JPH0294326A - Radiation-resistant electric wire and cable - Google Patents

Radiation-resistant electric wire and cable

Info

Publication number
JPH0294326A
JPH0294326A JP63248445A JP24844588A JPH0294326A JP H0294326 A JPH0294326 A JP H0294326A JP 63248445 A JP63248445 A JP 63248445A JP 24844588 A JP24844588 A JP 24844588A JP H0294326 A JPH0294326 A JP H0294326A
Authority
JP
Japan
Prior art keywords
tape
radiation
cable
silica
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63248445A
Other languages
Japanese (ja)
Other versions
JP2689527B2 (en
Inventor
Kiyoshi Watanabe
清 渡辺
Takanori Yamazaki
孝則 山崎
Hideki Yagyu
柳生 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63248445A priority Critical patent/JP2689527B2/en
Publication of JPH0294326A publication Critical patent/JPH0294326A/en
Application granted granted Critical
Publication of JP2689527B2 publication Critical patent/JP2689527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Abstract

PURPOSE:To obtain sufficiently high radiation resistance as well as flexibility of the title wire and cable by using alumina- or silica-based inorganic fiber paper which is lined with a glass tape or a polyimide tape as an insulating layer formed on a conductor. CONSTITUTION:An insulating tape of a radiation-resistant alumna- or silica- based inorganic fiber paper which is lined with an also radiation-resistant glass tape or a polyimide tape is used as an insulator. As the inorganic fiber paper, either alumina fiber or silica fiber or a composite fiber of them may be used. For binding the inorganic fiber paper with a highly adhesive tape of the glass tape or the polyimide tape, a trace amount of an organic adhesive or sticking material may be used. As a result, high radiation resistance and flexibility are achieved and installation work and wiring plan are made easy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高速増殖炉のような高温・高放射線域内にお
いて使用される耐放射線性電線あるいはケーブルに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to radiation-resistant electric wires or cables used in high temperature, high radiation areas such as fast breeder reactors.

[従来の技術と問題点] 原子力発電におけるウランの利用効率を大巾に向上させ
、限られた核資源の温存とエネルギ資源の長期にわたる
確保とを意図して、近年軽水炉による発電から新型動力
炉への転換計画が進められており、わが国においてもそ
の開発が本格的に進展しつつある。
[Conventional technology and problems] In recent years, power generation using light water reactors has been replaced by new power reactors, with the aim of greatly improving the efficiency of uranium use in nuclear power generation, conserving limited nuclear resources, and securing long-term energy resources. A conversion plan is underway, and development is progressing in earnest in Japan as well.

しかしながら、この種原子炉においては従来の軽水炉と
比較して炉内の環境が著しく相違したものとなる。例え
ば、液体金属冷却材を用いた高速中性子増殖炉(FBR
)を例にとれば、温度が150℃以上(異常時には40
0℃程度)にも達する上、きわめて大量の放射線を発生
させる。従って、このような環境下において用いられる
電線・ケーブルには10〜100MGVといつな大線量
レベルの放射線に耐え得ることが要求される。
However, in this type of nuclear reactor, the environment within the reactor is significantly different from that in conventional light water reactors. For example, a fast neutron breeder reactor (FBR) using liquid metal coolant
), the temperature is 150℃ or higher (40℃ in case of abnormality).
0°C) and generates an extremely large amount of radiation. Therefore, electric wires and cables used in such an environment are required to be able to withstand radiation at a high dose level of 10 to 100 MGV.

従来このような厳環境下で使用可能なケーブルとして、
マグネシア等の無機絶縁体にステンレス等の金属シース
を被覆したいわゆるM1ケーブルがもっばら使用されて
きた。しかし、このMlケーブルは可視性に乏しく布設
作業の上で非常に不便であるばかりでなく、絶縁体が吸
湿し易くそれによる絶縁特性の低下が大きいなど、問題
点が多かった。
Conventionally, cables that can be used in such harsh environments,
A so-called M1 cable in which an inorganic insulator such as magnesia is coated with a metal sheath such as stainless steel has been widely used. However, this Ml cable not only has poor visibility and is very inconvenient during installation work, but also has many problems, such as the insulator easily absorbs moisture, resulting in a large drop in insulation properties.

[発明の目的] 本発明は、上記したような実情にかんがみてなされたも
のであり、無機系絶縁体を使用しつつも可視性にすぐれ
しかも十分な耐放射線特性を具備する耐放射線性電線・
ケーブルを提供しようとするものである。
[Object of the Invention] The present invention was made in view of the above-mentioned circumstances, and provides a radiation-resistant electric wire/wire that uses an inorganic insulator, has excellent visibility, and has sufficient radiation-resistant properties.
It is intended to provide cables.

