydrogenase are immobilized may be immersed in a buffer containing glucose 6-phosphate, and the change in electrode current caused by the addition of the measurement sample may be measured.

グルコース6−リン酸デヒドロゲナーゼの固定化物をN
−メチルフエナジウムー?、7.8.8テトラシアノキ
ノジメタン練り込みカーボンペースト電極感応面に直接
被覆したものをグルコース6−リン酸を含有する緩衝液
に浸し、測定試料の添加によって生ずる電極電流の変化
を測定すればよい。また。
The immobilized product of glucose 6-phosphate dehydrogenase was
-Methylphenadium-? , 7.8.8 Tetracyanoquinodimethane kneaded carbon paste directly coated on the electrode sensitive surface is immersed in a buffer solution containing glucose 6-phosphate, and the change in electrode current caused by the addition of the measurement sample is measured. Bye. Also.

グルコース6−リン酸を電極表面に保持するのが望まし
い場合には、アニオン性の膜でグルコース6−リン酸デ
ヒドロゲナーゼとともに電極感応面に被覆し、保持する
こともできる。
If it is desired to retain glucose 6-phosphate on the electrode surface, an anionic membrane can be used to coat and retain glucose 6-phosphate dehydrogenase on the electrode sensitive surface.

測定用の溶液としては1例えば、0.01〜0.5Mの
Trjs−HC(! 緩衝液(pH5〜10.好ましく
は7〜9)の溶液を用いればよい。測定温度は0〜60
℃、好ましくは20〜40℃が用いられる。
As the solution for measurement, for example, a solution of 0.01 to 0.5M Trjs-HC (! buffer (pH 5 to 10, preferably 7 to 9) may be used.The measurement temperature is 0 to 60
°C, preferably 20 to 40 °C is used.

(作 用) 本発明のデヒドロゲナーゼ電極は2次の反応によって生
ずる電子伝達量を電極で検出することによって、試料中
に元々存在するNAD (H)あるいはNADP (H
)量を測定できることはもちろん、試料中のNAD (
H)、NADP (H)以外の測定目的物質を、適当な
手段で最終的にデヒドロゲナーゼの作用でNAD (H
)あるいはNADp (H) Wkとして、結果的に試
料中のNAD (H)あるいはNADP (H)量を測
定することによって測定することができる。
(Function) The dehydrogenase electrode of the present invention uses the electrode to detect the amount of electron transfer generated by the secondary reaction, thereby detecting NAD (H) or NADP (H) originally present in the sample.
) in the sample as well as the amount of NAD ( ) in the sample.
H), NADP (H) The substance to be measured other than (H) is finally converted to NAD (H) by the action of dehydrogenase using an appropriate means.
) or NADp (H) Wk, and can be measured by measuring the amount of NAD (H) or NADP (H) in the sample.

NAD(P)H+ Mox  −−一−−−−−−−◆
  NAD(P)”  ” MraaM、、、  +(
el)        M、、+  e−(el)(こ
こで、DHはデヒドロゲナーゼ、Sはデヒドロゲナーゼ
の基質、PはSの酸化物+ Mr*aは還元型電荷移動
錯体+ M o xは酸化型電荷移動錯体。
NAD(P)H+ Mox −−1−−−−−−◆
NAD(P)""MraaM,,, +(
el) M,, + e-(el) (where DH is dehydrogenase, S is the substrate of dehydrogenase, P is the oxide of S + Mr*a is the reduced charge transfer complex + M ox is the oxidized charge transfer Complex.

elは電極、e−は電子を表す。) (実施例) 次に2本発明を実施例によって具体的に説明する。el represents an electrode, and e- represents an electron. ) (Example) Next, two embodiments of the present invention will be specifically explained using examples.

実施例1 〈里h■作製〉 グラファイト粉末5gを流動パラフィン3mlに混合し
てカーボンペーストを得た。このカーボンペーストを、
第1図に示すごとくジメチルジクロロシランでta水処
理したガラス管l (外径511.内径3.4*+m)
の一端に詰めた。このときの電極の幾何表面積は0.0
9cdであった。
Example 1 <Preparation> Carbon paste was obtained by mixing 5 g of graphite powder with 3 ml of liquid paraffin. This carbon paste
As shown in Figure 1, a glass tube treated with TA water using dimethyldichlorosilane (outer diameter 511.inner diameter 3.4*+m)
packed at one end. The geometric surface area of the electrode at this time is 0.0
It was 9 cd.

