JPH0295251A - Detector for gas chromatography - Google Patents

Detector for gas chromatography

Info

Publication number
JPH0295251A
JPH0295251A JP63247883A JP24788388A JPH0295251A JP H0295251 A JPH0295251 A JP H0295251A JP 63247883 A JP63247883 A JP 63247883A JP 24788388 A JP24788388 A JP 24788388A JP H0295251 A JPH0295251 A JP H0295251A
Authority
JP
Japan
Prior art keywords
gas
electrodes
measured
detector
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63247883A
Other languages
Japanese (ja)
Inventor
Masato Maeda
眞人 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP63247883A priority Critical patent/JPH0295251A/en
Publication of JPH0295251A publication Critical patent/JPH0295251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To detect combustible gaseous components with high accuracy without using gaseous hydrogen by constituting at least the measuring gas side of electrodes to which a carrier gas is supplied of molybdenum disilicide or other non-catalytic materials. CONSTITUTION:A specified amt. of air or gaseous oxygen is mixed with the gaseous components which are to be measured and are eluted from a sepn. column provided with electrodes on both sides of a solid electrolyte sensor and is transported with the carrier gas to one side of the electrodes. A reference gas is introduced to the other electrode side. The components to be measured are detected by detecting the difference in electromotive force generated between the electrodes. At least the measuring gas side of the electrodes to which the carrier gas is supplied is constituted of the molybdenum disilicide or other non-catalytic materials. The combustible gaseous components are detected with high accuracy in such a manner without using the gaseous hydrogen.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、プロセスガスクロマトグラフなどのガスクロ
マトグラフに装着され分離カラムで分離された被測定成
分などを検出するガスクロマトグラフ用検出器に関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a gas chromatograph detector that is attached to a gas chromatograph such as a process gas chromatograph and detects a component to be measured separated by a separation column.

〈従来の技術〉 1952年にA、J、P、Martinによって発表さ
れたガスクロマトグラフィは、揮発性化合物の画期的な
分析方法であり、以来今日まで種々の改良が加えられ分
析化学の分野で広く使用されている。このようなカスク
ロマトグラフィを利用、し、石油プラント等における各
種流体に含まれる被測定成分を連続的かつ再現性良く分
析する装置としてプロセスガスクロマトグラフが開発さ
れ、広い分野で使用されている。
<Prior art> Gas chromatography, introduced by A. J. P. Martin in 1952, is a revolutionary method for analyzing volatile compounds. Widely used. Process gas chromatographs have been developed as devices that utilize gas chromatography to continuously and reproducibly analyze components contained in various fluids in oil plants and the like, and are used in a wide range of fields.

一方、ガスクロマトグラフには分離カラムで分離された
被測定成分などを検出するガスクロマトグラフ用検出器
が装着されている。また、この検出器として新規な検出
器を備えたガスクロマトグラフについて、本願出願人は
既に特願昭60−146459号を提案している。
On the other hand, the gas chromatograph is equipped with a gas chromatograph detector that detects the components to be measured separated by the separation column. Furthermore, regarding a gas chromatograph equipped with a new detector as this detector, the applicant of the present application has already proposed Japanese Patent Application No. 146459/1983.

黙しながら、特願昭60−146459号で提案した検
出器は、電極材料として白金<Pt)系で触媒性の強い
ものを使用しているため、キャリアカス中に酸素ガスを
混入させることができず通常のFID (水素炎イオン
化検出器)と同程度の検出感度を得ることができないと
いう問題があった。
However, since the detector proposed in Japanese Patent Application No. 60-146459 uses a platinum<Pt)-based material with strong catalytic properties as an electrode material, oxygen gas cannot be mixed into the carrier cassette. However, there was a problem in that it was not possible to obtain detection sensitivity comparable to that of a normal FID (Flame Ionization Detector).