[発明の概要] 本発明の要旨とするところは、耐放射線特性にとくにす
ぐれたアルミナあるいはシリカ系無機繊維紙を同じく耐
放射線性にすぐれたガラステープあるいはポリイミドテ
ープで裏打ちした絶縁テープを絶縁体として使用したこ
とにあり、それによって無機絶縁体の有する特性を維持
しつつ従来大きな問題点となっていた可撓性について大
巾な改善を達成せしめたものである。
[Summary of the Invention] The gist of the present invention is to use an insulating tape as an insulator, which is made by backing alumina or silica-based inorganic fiber paper, which has particularly excellent radiation resistance, with glass tape or polyimide tape, which also has excellent radiation resistance. As a result, it has been possible to maintain the properties of inorganic insulators while significantly improving flexibility, which had been a major problem in the past.

[実施例] 以下に、本発明について実施例に基いて順次説明する。[Example] The present invention will be sequentially explained below based on examples.

金属酸化物であるアルミナ(AJ 20s )やシリカ
(Si 02 )が極めてすぐれた耐放射線特性を有し
ていることは知られるところである。これらの粉末をそ
のまま絶縁体として使用したものが先に説明しなMIケ
ーブルであるが、可撓性に劣るという本来的属性が問題
視されていることは先に説明の通りである。
It is known that metal oxides such as alumina (AJ 20s ) and silica (Si 02 ) have extremely excellent radiation resistance properties. MI cables that use these powders as they are as insulators are the ones described above, but as explained earlier, the inherent attribute of poor flexibility is considered problematic.

本発明は、上記問題点を解決すべく、アルミナあるいは
シリカを上記のように粉末として使用せず、繊維化して
使用することに着目するものである。すなわち、発明者
らはアルミナあるいはシリカによる無機繊維紙を作製し
、これを導体上に巻付けることにより可撓性にすぐれた
無機絶縁電線を入手できるであろうことに着目した。し
かし、それを現実に試作実験した結果、上記繊維にはフ
ィブリル構造がなく、am間のからみ付き力がほとんど
ないため、これを紙にした場合の引張り強さが非常に小
さく、これを電線の外周に十分な密度を持たせて巻回す
ることが困難であることがわかった。
In order to solve the above problems, the present invention focuses on using alumina or silica in the form of fibers instead of using them as powders as described above. That is, the inventors noticed that an inorganic insulated wire with excellent flexibility could be obtained by producing inorganic fiber paper made of alumina or silica and wrapping it around a conductor. However, as a result of actual trial production experiments, we found that the above fibers do not have a fibril structure and have almost no intertwining force between ams, so when made into paper, the tensile strength is extremely low. It was found that it was difficult to wind the outer periphery with sufficient density.

そこで、さらに鋭意検討を重ねた結果、上記の無機繊維
紙にそれ自身すぐれた耐放射線特性を有するガラステー
プまたはポリイミドテープを裏打ちして絶縁テープとす
ることにより、絶縁材として十分な強度および可撓性が
得られることがわかった。
Therefore, as a result of further intensive studies, we found that by backing the above-mentioned inorganic fiber paper with glass tape or polyimide tape, which itself has excellent radiation resistance properties, to make an insulating tape, it has sufficient strength and flexibility as an insulating material. It turns out that sex can be obtained.

無機繊維紙としては、アルミナ繊維あるいはシリカ繊維
のいずれか一方あるいは両者の複合繊維のいずれを用い
てもよく、上記ガラステープあるいはポリイミドテープ
よりなる高強度テープとの貼り合せには、ごく微量の有
機材料よりなる接着剤もしくは粘着材を用いるのがよい
0例えば、具体的にはシリコーンワニスをキシレンやト
ルエン等の溶剤に希釈し、樹脂分として2〜8■/−量
を高強度テープに塗布し貼り合せる。この場合、シリコ
ーンワニス自体は一定の線量レベル以上の放射線により
特性が急速に劣化するという性質があるが、使用する量
は上記のようにごく微量であるから、絶縁体全体の特性
に悪影響を及ぼすおそれはないのである。勿論、シリコ
ーン系粘着材に代えてより放射線特性の良好なポリイミ
ド系ワニス等を接着剤として使用してもよいことはいう
までもない。
As the inorganic fiber paper, either alumina fiber or silica fiber, or a composite fiber of both may be used.For bonding with the high-strength tape made of the above-mentioned glass tape or polyimide tape, a very small amount of organic fiber may be used. It is better to use an adhesive or adhesive material made of the material. For example, specifically, silicone varnish is diluted with a solvent such as xylene or toluene, and applied to a high-strength tape in an amount of 2 to 8 cm/- as the resin content. Paste together. In this case, silicone varnish itself has the property that its properties deteriorate rapidly due to radiation above a certain dose level, but since the amount used is extremely small as mentioned above, it has a negative effect on the properties of the entire insulator. There is no fear. Of course, it goes without saying that a polyimide varnish or the like having better radiation properties may be used as the adhesive instead of the silicone adhesive.

