JPH029554A - Cutting tool damage detecting device - Google Patents

Cutting tool damage detecting device

Info

Publication number
JPH029554A
JPH029554A JP15746688A JP15746688A JPH029554A JP H029554 A JPH029554 A JP H029554A JP 15746688 A JP15746688 A JP 15746688A JP 15746688 A JP15746688 A JP 15746688A JP H029554 A JPH029554 A JP H029554A
Authority
JP
Japan
Prior art keywords
load force
cutting
tool
machining
cutting load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15746688A
Other languages
Japanese (ja)
Inventor
Minoru Konishi
実 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP15746688A priority Critical patent/JPH029554A/en
Publication of JPH029554A publication Critical patent/JPH029554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To enable accurate detection of damage of a tool by providing a means which calculates a fluctuation in a cutting load force during machining as a fluctuation ratio in a percentage based on an accumulative average load force during machining made the latest given number of times and stops a machine tool according to a result of the fluctuation ratio being compared with a set value. CONSTITUTION:An average value of a cutting load force during a cutting work made the latest given number of times is calculated by a calculating means 2. A fluctuation ratio calculating means 3 calculate a ratio in which a cutting load force during each machining work, detected by a detecting part 1, is fluctuated from an average value calculated by the calculating means 2. The calculated fluctuation ratio is compared with threshold (a set value) set by a set means 5 by means of a comparing means 4. When from the comparing result, it is detected that a calculated fluctuation ratio exceeds the threshold, a tool damage occurring signal is outputted to a machine tool control device 6 from the comparing means 4 to stop operation of a machine tool and promote exchange of a tool.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動工作機械等における切削加工中の工具の
損傷を検出する切削用工具損傷検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cutting tool damage detection device for detecting damage to a tool during cutting in an automatic machine tool or the like.

(従来の技術) 自動工作機械が多用される今日では、切削加工中に工具
の損傷が生じた場合、適正な加工条件が維持できないだ
けでなく、工作機械の破損等−に結びつく危険性が大き
い。
(Conventional technology) In today's world where automatic machine tools are frequently used, if a tool is damaged during cutting, it is not only impossible to maintain proper machining conditions, but there is also a high risk of damage to the machine tool. .

そこで従来より、このような工具の損傷を検知するため
に、工具の損傷により切削温度、振動切削負荷力が変動
することに着目し、これらを検出しその信号を処理する
ことにより工具の損傷を間接的に検出するものが考えら
でいる。例えば切削負荷力の変動を利用するものとして
は、予め切削試験により正常切削時の切削負荷力の上限
および下限のしきい値を設定し、実際の切削加工時の切
削負荷値を前記両しきい値とを比較し、実際の切削負荷
値が上下限のしきい値を越えた時に工具の損傷があった
と判断する装置が提案されている。
Conventionally, in order to detect such tool damage, we have focused on the fact that the cutting temperature and vibration cutting load force change due to tool damage, and by detecting these and processing the signals, we have been able to detect tool damage. I can't think of anything to detect indirectly. For example, when using variations in cutting load force, the upper and lower thresholds of the cutting load force during normal cutting are set in advance through cutting tests, and the cutting load value during actual cutting is set between the above two thresholds. A device has been proposed that compares the actual cutting load value with the actual cutting load value and determines that the tool has been damaged when the actual cutting load value exceeds the upper and lower thresholds.

(発明が解決しようとする課題) 上記従来例は、第4図においてAで示すように。(Problem to be solved by the invention) The above conventional example is as shown by A in FIG.

