JPH0296310A - Core type reactor - Google Patents

Core type reactor

Info

Publication number
JPH0296310A
JPH0296310A JP14479088A JP14479088A JPH0296310A JP H0296310 A JPH0296310 A JP H0296310A JP 14479088 A JP14479088 A JP 14479088A JP 14479088 A JP14479088 A JP 14479088A JP H0296310 A JPH0296310 A JP H0296310A
Authority
JP
Japan
Prior art keywords
core
block
magnetic
iron core
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14479088A
Other languages
Japanese (ja)
Inventor
Masaaki Maejima
前島 正明
Toshimitsu Obata
小幡 俊光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14479088A priority Critical patent/JPH0296310A/en
Publication of JPH0296310A publication Critical patent/JPH0296310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation Of General Use Transformers (AREA)

Abstract

PURPOSE:To reduce vibration and noise to nearly no vibration and noise level with a simple configuration by setting magnetic distortion of block core at a rated magnetic flux density in an expansion direction and cancelling it with an amount of contraction of a spacer due to magnetic attracting force. CONSTITUTION:A magnetic path is formed by a three-phase core leg 2 and a yoke 6 and a winding 1 is wound around each core length 2. The core leg 2 is made by piling up block cores 3 and spacers alternately and the block core 3 is set in a direction where the magnetic distortion is expanded. Thus, contraction of the spacer 4 due to magnetic attracting force operated between the block cores 3 can be compensated by expansion of magnetic distortion of the block core 3. It prevents structure to be simple, suppresses displacement of the iron leg as a whole, and reduces vibration and noise to nearly non- vibration and noise level.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉄心形リアクトルに係り、特にブロックコアと
スペーサを交互に積み重ねて構成した鉄心脚を有して成
るギヤツブ付鉄心形リアクトルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an iron core reactor, and more particularly to an iron core reactor with a gear lug, which has iron core legs constructed by alternately stacking block cores and spacers.

[従来の技術] 近年、送電系統の長距離化や都市部での地下ケーブル系
統の拡大等に伴って、系統の充電容量が増大し、これを
補償する分路リアク1〜ルの需要が急速に増えている。
[Conventional technology] In recent years, as power transmission systems have become longer distances and underground cable systems have expanded in urban areas, the charging capacity of the grid has increased, and demand for shunt reactors to compensate for this has increased rapidly. is increasing.

この分路リアクトルは、その設置環境から超低騒音仕様
が要請され、振動・騒音の低減が最重要課題となってい
る。
This shunt reactor is required to have ultra-low noise specifications due to the environment in which it is installed, and reducing vibration and noise is the most important issue.

ところで、リアクトルは一般に空心形と鉄心形とに大別
され、前者はインダクタンスの直線性に優れるものの、
主磁束が巻線内を通るため渦電流損が大きく、また巻線
を囲むようにして磁路となる磁気シールドを設けている
ため全体として大型化してしまう、これに対して後者は
、一般にはギャップ付鉄心形をいい、同一リアクタンス
に対して巻線の巻回数を少なくできるので低損失で小型
化を図ることができる。
By the way, reactors are generally divided into air core type and iron core type, and although the former has excellent linearity of inductance,
Because the main magnetic flux passes through the winding, eddy current loss is large, and because a magnetic shield is provided surrounding the winding to form a magnetic path, the overall size becomes large.In contrast, the latter generally has a gap type. It is an iron core type, and because the number of turns of the winding can be reduced for the same reactance, it can be made smaller with low loss.

このような長所をもつギヤツブ付鉄心形リアクトルは、
ギャップ部の磁気吸引力に起因して振動および騒音が発
生するものと考えられており、これを、第4図(a)に
示すギヤツブ付鉄心形リアクトルを例にして説明する。
The geared iron core reactor has these advantages.
It is believed that vibration and noise are generated due to the magnetic attraction force of the gap portion, and this will be explained using the geared iron core reactor shown in FIG. 4(a) as an example.

各巻vA1の内側にそれぞれ配置した鉄心脚2Aは、斜
視図として示す同図(b)の玄vくけい素鋼板7Aを積
層した円柱状ブロックコア3Aと非磁性体の円柱状スペ
ーサ4を交互に積み重ねて、複数の円柱状ブロックコア
3A間に円柱状スペーサ4の高さdに対応するギャップ
5を形成している。
The core legs 2A arranged inside each volume vA1 are made up of alternating cylindrical block cores 3A laminated with dark silicon steel plates 7A and non-magnetic cylindrical spacers 4 as shown in FIG. When stacked, a gap 5 corresponding to the height d of the cylindrical spacer 4 is formed between the plurality of cylindrical block cores 3A.