即ち、固体電解質センサにおいて、測定ガス側に酸素ガ
スが全く存在しない場合には1ボルト以上の大きな起電
力が発生する。このため、電圧のバックグランドが極め
て大きい状態で被測定成分を測定しなければならず、微
量の可燃性成分のような被測定成分のピークが測り歎く
なる。従って、キャリアガス中に酸素ガスを混合するこ
とにより参照ガス側にも測定カス側と同濃度の酸素カス
を供給し、可燃性成分ガスが存在しない状態では測定セ
ルの起電力をゼロにするようなことが行われる。しかし
、電極として白金(Pt)を使用すると該白金の強い触
媒作用によって可燃性の成分ガスが燃焼してしまい被測
定成分を高感度に測定できないという問題があった。
That is, in a solid electrolyte sensor, when no oxygen gas exists on the measurement gas side, a large electromotive force of 1 volt or more is generated. For this reason, it is necessary to measure the component to be measured in a state where the voltage background is extremely large, which makes it difficult to measure the peak of the component to be measured, such as a trace amount of combustible component. Therefore, by mixing oxygen gas in the carrier gas, the same concentration of oxygen gas as the measurement gas side is supplied to the reference gas side, and the electromotive force of the measurement cell is reduced to zero in the absence of combustible component gas. something will be done. However, when platinum (Pt) is used as an electrode, combustible component gases are burned due to the strong catalytic action of platinum, making it impossible to measure the component to be measured with high sensitivity.

〈発明が達成しようとする課題〉 本発明は、かかる従来例の問題に鑑みてなされたもめで
あり、その課題は、水素ガスを供給することなく ト’
 I Dと同程度の高い検出感度を有するガスクロマト
グラフ用検出器を提供することにある。
<Problem to be achieved by the invention> The present invention has been made in view of the problems of the prior art, and its object is to achieve hydrogen gas without supplying hydrogen gas.
The object of the present invention is to provide a gas chromatograph detector having detection sensitivity as high as ID.

く課題を解決するための手段〉 上述のような課題を解決する本発明の特徴は、固体電解
質センサの両側に電極を設け分離カラムから溶出する被
測定成分ガスに空気または酸素ガスを一定量混合し前記
電極の一方の側にキャリアガスで搬送すると共に他方の
電極側に参照ガスを導き、これら電極間に発生ずる起電
力の差を検出して前記被測定成分を検出するガスクロマ
トグラフ用検出器において、前記電極のうち少なくとも
前記キャリアガスが供給される測定ガス側を二硅化モリ
ブデン若しくは他の非触媒性材料で構成したことにある
A feature of the present invention that solves the above-mentioned problems is that electrodes are provided on both sides of the solid electrolyte sensor, and a certain amount of air or oxygen gas is mixed into the gas component to be measured eluted from the separation column. A gas chromatograph detector that detects the component to be measured by transporting a carrier gas to one side of the electrode and guiding a reference gas to the other electrode, and detecting the difference in electromotive force generated between these electrodes. In this method, at least the measuring gas side of the electrode to which the carrier gas is supplied is made of molybdenum disilicide or other non-catalytic material.

〈 実方1IipA 〉 以下、本発明について図を用いて詳細に説明する。第1
図は本発明に係わるガスクロマトグラフ用検出器の使用
例説明図である。この図において、1は例えば第1〜第
6の接続口1a〜1fと計量管1gを有し内部流路が第
1図の実線接続状態と破線接続状態に交互に切換られる
サンプリングバルブ、5は内部に例えばカラム充填剤が
充填されてなる分離カラム、6は電極6a、6bが二硅
化モリブデン(M(ISj2)若しくは他の非触媒性材
料で構成されている固体電解質センサ、8は電極6a、
6bから送出される検出信号を信号線7a、7bを介し
て受は一定の信号処理を施し測定信号o u ’rとし
て出力する検出回路、9はガスクロマトグラフ用検出器
A内を加熱するし−タ、】0はガスクロマトグラフ用検
出器A内の温度を検出する熱電対、11は熱電対10の
検出信号を受は予め設定されている温度と比較するなど
してヒータ9をオンオフ制御する温度制御回路、12は
空気もしくは酸素カスの供給源である。
<Actual Method 1IipA> Hereinafter, the present invention will be explained in detail using the drawings. 1st
The figure is an explanatory diagram of an example of use of the gas chromatograph detector according to the present invention. In this figure, 1 is a sampling valve having, for example, first to sixth connection ports 1a to 1f and a metering tube 1g, and whose internal flow path is alternately switched between the solid line connection state and the broken line connection state in FIG. Separation column whose interior is filled with a column filler, 6 is a solid electrolyte sensor whose electrodes 6a and 6b are made of molybdenum disilicide (M (ISj2) or other non-catalytic material, 8 is an electrode 6a,
A detection circuit receives the detection signal sent from 6b via signal lines 7a and 7b and outputs it as a measurement signal after subjecting it to certain signal processing. 9 heats the inside of the gas chromatograph detector A. 0 is a thermocouple that detects the temperature inside the gas chromatograph detector A, and 11 is a temperature that receives the detection signal of the thermocouple 10 and compares it with a preset temperature to control the heater 9 on and off. The control circuit 12 is a source of air or oxygen gas.