−殻材について同一または類似製品を繰り返し連続加工
する場合には、加工回数を重ねても切削負荷力の変動が
小さいため、加工時の切削負荷力を上下限のしきい値 
FmaxおよびF winと比較することにより工具損
傷時の切削負荷力の変動aを検出することができるが、
高硬度材加工時のように加工による刃具の磨耗量が大き
い場合には、加工精度に影響がなく許容される加工状態
であっても、第4図においてBで示すように加工回数の
増加に伴って切削負荷力が増大するため、新品工具と磨
耗した工具とでは切削負荷力が大きく異なり、−殻材加
工時と同じように加工時の切削負荷力を上限および下限
のしきい値と比較するだけでは、正常な加工状態での切
削負荷力の変化なのか工具損傷に起因する切削負荷力の
変化(図中にbで示す)なのか判別できず、工具の損傷
を正確に検出することが不可能となる。
- When repeatedly and continuously machining the same or similar shell material, the cutting load force during machining is set to the upper and lower thresholds, because the fluctuations in the cutting load force are small even after repeated machining.
By comparing with Fmax and Fwin, it is possible to detect the fluctuation a of the cutting load force when the tool is damaged.
When the amount of wear on the cutting tool due to machining is large, such as when machining high-hardness materials, even if the machining conditions are acceptable and do not affect machining accuracy, the number of machining increases as shown by B in Figure 4. As the cutting load force increases accordingly, the cutting load force differs greatly between a new tool and a worn tool, and the cutting load force during machining is compared with the upper and lower thresholds in the same way as when machining shell material. However, it is not possible to determine whether the change in cutting load force is due to normal machining conditions or due to tool damage (indicated by b in the figure), making it difficult to accurately detect tool damage. becomes impossible.

そこで本発明は、同一または類似ワークを繰り返し連続
して加工する工作機械の切削用工具損傷検出装置におい
て、高硬度材加工時のように工具の磨耗等により加工回
数の増加に伴って要求される切削負荷力が大きく変化す
る場合でも、正確な工具損傷の検出を可能にしようとす
るものである。
Therefore, the present invention aims to provide a cutting tool damage detection device for machine tools that repeatedly and continuously process the same or similar workpieces, which is required as the number of machining increases due to tool wear, etc., such as when machining high-hardness materials. The aim is to enable accurate detection of tool damage even when the cutting load force changes significantly.

(課題を解決するための手段) 上記課題を解決するために、本発明は以下の如く構成さ
れている。即ち、本発明は、切削負荷力を検出する検出
部と、最新の所定回数の切削加工時における切削負荷力
の平均値を算出する累積平均負荷力算出手段と、前記検
出部の出力が前記累積平均負荷力算出手段の出力に対し
て変動した比率を算出する変動比率算出手段と、前記変
動比率算出手段の出力を設定値と比較する比較手段と、
前記比較手段の出力に応じて工作機械を停止させる工作
機械制御装置とを備えたものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention is configured as follows. That is, the present invention includes a detection unit that detects a cutting load force, a cumulative average load force calculation unit that calculates an average value of the cutting load force during the latest predetermined number of cutting operations, and an output of the detection unit that is calculated based on the cumulative a fluctuation ratio calculation means for calculating a ratio of fluctuation with respect to the output of the average load force calculation means; a comparison means for comparing the output of the fluctuation ratio calculation means with a set value;
and a machine tool control device that stops the machine tool in accordance with the output of the comparison means.

(作用) 本発明において、最新の所定回数(通常、今回の加工前
5〜10回程度)の切削加工時における切削負荷力の平
均値として算出した累積平均負荷力は切削工具の現状に
対応した値であり、工具に製品寸法精度や形状精度に影
響を及ぼす損傷が発生した場合は、切削負荷力が累積平
均負荷力に対して一般に20〜50%程度変化する。従
って本発明では、切削加工時の切削負荷力の累積平均負
荷力に対する変動比率を百分率で算出し、この変動比率
を適宜設定したしきい値と比較手段にて比較することに
より工具損傷を検出しているので。
(Function) In the present invention, the cumulative average load force calculated as the average value of the cutting load force during the latest predetermined number of cutting operations (usually about 5 to 10 times before the current processing) corresponds to the current state of the cutting tool. If damage occurs to the tool that affects product dimensional accuracy or shape accuracy, the cutting load force generally changes by about 20 to 50% with respect to the cumulative average load force. Therefore, in the present invention, tool damage is detected by calculating the variation ratio of the cutting load force to the cumulative average load force during cutting as a percentage, and comparing this variation ratio with an appropriately set threshold value using a comparison means. Because it is.