このようなギヤツブ付鉄心形リアクトルは、同図(、)
の如く鉄心脚2Aに磁束が流れると、ギャップ5の磁気
吸引力fによって各円柱状スペーサ4がそれぞれ収縮量
δ、たけ収縮し、これらが積算されて鉄心脚2A全体の
変位となり、これが第5図に示す振動を誘発する。従来
、特開昭58−131720号公報に示されるように、
このスペーサ4をヤング率の大きいセラミックスペーサ
等にすることにより、収縮量を減らして振動の低減を図
ってきた。
This type of geared core reactor is shown in the same figure (,).
When magnetic flux flows through the core leg 2A as shown in FIG. Induce the vibrations shown in the figure. Conventionally, as shown in Japanese Patent Application Laid-Open No. 58-131720,
By using a ceramic spacer or the like having a large Young's modulus as the spacer 4, the amount of shrinkage has been reduced and vibrations have been reduced.

[発明が解決しようとする課題] 従来のギヤツブ付鉄心形リアクトルは、振動・騒音を低
減するためにヤング率の大きなセラミックスペーサを用
いて収縮量を減らしてきたが、これには限界があり、依
然として満足すべき振動・騒音の低減効果は得られなか
った。
[Problem to be solved by the invention] Conventional geared iron core reactors have used ceramic spacers with a large Young's modulus to reduce the amount of shrinkage in order to reduce vibration and noise, but this has its limitations. Satisfactory vibration/noise reduction effects were still not achieved.

本発明の目的は、比較的簡単な構成で振動および騒音を
ほとんど無振動・無騒音に近く低減することができる鉄
心形リアクトルを提供するにある。
An object of the present invention is to provide an iron core reactor that can reduce vibration and noise to almost no vibration or noise with a relatively simple configuration.

[課題を解決するための手段] 上記目的を達成するため、本発明者等は種々の研究の結
果、従来ではスペーサの収縮にのみ着目していたのに対
し、ブロックコア自体の磁歪にも注目し、スペーサに収
縮力が加わったときブロックコアに伸び方向の磁歪を生
じさせるようにしたもので、すなわち本発明は、ブロッ
クコアとスペーサを交互に積み重ねた鉄心脚と、この鉄
心脚の上下に配設したヨークとにより磁路を形成した鉄
心形リアクトルにおいて、定格磁束密度での上記ブロッ
クコアの磁歪を伸び方向に設定し、磁気吸引力による上
記スペーサの収縮量と相殺させるようにしたことを特徴
とする。
[Means for Solving the Problem] In order to achieve the above object, the inventors of the present invention have conducted various studies, and as a result of various studies, they have focused on the magnetostriction of the block core itself, whereas conventionally they focused only on the shrinkage of the spacer. However, when a contraction force is applied to the spacer, magnetostriction is caused in the block core in the elongation direction.In other words, the present invention has a core leg in which block cores and spacers are stacked alternately, and In an iron-core reactor in which a magnetic path is formed by a disposed yoke, the magnetostriction of the block core at the rated magnetic flux density is set in the elongation direction so as to offset the amount of contraction of the spacer due to the magnetic attraction force. Features.

[作用] 本発明による鉄心形リアクトルは上述の如き構成である
から、ブロックコア間に作用する磁気吸引力によってス
ペーサに収縮が生じても、ブロックコアの伸び方向の磁
歪によって、この収縮を相殺するようになるため、構造
を複雑にすることなく鉄心脚全体としての変位を抑えて
、振動および騒音を無振動・無騒音に近く低減すること
ができる。
[Function] Since the iron core reactor according to the present invention has the above-described configuration, even if the spacer contracts due to the magnetic attraction force acting between the block cores, this contraction is offset by the magnetostriction in the direction of extension of the block cores. Therefore, the displacement of the core leg as a whole can be suppressed without complicating the structure, and vibration and noise can be reduced to near zero vibration and noise.