上記のようにして得た無機繊維紙複合テープを導体上に
設置するには、一般に巻回方式によるのが適当であるが
、十分な抑え巻層を設けることで縦添え方式とすること
も可能である。
In order to install the inorganic fiber paper composite tape obtained as above on a conductor, it is generally appropriate to use a winding method, but it is also possible to use a vertical mounting method by providing a sufficient restraining layer. It is.

なお、無機系の絶縁体には、すでにみたように吸湿によ
って絶縁抵抗の低下現象が生ずるおそれが応々にしであ
る。これを防止するには、導体の直上にまずポリイミド
テープ巻層を形成し、その上に上記無機繊維紙複合テー
プを設けることが望ましい、このようにして巻回される
ポリイミドテープの組成としては、 などを挙げることができる。
Note that, as already mentioned, inorganic insulators are often susceptible to a decrease in insulation resistance due to moisture absorption. To prevent this, it is desirable to first form a polyimide tape winding layer directly above the conductor, and then provide the above-mentioned inorganic fiber paper composite tape on top of it.The composition of the polyimide tape wound in this way is as follows: etc. can be mentioned.

このようなポリイミドテープ層においては、テーピング
したのちラップ目より水分が侵入するのを防止するため
にヒートシールを施しておく必要がある。このヒートシ
ール剤としては、ポリイミド系の接着剤が適当であるが
、配線個所の放射線の線量レベルによっては、エポキシ
系やアクリル系及びウレタン系の接着剤、あるいはポリ
エチレン、アイオノマ等の熱融着性樹脂を用いることも
できる。
After taping, such a polyimide tape layer must be heat-sealed to prevent moisture from entering through the lap edges. Polyimide-based adhesives are suitable as this heat-sealing agent, but depending on the radiation dose level at the wiring location, epoxy-based, acrylic-based, or urethane-based adhesives, or heat-sealable adhesives such as polyethylene or ionomers may be used. Resins can also be used.

絶縁体は上記によってテープ状に形成され巻回あるいは
縦添えされるからこれの抑え巻が必要である。このため
にはガラス編組あるいはガラステープを抑え巻として使
用するのが適当である。この上に例えばステンレス編組
による保護層を設けて単線として使用してもよいし、2
本以上の線心を撚合せてケーブルに構成してもよい、線
心として構成しこれを撚合せるには介在が必要であるが
、この介在に対してもすぐれた耐放射線特性が要求され
ることは勿論である。このなめに使用される介在として
は、その特性や価格の上からみてガラスロービングが最
適である。しかし、ガラスロービングには端末加工の際
にガラスが飛散するという問題があり、これを避けたい
場合にはフェノール樹脂繊維(商品名カイノール、日本
カイノール社製)などを用いてもよい、以下、ガラス抑
え巻およびステンレス編組外装を設けることにより本発
明に係るケーブルを得る。
Since the insulator is formed into a tape shape as described above and is wound or longitudinally attached, it is necessary to restrain the tape. For this purpose, it is appropriate to use glass braid or glass tape as a restraining winding. For example, a protective layer made of stainless steel braid may be provided on top of this and used as a single wire.
A cable may be constructed by twisting two or more wire cores together; an intervening device is required to form a wire core and twisting it together, but this intervening also requires excellent radiation resistance characteristics. Of course. Glass roving is the most suitable material for this purpose in terms of its properties and price. However, glass roving has the problem of glass scattering during terminal processing, and if you want to avoid this, you may use phenolic resin fiber (trade name Kynor, manufactured by Nippon Kynor Co., Ltd.). A cable according to the present invention is obtained by providing a restraining winding and a stainless steel braided sheath.