加工回数の増加に伴って切削負荷力が大きく変化する場
合であっても、工具の損傷を正確に検出することができ
る。
Even if the cutting load force changes significantly as the number of machining operations increases, damage to the tool can be accurately detected.

(実tiIi例) 第1図は本発明の一実施例の構成を示す図である。第1
図において、  1は切削加工時の切削負荷力を検出す
る検出部で、切削加工機の主軸モーターあるいは切削負
荷センサー等から電気的または機械的に切削負荷力を検
出する。 2は最新の所定同数(例えば、今回の加工前
10回)の加工時における切削負荷力の平均値わ算出す
る累積平均負荷力算出手段、 3は累積平均負荷力算出
手段2で算出した累積平均負荷力に対する検出部1で検
出した加工時の切削負荷力の変動比率を百分率で算出す
る変動比率算出手段、 4は変動比率算出手段3で算出
した変動比率をしきい値設定手段5で設定されたしきい
値と比較する比較手段で、このしきい値は百分率で設定
され1通常20〜5O%程度である。 6は比較手段4
の出力に応じて工作機械を停止させる工作機械制御装置
である。
(Actual Example) FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. 1st
In the figure, reference numeral 1 denotes a detection unit that detects the cutting load force during cutting, which electrically or mechanically detects the cutting load force from the main shaft motor of the cutting machine or the cutting load sensor. 2 is a cumulative average load force calculation means that calculates the average value of the cutting load force during the latest predetermined same number of machining operations (for example, 10 times before this machining); 3 is a cumulative average calculated by the cumulative average load force calculation means 2; Variation ratio calculation means 4 calculates the variation ratio of the cutting load force during machining detected by the detection unit 1 with respect to the load force as a percentage; This threshold value is set as a percentage and is usually about 20 to 50%. 6 is comparison means 4
This is a machine tool control device that stops the machine tool according to the output of the machine.

次に本実施例の動作を第2図に示すフローチャートを用
いて説明する。
Next, the operation of this embodiment will be explained using the flowchart shown in FIG.

なお、第2図においてiは同一形状または類似形状製品
を繰り返し連続して切削加工した際の加工廠番を示し、
Nは累積平均負荷力算出手段2で累積平均負荷力を求め
る所定の加工回数を示す。
In addition, in Fig. 2, i indicates the processing factory number when repeatedly and continuously cutting products of the same shape or similar shape.
N indicates a predetermined number of processing times for calculating the cumulative average load force by the cumulative average load force calculating means 2.