[実施例] 以下本発明の実施例を図面によって説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)は鉄心形リアクトルの一例として示す鉄心
形三相リアクトルを示す正面図である。
FIG. 1(a) is a front view showing an iron core three-phase reactor as an example of an iron core reactor.

三相の鉄心脚2とヨーク6とによって磁路が形成され、
各鉄心脚2にはそれぞれ巻線1が巻回されている。鉄心
脚2の構成は、従来と同じくブロックコア3とスペーサ
4とを交互に積み重ねて構成されているが、ブロックコ
ア3はその磁歪が伸び方向に設定されている点で相違し
ている。このようなブロックコア3は、通常重版されて
いるけい素鋼板に施されているガラス皮膜を除去するこ
とによって得られる。
A magnetic path is formed by the three-phase iron core leg 2 and the yoke 6,
A winding 1 is wound around each core leg 2. The structure of the iron core leg 2 is the same as the conventional one, in which block cores 3 and spacers 4 are stacked alternately, but the block core 3 is different in that its magnetostriction is set in the elongation direction. Such a block core 3 is obtained by removing a glass coating applied to a silicon steel plate that is usually reprinted.

これによって、第1図(b)に示すように磁歪によるブ
ロックコア^3の伸び曲線Xに対して、同図(c)に示
すブロックコア3間の磁気吸引力fによるスペーサ4の
縮み曲線yは、相殺するようになり、鉄心脚2における
全体としての変位は曲線2の如くとなる。特に、一般に
鉄心形リアクトルで採用されている定格磁束密度は1.
1〜1.6テスラビークの範囲であり、この間でブロッ
クコア3はその磁歪を伸び方向としている。従って、鉄
心脚2における全体としての変位は、定格磁束密度の範
囲で曲線2の如く極めて小さくなり、振動および騒音が
大幅に低減できる。これは、従来の鉄心形リアクトルを
同様の観点から分析した第6図および第7図からも良く
理解できる。
As a result, the contraction curve y of the spacer 4 due to the magnetic attraction force f between the block cores 3 as shown in FIG. 1(c) is the same as the elongation curve will cancel each other out, and the overall displacement in the core leg 2 will be as shown by curve 2. In particular, the rated magnetic flux density generally employed in iron core reactors is 1.
It is in the range of 1 to 1.6 Tesla peak, and within this range, the block core 3 has its magnetostriction in the elongation direction. Therefore, the overall displacement in the core leg 2 becomes extremely small as shown by curve 2 within the range of the rated magnetic flux density, and vibration and noise can be significantly reduced. This can be well understood from FIGS. 6 and 7, which analyze a conventional iron core reactor from a similar viewpoint.

つまり、第6図に示すようにブロックコア3Aに作用す
る磁歪は、定格磁束密度1.1〜1.6テスラピークの
範囲で、そのばらつきを考慮してもほぼ縮み方向であっ
た。このため、第7図に示すようにプロツクコア3A間
の磁気吸引力fによるスペーサの収縮量δ、に、ブロッ
クコア3Aの磁歪mによる収縮量δ2が付加され、鉄心
脚全体としての変位はΣ(δ1+62)となっていた。
That is, as shown in FIG. 6, the magnetostriction acting on the block core 3A was in the range of the rated magnetic flux density of 1.1 to 1.6 Tesla peak, and was almost in the shrinking direction even considering the variation thereof. Therefore, as shown in FIG. 7, the amount of contraction δ2 of the spacer due to the magnetostriction m of the block core 3A is added to the amount of contraction δ of the spacer due to the magnetic attraction force f between the block cores 3A, and the displacement of the core leg as a whole is Σ( δ1+62).

第2図は定格磁束密度1.1〜1.6テスラビークの範
囲で、上述した市販のガラス皮膜付のけい素鋼板と、ガ
ラス皮膜を除去したけい素鋼板の磁歪特性を示している
。同図からガラス皮膜を除去することによって、けい素
鋼板の磁歪特性を縮みから伸びにすることができること
が分かる。またけい素鋼板に圧縮力を加えると、磁束が
通過するとき両者とも伸び方向の磁歪となることも分か
る。
FIG. 2 shows the magnetostrictive characteristics of the above-mentioned commercially available silicon steel sheet with a glass coating and silicon steel sheet from which the glass coating has been removed, in the range of rated magnetic flux density from 1.1 to 1.6 Teslabeak. It can be seen from the figure that by removing the glass film, the magnetostrictive properties of the silicon steel sheet can be changed from shrinkage to elongation. It can also be seen that when a compressive force is applied to a silicon steel plate, both become magnetostrictive in the elongation direction when magnetic flux passes through them.