この電極表面に、N−メチルフエナジウム−7,7,8
,8テトラシアノキノジメタン18mg、ポリビニルク
ロライド2mgをテトラヒドラハイドロフラン0.6 
m !!に混合した懸濁液5μlを滴下し、溶媒を蒸発
させた。次にこの電極の表面にグルコース6−リン酸デ
ヒドロゲナーゼ〔バチルス・ステアロサーモフィルス由
来(ユニチカ社製) 、  10mg/m7!の酵素液
を調製して用いた。〕を5μ!滴下し、溶媒を蒸発させ
た後、膜厚20μmの半透膜4〔ニトロセルロース膜(
ユニオンカーバイド社製)〕で被覆し。
On the surface of this electrode, N-methylphenadium-7,7,8
, 8 tetracyanoquinodimethane 18 mg, polyvinyl chloride 2 mg and tetrahydrahydrofuran 0.6
M! ! 5 μl of the mixed suspension was added dropwise, and the solvent was evaporated. Next, glucose 6-phosphate dehydrogenase [derived from Bacillus stearothermophilus (manufactured by Unitika), 10 mg/m7!] was applied to the surface of this electrode. An enzyme solution was prepared and used. ] 5μ! After dripping and evaporating the solvent, a semipermeable membrane 4 [nitrocellulose membrane (
(manufactured by Union Carbide)].

さらに、物理的強度をもたせるために、電極先端部をナ
イロンネット5で覆った。この電極を第1図に示す。
Furthermore, the tip of the electrode was covered with a nylon net 5 to provide physical strength. This electrode is shown in FIG.

この電極は、使用時以外0.1 Mリン酸緩衝液(pH
7,0)の中に入れ、4℃で保存した。
This electrode should be kept in a 0.1 M phosphate buffer (pH
7,0) and stored at 4°C.

く1鷹いし7旦J1む〉 上記の電極と、ポーラログラフイックアナライザ(柳本
製作所製)と、X−Y (t)レコーダー(横河北辰電
機製)とを用い、3電極方式を組み5基礎液として0.
1 MのT ris−HCIl!yt衝液(pH8,5
)を用い、磁気回転子により撹拌した(800rpm以
上)。電極電位は、恨/塩化恨を基準として測定した。
Using the above electrodes, a polarographic analyzer (manufactured by Yanagimoto Seisakusho), and an X-Y (t) recorder (manufactured by Yokogawa Hokushin Electric), a 3-electrode system was assembled to measure the 5 basic solutions. as 0.
1 M Tris-HCIl! yt buffer solution (pH 8,5
) and stirred with a magnetic rotor (800 rpm or more). The electrode potential was measured using chloride/chloride as a reference.

このときの温度を25℃に調節した。The temperature at this time was adjusted to 25°C.

<NADH1すtで〉 上記のようにして作製したN−メチルフエナジウムー7
.7.8.8テトラシアノキノジメタン及びグルコース
6−リン酸デヒドロゲナーゼ修飾カーボンペースト電極
を0.1mMTrjs−HCj21jl衝液(pH8,
5)に入れ、加電圧を0.25Vより正方向に1 m 
V / Sの掃引速度で掃引してサイクリックポルタモ
グラムを測定して第2図中の曲&’jla(残余電流)
を得た。この溶液にNADHを1mMになるように加え
、上記と同様にして電圧掃引すると、第2図中の曲線す
の電流−電圧曲線、すなわち、ポルタモグラムを得た。
<With NADH1> N-methylphenadium-7 prepared as above
.. 7.8.8 Tetracyanoquinodimethane and glucose 6-phosphate dehydrogenase-modified carbon paste electrodes were mixed with 0.1mM Trjs-HCj21jl solution (pH 8,
5) and apply voltage 1 m in the positive direction from 0.25V.
Sweep at a sweep speed of V/S and measure the cyclic portamogram to find the song &'jla (residual current) in Figure 2.
I got it. NADH was added to this solution to a concentration of 1 mM, and the voltage was swept in the same manner as above to obtain the current-voltage curve shown in FIG. 2, that is, a portamogram.

さらにこの溶液に4.6mMのグルコース6−リン酸を
加え、上記と同様にして電圧掃引すると。
Further, 4.6mM glucose 6-phosphate was added to this solution, and the voltage was swept in the same manner as above.

第2図中の曲NfACのポルタモグラムを得た。A portamogram of the song NfAC in FIG. 2 was obtained.