まず、ステップ7でしきい値設定手段5により比較手段
4で工具損傷の判定に用いるしきい値Xを百分率により
設定する。このしきい値Xは加工条件および被削材質等
で異なり、切削テスト等により決定される。その後切削
加工が開始され、以下任意の1回目の加工時について説
明する。ステップ8でi@目の加工時の切削負荷力fi
を検出部により検出する。このとき、切削負荷力fiに
は切削中の平均負荷力またはピーク値等、再現性のある
値を用いる。次に、ステップ9で今回(i回目)の加工
前N回の加工時、即ちi−N@目がらi−1回目までの
加工時の累積平均負荷力Fを算出する。その後ステップ
10においてステップ9で算出した累積平均負荷力Fに
対するステップ8で検出した切削負荷力fiの変動量を
累積平均負荷力Fを基準とした百分率の絶対値である変
動比率ΔFとして算出する。そしてステップ11に進ん
でステップ10で算出した変動比率ΔFがステップ7に
おけるしきい値Xよりも小さいか否かを判定し、その判
定がYas  ならば工具の損傷無しとしてステップ8
に戻って次の加工に進み。
First, in step 7, the threshold value setting means 5 sets the threshold value X, which is used by the comparison means 4 to determine tool damage, as a percentage. This threshold value X varies depending on processing conditions, material to be cut, etc., and is determined by cutting tests and the like. After that, the cutting process is started, and the first arbitrary process will be described below. In step 8, the cutting load force fi during i@th machining is
is detected by the detection unit. At this time, a reproducible value such as an average load force during cutting or a peak value is used as the cutting load force fi. Next, in step 9, the cumulative average load force F during the N machining times before the current (i-th) machining, that is, the cumulative average load force F during the machining times from i-N@ to the i-1-th machining is calculated. Thereafter, in step 10, the amount of variation in the cutting load force fi detected in step 8 with respect to the cumulative average load force F calculated in step 9 is calculated as a fluctuation ratio ΔF, which is the absolute value of a percentage based on the cumulative average load force F. Then, the process proceeds to step 11, where it is determined whether the variation ratio ΔF calculated in step 10 is smaller than the threshold value
Return to and proceed to the next processing.

その判定がNOならば工具の損傷有りとしてステップ1
2に進み、工作機械制御装置6に工具の損傷発生信号を
出力し、工作機械を停止させ、工具の交換を促す。
If the judgment is NO, the tool is damaged and step 1
Proceeding to step 2, a tool damage occurrence signal is output to the machine tool control device 6 to stop the machine tool and prompt the tool to be replaced.

このように、加工毎に異なる累積平均負荷力を基にした
変動比率により工具損傷を判断することにより、高硬度
材加工時のように加工回数を重ねる毎に工具の磨耗等に
より切削負荷力が変化する場合でも、その切削負荷力の
変化に応じて累積平均負荷力も変化することから、第3
図に示すように切削状態が正常であれば加工回数が増加
しても変動比率には大きな変化がなく、工具の損傷が発
生した時のみ変動比率が大きく変化するので、工具損傷
に起因する変動比率の変動Cを正しく判断することがで
き、被削材質等を問わず常に正確な工具損傷の検出が可
能となる。
In this way, by determining tool damage based on the variation ratio based on the cumulative average load force that differs for each machining process, it is possible to determine whether the cutting load force increases due to tool wear or other factors as the number of machining increases, such as when machining high-hardness materials. Even if the cutting load force changes, the cumulative average load force also changes according to the change in the cutting load force, so the third
As shown in the figure, if the cutting conditions are normal, the variation ratio will not change significantly even if the number of machining increases, and the variation ratio will change significantly only when tool damage occurs, so the variation due to tool damage. The ratio variation C can be correctly determined, and tool damage can always be accurately detected regardless of the material of the workpiece.

また、累積平均負荷力を変動比率算出時の基準として用
いることにより、検出部で検出した切削負荷力に含まれ
る加工時の取代および材料硬度のばらつきまたはクラン
プ時の振れ等といった再現性のない要因による検出精度
への影響を大幅に減少することができるため、従来検出
が困難であった微小な工具の損傷をも検出することが可
能となる。
In addition, by using the cumulative average load force as a standard when calculating the variation ratio, it is possible to eliminate factors that are not reproducible, such as variations in machining allowance and material hardness or vibration during clamping, which are included in the cutting load force detected by the detection unit. Since the influence of damage on detection accuracy can be significantly reduced, it becomes possible to detect even minute tool damage that was difficult to detect in the past.

さらに、損傷判定のための変動比率のしきい値は、通常
の加工において20〜30%の場合が非常に多く、この
範囲で設定しておけば実質的に十分な精度での損傷検出
が可能であるため、従来のようにしきい値の定量把握の
ために切削試験を何回も繰り返す必要がなくなり、装置
の設定時における調整時間の大幅な短縮が可能となる。
Furthermore, the threshold value of the variation ratio for damage determination is very often 20 to 30% in normal machining, and if it is set within this range, damage detection can be practically achieved with sufficient accuracy. Therefore, it is no longer necessary to repeat the cutting test many times to quantitatively understand the threshold value as in the past, and it is possible to significantly shorten the adjustment time when setting up the device.