この後者の特性を利用したけい素鋼板で成るブロックコ
ア3の一部を第3図に示している。この実施例では、キ
ュア時の収縮率が大きい樹脂8を用いてモールドし、収
縮時の圧縮力を利用してブロックコア3を構成するけい
素鋼板7を圧縮している。このときの圧縮力は、第2図
の磁歪特性図から分かるように20Kg/a#以上とす
るのが望ましい、使用する樹脂としては、キュア後の強
度が高いエポキシ樹脂系のうちでも特に収縮率の大きい
脂環族系を用いるなら、圧縮力20Kg/cdを容易に
達成できる。この収縮率は、ノボラック系。
FIG. 3 shows a part of a block core 3 made of a silicon steel plate that takes advantage of this latter characteristic. In this embodiment, molding is performed using a resin 8 that has a high shrinkage rate during curing, and the silicon steel plate 7 constituting the block core 3 is compressed using the compressive force during shrinkage. As can be seen from the magnetostrictive characteristic diagram in Figure 2, the compressive force at this time is preferably 20Kg/a# or more.The resin used is an epoxy resin with a high shrinkage rate, especially among epoxy resins that have high strength after curing. If an alicyclic system with a high This shrinkage rate is for novolac type.

ビスフェノール系、ヒダントインエポキシ、脂環族系の
順に大きくなる。
Bisphenols, hydantoin epoxies, and alicyclics increase in order.

[発明の効果] 以上説明したように本発明は、ブロックコアの磁歪を伸
び方向に設定したため、ブロックコア間に作用する磁気
吸引力によるスペーサの収縮を、ブロックコアの磁歪に
よる伸びによって補うことができ、構造を複雑にするこ
となく鉄心脚全体としての変位を抑えて振動および騒音
を無振動・無騒音に近く低減した鉄心形リアクトルが得
られる。
[Effects of the Invention] As explained above, in the present invention, since the magnetostriction of the block core is set in the elongation direction, the contraction of the spacer due to the magnetic attraction force acting between the block cores can be compensated for by the elongation due to the magnetostriction of the block core. Therefore, it is possible to obtain an iron core reactor that suppresses the displacement of the iron core legs as a whole without complicating the structure, and reduces vibration and noise to near zero vibration and noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例による鉄心形リアクト
ルの正面図、第1図(b)は同図(a)の鉄心脚全体の
変位特性図、第1図(Q)は同図(a)の鉄心脚の拡大
図、第2図はけい素鋼板の磁歪特性図、第3図は本発明
の他の実施例による鉄心形リアクトルのブロックコアの
正面図、第4図(a)は従来の鉄心形リアクトルの正面
図、第4図(b)は同図(a)の要部拡大斜視図、第4
図(c)は同図(a)の鉄心脚の要部拡大図、第5図は
振動モード図、第6図は従来のけい素鋼板の磁歪特性図
、第7図は従来の鉄心脚の振動原理図である。 1・・・・・・巻線、2・・・・・・鉄心脚、3・・・
・・・ブロックコア、4・・・・・・スペーサ、7・・
・・・・けい素鋼板、8・・・・・・樹脂。 処1図 莞2図 第3図 圧扁カ 第4図 第5図
FIG. 1(a) is a front view of a core reactor according to an embodiment of the present invention, FIG. 1(b) is a displacement characteristic diagram of the entire core leg of FIG. 1(a), and FIG. 1(Q) is the same. FIG. 2 is a magnetostriction characteristic diagram of a silicon steel plate, FIG. 3 is a front view of a block core of an iron-core reactor according to another embodiment of the present invention, and FIG. ) is a front view of a conventional iron core reactor, FIG. 4(b) is an enlarged perspective view of the main part of FIG. 4(a), and FIG.
Figure (c) is an enlarged view of the main part of the core leg in Figure (a), Figure 5 is the vibration mode diagram, Figure 6 is the magnetostriction characteristic diagram of the conventional silicon steel plate, and Figure 7 is the conventional core leg. It is a vibration principle diagram. 1... Winding wire, 2... Core leg, 3...
...Block core, 4...Spacer, 7...
...Silicon steel plate, 8...Resin. Figure 1 Figure 2 Figure 3 Pressure Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] 1. ブロックコアとスペーサを交互に積み重ねた鉄心
脚と、この鉄心脚の上下に配設されたヨークとにより磁
路を形成した鉄心形リアクトルにおいて、定格磁束密度
での上記ブロックコアの磁歪を伸び方向に設定して磁気
吸引力による上記スペーサの収縮量と相殺させたことを
特徴とする鉄心形リアクトル。
1. In an iron core reactor in which a magnetic path is formed by iron core legs in which block cores and spacers are stacked alternately and yokes placed above and below the iron core legs, the magnetostriction of the block core at the rated magnetic flux density is increased in the elongation direction. An iron core reactor characterized in that the amount of contraction of the spacer due to the magnetic attraction force is set to offset the amount of contraction of the spacer.
2. 請求項1記載のものにおいて、上記ブロックコア
の定格磁束密度を1.1〜1.6テスラピークの範囲に
設定したことを特徴とする鉄心形リアクトル。
2. 2. The iron core reactor according to claim 1, wherein the rated magnetic flux density of the block core is set in a range of 1.1 to 1.6 Tesla peak.
3. 請求項1記載のものにおいて、上記ブロックコア
は、ガラス皮膜のないけい素鋼板で構成したことを特徴
とする鉄心形リアクトル。
3. 2. An iron core reactor according to claim 1, wherein said block core is made of a silicon steel plate without a glass coating.
4. 請求項1記載のものにおいて、上記ブロックコア
は、けい素鋼板に20kg/cm^2以上の圧縮力を生
じるように樹脂モールド処理を施したことを特徴とする
鉄心形リアクトル。
4. 2. The iron-core reactor according to claim 1, wherein the block core is a silicon steel plate subjected to resin molding treatment so as to generate a compressive force of 20 kg/cm^2 or more.
JP14479088A 1988-06-14 1988-06-14 Core type reactor Pending JPH0296310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14479088A JPH0296310A (en) 1988-06-14 1988-06-14 Core type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14479088A JPH0296310A (en) 1988-06-14 1988-06-14 Core type reactor