このような構成で使用されることの多いガスクロマトグ
ラフ用検出器Aにおいて、空気もしくは酸素ガスの供給
源12がら空気もしくは酸素ガスの供給するのは次のよ
うな必要性に基くものである。
In the gas chromatograph detector A that is often used with such a configuration, the reason why air or oxygen gas is supplied from the air or oxygen gas supply source 12 is based on the following necessity.

即ち、固体電解質セル6の基準ガスとして空気を用い測
定ガスとして酸素分圧がPχの02ガスを導入すると、
Rをガス定数、Tを絶対温度、Fをファラデ一定数とす
るとき下式のようなネルンストの式による起電力Eが発
生する。
That is, when air is used as the reference gas of the solid electrolyte cell 6 and 02 gas with an oxygen partial pressure of Pχ is introduced as the measurement gas,
When R is a gas constant, T is an absolute temperature, and F is a Faraday constant, an electromotive force E is generated according to the Nernst equation as shown below.

E= ((RT)/ (4F)) X (1m (0,21/Pχ)) このため、キャリアガスとして純粋のN2ガスやHeガ
スを使用すると、(0,21/Pχ)の値がoo(i限
大)となり起電力Eの値を求めることができなくなる。
E= ((RT)/(4F)) (i is the maximum), and the value of the electromotive force E cannot be determined.

実際上は、起電力Eの値が1゜2V〜1.5vで飽和し
、しかも、この値が一定とはならない、従って、固体電
解質セル6をガスクロマトグラフ用検出器として使用し
てもバックグランドが非常に高くベースラインも不安定
となる不都合がある。このような理由から、上記ガスク
ロマトグラフ用検出器Aにおいて、空気もしくは酸素ガ
スの供給源12がら空気もしくは酸素ガスの供給するよ
うにしているのである。
In reality, the value of the electromotive force E is saturated at 1.2 V to 1.5 V, and this value is not constant. Therefore, even if the solid electrolyte cell 6 is used as a gas chromatograph detector, the background is very high and the baseline is also unstable. For this reason, in the gas chromatograph detector A, air or oxygen gas is supplied from the air or oxygen gas supply source 12.

まな、固体電解質セル6の電極材料として二硅化モリブ
デン(MoSi2)が使用されるのは次のような必要性
に基くものである。
The reason why molybdenum disilicide (MoSi2) is used as the electrode material of the solid electrolyte cell 6 is based on the following requirements.

即ち、測定ガス中に酸素ガスと微量の可燃性ガスか存在
するとき、電極が白金系の触媒性材料の場合には酸素ガ
スと可燃性ガスが白金触媒の下で速やかに反応し、該微
量の可燃性ガスと当量の酸素が減少する。このため、固
体電解質セル6の起電力Eは未反応の酸素ガス分圧に対
応した値となる。これに対し、固体電解質セル6の@極
材料として二硅化モリブデン(MoSi2)を使用した
場合には、キャリアガスに酸素ガスを混入しても可燃性
カスが電極上で白金のような触媒作用を受けることもな
い、このため、該可燃性ガスが直接ジルコニアの界面に
到達し、その結果、上記i量の可燃性カス成分が高感度
に測定されるようになるからである。
That is, when oxygen gas and a trace amount of combustible gas are present in the measurement gas, if the electrode is made of a platinum-based catalytic material, the oxygen gas and the combustible gas will quickly react under the platinum catalyst, and the trace amount will be reduced. of combustible gas and equivalent amount of oxygen are reduced. Therefore, the electromotive force E of the solid electrolyte cell 6 has a value corresponding to the partial pressure of unreacted oxygen gas. On the other hand, when molybdenum disilicide (MoSi2) is used as the @electrode material of the solid electrolyte cell 6, even if oxygen gas is mixed into the carrier gas, flammable scum does not have a catalytic effect like platinum on the electrode. Therefore, the combustible gas directly reaches the zirconia interface, and as a result, the i amount of combustible gas components can be measured with high sensitivity.