これらのポルタモグラムかられかるように。As you can see from these portamograms.

グルコース6−リン酸を含むNADH溶液では大きな電
流が得られ、高感度の検出が可能になることがわかった
It was found that a large current can be obtained with an NADH solution containing glucose 6-phosphate, allowing highly sensitive detection.

さらに10mMのグルコース6−リン酸を緩衝液(pH
8,5)に入れ、電極電位を0.7■に保ち。
Furthermore, 10mM glucose 6-phosphate was added to the buffer solution (pH
8,5) and keep the electrode potential at 0.7■.

NADHの濃度を変えて定常酸化電流!1.(残余電流
を補正しである。)を測定した結果を第3図に示す。
Steady oxidation current by changing the concentration of NADH! 1. The measurement results (after correcting the residual current) are shown in FIG.

第3図は、グルコース6−リン酸を含む緩衝液中の0.
7■印加時における定常電流tut(縦軸)と被測定液
中のNADHi1度(横軸)との関係を示すグラフで、
第3図に示すようにNAD Hの広い範囲にわたって直
線性を有し、かつ高感度で測定できることがわかった。
FIG.
7■ A graph showing the relationship between the steady current tut (vertical axis) during application and the NADHi 1 degree (horizontal axis) in the liquid to be measured,
As shown in FIG. 3, it was found that the measurement had linearity over a wide range of NADH and could be measured with high sensitivity.

(発明の効果) 本発明のデヒドロゲナーゼ電極は、カーボン電極を重両
移動錯体及びデヒドロゲナーゼで修飾してなっているた
め、NAD (H)又はNADP (H)に対する感応
性を有し、NAD (H)又はNADP(H)に対し大
きな感応電流を示すことができる。そのため1本発明の
デヒドロゲナーゼ電極は共存物質による電解電流、すな
わち暗電流に対しおおきなS/N比をとることができる
ので。
(Effects of the Invention) The dehydrogenase electrode of the present invention has sensitivity to NAD (H) or NADP (H) because the carbon electrode is modified with a heavy double transfer complex and dehydrogenase. Alternatively, it can show a large sensitive current to NADP(H). Therefore, the dehydrogenase electrode of the present invention can have a large S/N ratio with respect to electrolytic current due to coexisting substances, that is, dark current.

簡便で、かつ安価でありながら、NAD (H)又はN
ADP (H)濃度を高感度で測定できるという優れた
性能を有している。
Although simple and inexpensive, NAD (H) or N
It has excellent performance in that it can measure ADP (H) concentration with high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は5本発明の一実施態様を示す電極の構成説明図
であり、第2図は、第1図の電極のサイクリックポルタ
モグラムを示すグラフであり、第3図は、グルコース6
−リン酸を含む緩衝液中の0.7V印加時における定常
電流Ittと被測定液中のN A D HtlA度との
関係を示すグラフである。 ■ ・・・・ガラス管 2・−カーボンペースト電極 3 ・〜・ N−メチルフエナジウムー7.7.8.F
lテトラシアノキノジメタン及びグルコ ース6−リン酸デヒドロゲナーゼ層 4 ・−半透膜 5−・・ナイロンネット
FIG. 1 is an explanatory diagram of the structure of an electrode showing one embodiment of the present invention, FIG. 2 is a graph showing a cyclic portamogram of the electrode of FIG. 1, and FIG.
- It is a graph showing the relationship between the steady current Itt when 0.7 V is applied in a buffer solution containing phosphoric acid and the degree of N A D HtlA in a liquid to be measured. ■...Glass tube 2--carbon paste electrode 3...N-methylphenadium-7.7.8. F
l Tetracyanoquinodimethane and glucose 6-phosphate dehydrogenase layer 4 - Semipermeable membrane 5 - Nylon net

Claims (1)

【特許請求の範囲】[Claims] (1)カーボン電極を電荷移動錯体及びデヒドロゲナー
ゼで修飾してなることを特徴とするニコチンアミドアデ
ニンジヌクレオチド又はニコチンアミドアデニンジヌク
レオチドリン酸に対する感応性を有するデヒドロゲナー
ゼ電極。
(1) A dehydrogenase electrode sensitive to nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate, which is made by modifying a carbon electrode with a charge transfer complex and dehydrogenase.
JP63250429A 1988-10-04 1988-10-04 Dehydrogenase electrode Pending JPH0296649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250429A JPH0296649A (en) 1988-10-04 1988-10-04 Dehydrogenase electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250429A JPH0296649A (en) 1988-10-04 1988-10-04 Dehydrogenase electrode