(効果) 以上説明したように、本発明によれば、最新の所定回数
の加工時における累積平均負荷力を基準として各加工時
の切削負荷力の変動を百分率による変動比率として算出
し、この変動比率により工具損傷を判定するため、高硬
度材加工時のように加工回数を重ねる毎に切削負荷力が
大きく変動する場合でも、正確に工具損傷を検出でき、
また累積平均負荷力を変動比率の基準とすることにより
、材料硬度のばらつき等の再現性のない要因による切削
負荷力の変化が損傷判定に及ぼす影響を抑制し、検出精
度の火報な向上を可能にし、さらに損傷判定用のしきい
値の設定が容グなことから、装置設置時等の調整の煩雑
さを大幅に軽減することができる。
(Effects) As explained above, according to the present invention, the variation in cutting load force during each machining process is calculated as a percentage variation ratio based on the cumulative average load force during the latest predetermined number of machining cycles, and this variation Since tool damage is determined based on the ratio, tool damage can be detected accurately even when the cutting load force fluctuates greatly with each machining cycle, such as when machining high-hardness materials.
In addition, by using the cumulative average load force as the standard for the variation ratio, the influence of changes in cutting load force due to non-reproducible factors such as variations in material hardness on damage determination can be suppressed, and detection accuracy can be dramatically improved. Furthermore, since it is easy to set the threshold value for determining damage, the complexity of adjustment when installing the device can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は本発明の一実施例の動作を説明するためのフロー
チャート、第3図は本発明の一実施例における加工回数
に対する変動比率の変化を示す図、第4図は従来の切削
用工具損傷検出装置における加工回数に対する切削負荷
力の変化を示す図である。 1・・・・・・・・検出部。 2・・・・・・・・・累積平均負荷力算出手段、3・・
・・・・・・・変動比率算出手段、4・・・・・・・・
・比較手段、 6・・・・・・・工作機械制御装置。 出頴人 日本電装株式会社 代理人  弁理土鈴 木 昌 明 (外2名)ド = ユ」 ユA 証 :;e−訂 よ
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a flow chart for explaining the operation of an embodiment of the present invention, and FIG. 3 is a diagram showing the number of machining operations in an embodiment of the present invention. FIG. 4 is a diagram showing changes in the variation ratio, and FIG. 4 is a diagram showing changes in cutting load force with respect to the number of machining operations in a conventional cutting tool damage detection device. 1...Detection section. 2... Cumulative average load force calculation means, 3...
...... Fluctuation ratio calculation means, 4...
・Comparison means, 6...Machine tool control device. Presenter: Nippondenso Co., Ltd. Agent, Patent Attorney: Masaaki Suzuki (2 others)

Claims (1)

【特許請求の範囲】[Claims] 切削負荷力を検出する検出部と、最新の所定回数の切削
加工時における切削負荷力の平均値を算出する累積平均
負荷力算出手段と、前記検出部の出力が前記累積平均負
荷力算出手段の出力に対して変動した比率を算出する変
動比率算出手段と、前記変動比率算出手段の出力を設定
値と比較する比較手段と、前記比較手段の出力に応じて
工作機械を停止させる工作機械制御装置とをそなえたこ
とを特徴とする切削用工具損傷検出装置。
a detection unit that detects cutting load force; a cumulative average load force calculation unit that calculates the average value of cutting load force during the latest predetermined number of cutting operations; A fluctuation ratio calculation means for calculating a ratio of fluctuation with respect to the output, a comparison means for comparing the output of the fluctuation ratio calculation means with a set value, and a machine tool control device for stopping the machine tool according to the output of the comparison means. A cutting tool damage detection device characterized by comprising:
JP15746688A 1988-06-25 1988-06-25 Cutting tool damage detecting device Pending JPH029554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15746688A JPH029554A (en) 1988-06-25 1988-06-25 Cutting tool damage detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15746688A JPH029554A (en) 1988-06-25 1988-06-25 Cutting tool damage detecting device