実施例 5.5mm2のニッケルメッキ撚線導体上にポリイミド
系接着剤からなるヒートシール層を有するポリイミドテ
ープをO,lrm厚に巻き加熱処理によりヒートシール
を行なった。その上に設ける無機絶縁複合テープとして
、厚さ0.25ffll+のアルミナ・シリカ絶縁紙(
サンベーパー:太陽ケミカル(株))をシリコーンワニ
ス(KRIOI−10=信越化学工業(株))を用い5
■/−の塗布量で0.025mm厚のポリイミドフィル
ム(カプトン:デュポン社)と貼り合せ作製した。この
絶縁テープを3回巻付けた後、更に抑え巻層としてガラ
ス編組を施した4以上のようにして作製した外径5mm
の線心をガラスロービングを介在として撚合せた後、ガ
ラステープを抑え巻層とし、その上に最外層として5U
S304からなるステンレス編組の外装を設け、外径1
3ru+φの耐放射線性ケーブルを得た。
Example 5 A polyimide tape having a heat-sealing layer made of a polyimide adhesive was wound on a nickel-plated stranded conductor of 5.5 mm2 to a thickness of 0.1 rm, and heat-sealed by heat treatment. As an inorganic insulating composite tape provided on top of it, alumina-silica insulating paper with a thickness of 0.25ffll+ (
Sun vapor: Taiyo Chemical Co., Ltd.) using silicone varnish (KRIOI-10 = Shin-Etsu Chemical Co., Ltd.) 5
The film was bonded to a 0.025 mm thick polyimide film (Kapton: DuPont) with a coating amount of 1/-. After wrapping this insulating tape three times, a glass braid was further applied as a restraining layer, and the outer diameter was 5 mm.
After twisting the wire cores with glass roving interposed, a glass tape is held down to form a winding layer, and on top of that, a 5U
Equipped with a stainless steel braided exterior made of S304, with an outer diameter of 1
A radiation-resistant cable of 3ru+φ was obtained.

比較例 比較例として、はぼ同一外径の600VMIケーブル(
3芯)を用意した。
Comparative Example As a comparative example, a 600 VMI cable with the same outer diameter (
3 cores) were prepared.

上記のようにして得な実施例および比較例それぞれのケ
ーブルについて、特性の比較試験を行なった。
Comparison tests were conducted on the characteristics of the cables of the example and comparative example, which were obtained as described above.

ケーブルの可撓性の評価としては、外径の5倍および1
0倍のマンドレルへの巻付は性により判定した。
To evaluate the flexibility of the cable, 5 times the outer diameter and 1
Winding on a 0x mandrel was determined by gender.

また、耐放射線性の評価としてγ線照射前後のケーブル
絶縁抵抗を常温で測定した。
In addition, as an evaluation of radiation resistance, the cable insulation resistance before and after irradiation with gamma rays was measured at room temperature.

γ線の照射はコバルト60を線源とし、10’Gy/h
をもって蓄積線量が50MGVとなるまで照射を行なっ
た。
γ-ray irradiation uses cobalt-60 as a radiation source, and the rate is 10'Gy/h.
Irradiation was continued until the cumulative dose reached 50 MGV.

評価結果を第1表に示す。The evaluation results are shown in Table 1.

第 表 以上の通り、本発明に係る電線・ケーブルによれば、高
速増殖炉や放射線照射施設のように大線量レベルの放射
線環境下においてすぐれた耐放射線特性を発揮し得るば
かりでなく、無機絶縁体を使用しながら従来のMIケー
ブル等に比較してすぐれた可撓性を有し、布設作業や配
線上の設計を格段に容易ならしめ得るなど、その工業上
の価値は非常に大きなものがある。
As shown in the table above, the electric wires and cables according to the present invention not only exhibit excellent radiation resistance characteristics in high-dose radiation environments such as fast breeder reactors and radiation irradiation facilities, but also have inorganic insulation. It has great industrial value, as it has superior flexibility compared to conventional MI cables, etc., and can make installation work and wiring design much easier. be.

第1表によってわかるように、本発明に係るケーブルは
良好な可視性を有し、しかもすぐれた耐放射線性を有し
ている。
As can be seen from Table 1, the cable according to the invention has good visibility and excellent radiation resistance.

これに対し、比較例のMIケーブルでは耐放射線性は良
好だが、可撓性が明らかに乏しい。
On the other hand, the MI cable of the comparative example has good radiation resistance, but clearly has poor flexibility.

以上によって、本発明のケーブルは無機絶縁材料を主体
としながらも可撓性にすぐれ、高放射線域での使用が可
能であることがわかる。
From the above, it can be seen that although the cable of the present invention is mainly made of an inorganic insulating material, it has excellent flexibility and can be used in a high radiation area.