ところで、上述のような二硅化モリブデン(MO5i2
)をiiK &とする固体電解質センサ6の起電力特性
は第2図のようになっていた。即ち、数ppm〜500
0ppmの可燃性ガス(具体的にはCOガス)と200
0ppm〜5%の02カスを含みN2ガスでバランスさ
れた混合ガスを用いて、二硅化モリブデン<Mo5i2
)を電極とする固体電解質センサ6の起電力特性を調べ
たところ第2図のような特性図が得られた。この図から
、固fIlc電解質センサ6の起電力を検出信号として
取り出すことにより、数ppm〜5000ppmの可燃
性ガスを高いリニアリティでもって測定可能であること
が分かる。
By the way, molybdenum disilicide (MO5i2) as mentioned above
) is iiK &, the electromotive force characteristics of the solid electrolyte sensor 6 are as shown in FIG. That is, several ppm to 500
0 ppm of combustible gas (specifically CO gas) and 200
Using a gas mixture containing 0 ppm to 5% of 02 scum and balanced with N2 gas
) as an electrode, the electromotive force characteristics of the solid electrolyte sensor 6 were investigated, and a characteristic diagram as shown in FIG. 2 was obtained. From this figure, it can be seen that by extracting the electromotive force of the solid fllc electrolyte sensor 6 as a detection signal, it is possible to measure flammable gases of several ppm to 5000 ppm with high linearity.

尚、本発明は上述の実施例に限定されることなく種々の
変形が可能であり、例えば固体電解質センサの形状を板
上にしても良いものとする。
Note that the present invention is not limited to the above-described embodiments, and can be modified in various ways. For example, the solid electrolyte sensor may be shaped like a plate.

〈発明の効果〉 以上詳しく説明したような本発明によれば、水素ガスを
供給することなくFIDと同程度の高い検出感度を有す
るガスクロマトグラフ用検出器が実現する。また、水素
ガスを用いることなく可燃性の成分ガスを高感度に検出
できるため、爆発事故発生の危険性を根本的に回避する
ことができる。
<Effects of the Invention> According to the present invention as described in detail above, a gas chromatograph detector having detection sensitivity as high as that of FID can be realized without supplying hydrogen gas. Furthermore, since flammable component gases can be detected with high sensitivity without using hydrogen gas, the risk of explosion accidents can be fundamentally avoided.

更に、前記FIDでは検出不可能であったN2やG O
などの無機ガスら高感度に測定できる。また、前記I?
 I Dでは燃焼したガスが強い腐蝕性を示す(HCl
、HFなと)ことがあるため燃焼廃ガスに対する対策が
必要であったが、本発明においては燃焼廃ガスが出すそ
のような対策も不要となる。
Furthermore, N2 and GO, which were undetectable with the FID,
It can be used to measure inorganic gases such as inorganic gases with high sensitivity. Also, the above I?
In ID, the combusted gas is highly corrosive (HCl
However, in the present invention, such countermeasures against combustion waste gas emitted are no longer necessary.

同様に、本発明においては燃焼用N2ガスも不要である
ため、燃焼用N2ガスの防爆対策も不要となり結果的に
装置として割安になるという利点もある。
Similarly, in the present invention, since N2 gas for combustion is not required, there is no need to take measures to prevent explosions of N2 gas for combustion, resulting in an advantage that the device is inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の使用例説明図、第2図は固体電
解質センサの起電力特性図である。
FIG. 1 is an explanatory diagram of an example of use of an embodiment of the present invention, and FIG. 2 is a diagram of electromotive force characteristics of a solid electrolyte sensor.