Publications (1)

Publication Number Publication Date
JPH029554A true JPH029554A (en) 1990-01-12

Family

ID=15650286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15746688A Pending JPH029554A (en) 1988-06-25 1988-06-25 Cutting tool damage detecting device

Country Status (1)

Country Link
JP (1) JPH029554A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490298U (en) * 1990-12-18 1992-08-06
JP2002001633A (en) * 2000-06-19 2002-01-08 Murata Mach Ltd Working machine having abnormal load detecting function
JP2006205289A (en) * 2005-01-27 2006-08-10 Murata Mach Ltd Tool service life predicting device
JP2013121646A (en) * 2011-12-12 2013-06-20 Aichi Machine Industry Co Ltd Device and method for defect determination of fillet roller
JP2014172102A (en) * 2013-03-06 2014-09-22 Fuji Mach Mfg Co Ltd Tool abnormality discrimination system
JP2019030954A (en) * 2017-08-07 2019-02-28 Dmg森精機株式会社 Machine tool and method for calculating degree of abrasion of tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490298U (en) * 1990-12-18 1992-08-06
JP2002001633A (en) * 2000-06-19 2002-01-08 Murata Mach Ltd Working machine having abnormal load detecting function
JP2006205289A (en) * 2005-01-27 2006-08-10 Murata Mach Ltd Tool service life predicting device
JP2013121646A (en) * 2011-12-12 2013-06-20 Aichi Machine Industry Co Ltd Device and method for defect determination of fillet roller
JP2014172102A (en) * 2013-03-06 2014-09-22 Fuji Mach Mfg Co Ltd Tool abnormality discrimination system
JP2019030954A (en) * 2017-08-07 2019-02-28 Dmg森精機株式会社 Machine tool and method for calculating degree of abrasion of tool

Similar Documents

Publication Publication Date Title
US6937942B2 (en) Method and apparatus of detecting tool abnormality in a machine tool
König et al. Tool monitoring of small drills with acoustic emission
US7333906B2 (en) Quality analysis including cumulative deviation determination
CN111113147A (en) Process for automatic detection and automatic compensation of gear
US4603395A (en) Method of determining clamping force
EP1597018A1 (en) A method for processing products having low tolerances by removing shavings
JPH029554A (en) Cutting tool damage detecting device
US4484051A (en) Breakthrough detection means for electric discharge machining apparatus
KR20180024093A (en) Tool breakage and wear monitoring method
KR101787347B1 (en) Control method of numerical control machine tool
US4854161A (en) Method for diagnosing cutting tool dullness
JP2008087092A (en) Abnormality detecting device for tool
EP3499327B1 (en) Load state diagnosis device and load state diagnosis method for servomotor
JPS606329A (en) Method and apparatus for monitoring processing condition of work machine
JPH01205958A (en) Method of monitoring operation for machine tool
WO2021048968A1 (en) Deterioration amount-detecting device, deterioration amount-detecting method, and deterioration prediction system
JPH02256448A (en) Abnormality detecting device for cutter tool in machine tool
JPH0839399A (en) Thermal displacement correcting device for machine tool
JPH07210228A (en) Control method for measuring system using nc machine tool
JPH0740195A (en) Nc device
JPH07308780A (en) Wire touch sensing method for welding robot
SU1714458A1 (en) Method for determining wear of cutting tools
JP2535598B2 (en) Machining load monitoring device considering the tool feed direction
JPH11197996A (en) Working method and device for part in process of machining
JPS63278746A (en) Monitor device for machining abnormality