[発明の効果][Effect of the invention]

Claims (2)

【特許請求の範囲】[Claims] (1)導体上に設ける絶縁体層を、アルミナあるいはシ
リカ系の無機繊維紙をガラステープあるいはポリイミド
テープで裏打ちした絶縁テープにより構成してなる耐放
射線性電線・ケーブル。
(1) Radiation-resistant electric wires and cables in which the insulating layer provided on the conductor is composed of an insulating tape made of alumina or silica-based inorganic fiber paper backed with glass tape or polyimide tape.
(2)導体の直上にポリイミドテープ層を形成し、その
上に請求項1記載の絶縁体層を設けてなる耐放射線性電
線・ケーブル。
(2) A radiation-resistant electric wire/cable comprising a polyimide tape layer formed directly on a conductor, and an insulator layer according to claim 1 provided thereon.
JP63248445A 1988-09-30 1988-09-30 Radiation resistant wire / cable Expired - Lifetime JP2689527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248445A JP2689527B2 (en) 1988-09-30 1988-09-30 Radiation resistant wire / cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248445A JP2689527B2 (en) 1988-09-30 1988-09-30 Radiation resistant wire / cable

Publications (2)

Publication Number Publication Date
JPH0294326A true JPH0294326A (en) 1990-04-05
JP2689527B2 JP2689527B2 (en) 1997-12-10

Family

ID=17178237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248445A Expired - Lifetime JP2689527B2 (en) 1988-09-30 1988-09-30 Radiation resistant wire / cable

Country Status (1)

Country Link
JP (1) JP2689527B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539179A (en) * 1990-11-17 1996-07-23 Tokyo Electron Limited Electrostatic chuck having a multilayer structure for attracting an object
JP2011117900A (en) * 2009-12-07 2011-06-16 Mitsubishi Electric Corp Structure of neutron detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109879A (en) * 1973-02-23 1974-10-18
JPS5121469U (en) * 1974-03-01 1976-02-17
JPS62180908A (en) * 1986-01-31 1987-08-08 タツタ電線株式会社 Incombustible wire
JPS63216209A (en) * 1987-03-04 1988-09-08 株式会社東芝 Insulated wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109879A (en) * 1973-02-23 1974-10-18
JPS5121469U (en) * 1974-03-01 1976-02-17
JPS62180908A (en) * 1986-01-31 1987-08-08 タツタ電線株式会社 Incombustible wire
JPS63216209A (en) * 1987-03-04 1988-09-08 株式会社東芝 Insulated wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539179A (en) * 1990-11-17 1996-07-23 Tokyo Electron Limited Electrostatic chuck having a multilayer structure for attracting an object
JP2011117900A (en) * 2009-12-07 2011-06-16 Mitsubishi Electric Corp Structure of neutron detector

Also Published As

Publication number Publication date
JP2689527B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
JP2013149621A (en) Twisted cable and method of manufacturing the same
CN206098043U (en) High reliability resistance to compression communication cable
CN209015753U (en) A kind of cable of high strength moistureproof
JPH0294326A (en) Radiation-resistant electric wire and cable
JPS63170809A (en) Highly flexible cable or electric conductor having malleable cover of insulating material arranged in cable or conductor and manufacture thereof
JP2689526B2 (en) Radiation resistant wire / cable
CN2359790Y (en) Magnetic shielding dry-type air reactor
JP2689525B2 (en) Radiation resistant wire / cable
JPS5848305A (en) Explosion preventive refractory cable
WO2018041217A1 (en) Anti-water treeing cable utilizing cross-linked polyethylene insulation material
CN203826061U (en) Low-smoke halogen-free 1E-type nuclear-power-station-used K3-grade computer cable
JPS6312327B2 (en)
JPH02103804A (en) Radiation resistant electric wire and cable
JPH0294327A (en) Radiation-resistant electric wire and cable
CN215377026U (en) Novel nuclear power station cable
CN107248426A (en) A kind of lightning protected cable of high mechanical strength
CN213424707U (en) Soft high temperature resistant transmission signal insulated wire
CN212724803U (en) Wire and cable with good flame retardant effect
CN209929008U (en) Novel special shielding control cable
CN215527289U (en) Anti-winding wire and cable
CN218471617U (en) Cable shielding layer structure and cable conductor
JPS6364011B2 (en)
CN209747175U (en) Deformation-resistant armored insulating aluminum alloy cable
CN206148167U (en) Medical equipment high tension cable
CN207909549U (en) A kind of flexible flame-retardant cable