Claims (1)

【特許請求の範囲】[Claims]  固体電解質センサの両側に電極を設け分離カラムから
溶出する被測定成分ガスに空気または酸素ガスを一定量
混合させ前記電極の一方の側にキャリアガスで搬送する
と共に他方の電極側に参照ガスを導き、これら電極間に
発生する起電力の差を検出して前記被測定成分を検出す
るガスクロマトグラフ用検出器において、前記電極のう
ち少なくとも前記キャリアガスが供給される測定ガス側
を二硅化モリブデン若しくは他の非触媒性材料で構成し
たことを特徴とするガスクロマトグラフ用検出器。
Electrodes are provided on both sides of the solid electrolyte sensor, and a certain amount of air or oxygen gas is mixed with the component gas to be measured eluted from the separation column, and the mixture is conveyed by a carrier gas to one side of the electrode, and a reference gas is introduced to the other electrode side. In a gas chromatograph detector that detects the component to be measured by detecting the difference in electromotive force generated between these electrodes, at least the measurement gas side to which the carrier gas is supplied of the electrodes is made of molybdenum disilicide or other material. A gas chromatograph detector characterized in that it is constructed of a non-catalytic material.
JP63247883A 1988-09-30 1988-09-30 Detector for gas chromatography Pending JPH0295251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247883A JPH0295251A (en) 1988-09-30 1988-09-30 Detector for gas chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247883A JPH0295251A (en) 1988-09-30 1988-09-30 Detector for gas chromatography

Publications (1)

Publication Number Publication Date
JPH0295251A true JPH0295251A (en) 1990-04-06

Family

ID=17170020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247883A Pending JPH0295251A (en) 1988-09-30 1988-09-30 Detector for gas chromatography

Country Status (1)

Country Link
JP (1) JPH0295251A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864000A1 (en) * 2003-12-18 2005-06-24 Hydroperfect Internat ELECTRO-HYDRAULIC STEERING ASSISTANCE SYSTEM FOR A MOTOR VEHICLE
CN104880527A (en) * 2015-05-25 2015-09-02 苏州市华安普电力工程有限公司 Gas chromatograph

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864000A1 (en) * 2003-12-18 2005-06-24 Hydroperfect Internat ELECTRO-HYDRAULIC STEERING ASSISTANCE SYSTEM FOR A MOTOR VEHICLE
CN104880527A (en) * 2015-05-25 2015-09-02 苏州市华安普电力工程有限公司 Gas chromatograph

Similar Documents

Publication Publication Date Title
US7937984B2 (en) Gas sensor test system and methods related thereto
US3514377A (en) Measurement of oxygen-containing gas compositions and apparatus therefor
US3791936A (en) Method and apparatus for monitoring the total combustibles and oxygen content of a gas
US7975525B2 (en) Self-calibrating sensor
Schelter et al. A solid electrolyte sensor for trace gas analysis
US4828673A (en) Apparatus for measuring combustible gas concentration in flue gas
CA2164438C (en) Gas detection, identification and elemental and quantitative analysis system
US5265463A (en) Apparatus for measuring the transmission rate of volatile organic chemicals through a barrier material
US6623976B1 (en) Combustibility monitor and monitoring method
US4201550A (en) Process and apparatus for the determination of the total organic substance content of gases by a flame ionization detector
US3460909A (en) Catalytic combustion detector for gas chromatography
US6309534B1 (en) Apparatus and method for measuring the composition of gases using ionically conducting electrolytes
RU2125262C1 (en) Method determining calorific power of combustible gas and device for its realization
US7655186B2 (en) Gas generation for sensor calibration
US11726060B2 (en) Flame ionisation detector and method for the analysis of an oxygen-containing measuring gas
JPH0295251A (en) Detector for gas chromatography
US4664886A (en) Trimode gas detection instrument
US4663017A (en) Combustibles sensor
US4120659A (en) Sulfur analysis
JPH05119006A (en) Device for measuring concentration of hydrogen carbide
US5823044A (en) Method for selective gas sensors based on nonlinear gas reactions
JPH09500959A (en) Method and apparatus for the detection of oxidizable substances in space
KR20220028947A (en) Mixed potentiometric type nitrogen oxide sensor using bias voltage
Gough et al. Techniques in gas chromatography. Part III. Choice of detectors. A review
JP2600077B2 (en) Method and apparatus for continuous measurement of calorific value of organic gas