Publications (1)

Publication Number Publication Date
JPH0296649A true JPH0296649A (en) 1990-04-09

Family

ID=17207753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250429A Pending JPH0296649A (en) 1988-10-04 1988-10-04 Dehydrogenase electrode

Country Status (1)

Country Link
JP (1) JPH0296649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132628A1 (en) * 2006-05-11 2007-11-22 Panasonic Corporation Method for immobilizing malate dehydrogenase on substrate
WO2008007499A1 (en) * 2006-07-13 2008-01-17 Panasonic Corporation Electrochemical immunoassay chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132628A1 (en) * 2006-05-11 2007-11-22 Panasonic Corporation Method for immobilizing malate dehydrogenase on substrate
US7521214B2 (en) 2006-05-11 2009-04-21 Panasonic Corporation Method of immobilizing malate dehydrogenase on a substrate
WO2008007499A1 (en) * 2006-07-13 2008-01-17 Panasonic Corporation Electrochemical immunoassay chip
US7585400B2 (en) 2006-07-13 2009-09-08 Panasonic Corporation Chip for electrochemical immunoassay

Similar Documents

Publication Publication Date Title
Ikeda et al. Amperometric fructose sensor based on direct bioelectrocatalysis
Wang et al. Mixed ferrocene-glucose oxidase-carbon-paste electrode for amperometric determination of glucose
Lange et al. Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode
Bremle et al. An amperometric glucose electrode based on carbon paste, chemically modified with glucose dehydrogenase, nicotinamide adenine dinucleotide, and a phenoxazine mediator, coated with a poly (ester sulfonic acid) cation exchanger
Vidal et al. A chronoamperometric sensor for hydrogen peroxide based on electron transfer between immobilized horseradish peroxidase on a glassy carbon electrode and a diffusing ferrocene mediator
Bertocchi et al. Amperometric ammonium ion and urea determination with enzyme-based probes
Mizutani et al. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly (vinyl alcohol)/polyion complex-bilayer membrane
Gavalas et al. Improved operational stability of biosensors based on enzyme-polyelectrolyte complex adsorbed into a porous carbon electrode
Dempsey et al. Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a L-lactate biosensor
Castañón et al. Amperometric detection of ethanol with poly-(o-phenylenediamine)-modified enzyme electrodes
Wang et al. Improved performance of carbon paste amperometric biosensors through the incorporation of fumed silica
Razola et al. Reagentless enzyme electrode based on phenothiazine mediation of horseradish peroxidase for subnanomolar hydrogen peroxide determinationPresented at SAC 99, Dublin, Ireland, July 25–30, 1999.
Lobo-Castanon et al. A bienzyme-poly-(o-phenylenediamine)-modified carbon paste electrode for the amperometric detection of L-lactate
Wang et al. Biocomposite of cobalt phthalocyanine and lactate oxidase for lactate biosensing with MnO2 nanoparticles as an eliminator of ascorbic acid interference
Bardeletti et al. Amperometric enzyme electrodes for substrate and enzyme activity determinations
Omidinia et al. Electrochemical nanobiosensing of phenylalanine using phenylalanine dehydrogenase incorporated on amino-functionalized mobile crystalline material-41
Tobalina et al. Integrated ethanol biosensors based on carbon paste electrodes modified with [Re (phen-dione)(CO) 3Cl] and [Fe (phen-dione) 3](PF6) 2
Deng et al. Self-gelatinizable copolymer immobilized glucose biosensor based on Prussian Blue modified graphite electrode
Salimi et al. Electrocatalytic reduction of H2O2 and oxygen on the surface of thionin incorporated onto MWCNTs modified glassy carbon electrode: application to glucose detection
Mizutani et al. L-Malate-sensing electrode based on malate dehydrogenase and NADH oxidase
Jiang et al. Amperometric ethanol biosensor based on integration of alcohol dehydrogenase with Meldola's blue/ordered mesoporous carbon electrode
Matsui et al. Simultaneous detection of lactate enantiomers based on diffusion-controlled bioelectrocatalysis
Gründig et al. Electron mediator-modified electrode for the determination of glucose in fermentation media
Mieliauskiene et al. Amperometric determination of acetate with a tri-enzyme based sensor
Santos et al. Biosensor for H2O2 response based on horseradish peroxidase: effect of different mediators adsorbed on silica gel modified with niobium oxide