Publications (1)

Publication Number Publication Date
JPH0296310A true JPH0296310A (en) 1990-04-09

Family

ID=15370511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14479088A Pending JPH0296310A (en) 1988-06-14 1988-06-14 Core type reactor

Country Status (1)

Country Link
JP (1) JPH0296310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197362A (en) * 2012-03-21 2013-09-30 Toyota Central R&D Labs Inc Reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197362A (en) * 2012-03-21 2013-09-30 Toyota Central R&D Labs Inc Reactor

Similar Documents

Publication Publication Date Title
EP0284439B1 (en) Magnetic field generating device
US5317297A (en) MRI magnet with robust laminated magnetic circuit member and method of making same
US4531108A (en) Three-phase choke with a five-leg core
US5777537A (en) Quiet magnetic structures such as power transformers and reactors
RU2516393C2 (en) Iron-free drive unit with non-scattering coil converter
KR20040107408A (en) Coil component and fabrication method of the same
CA1176324A (en) Laminated grid and web magnetic cores
JPH0975847A (en) Magnetostrictive vibrator
JPH0296310A (en) Core type reactor
JP3317877B2 (en) Amorphous core transformer
JPH08111322A (en) Low noise transformer and reactor core
JPS5860514A (en) Large capacity reactor
KR20160099208A (en) Coil component, high current inductor and high current reactor comprising the same
JPH10144534A (en) Magnetic core for inductor and inductor
GB1562276A (en) Method of making a magnetic circuit including an air gap
JP2597545B2 (en) Reactor
JP2002343647A (en) Three-phase wound core
JPH05190362A (en) Iron-core type reactor with gap
JP2830367B2 (en) Ignition coil for internal combustion engine
US20230386728A1 (en) Core for Stationary Electromagnetic Apparatus
CN112735768B (en) Dry-type transformer vibration damping device adopting negative magnetostriction material
JP3073933B2 (en) Magnetic field generator for MRI
JP2619071B2 (en) Iron core type reactor
WO2024106262A1 (en) Composite laminated soft magnetic ribbon
JP2013211335A (en) Composite magnetic core, reactor and power supply unit