JPH0293356A - Beam type surface analyser - Google Patents

Beam type surface analyser

Info

Publication number
JPH0293356A
JPH0293356A JP63246388A JP24638888A JPH0293356A JP H0293356 A JPH0293356 A JP H0293356A JP 63246388 A JP63246388 A JP 63246388A JP 24638888 A JP24638888 A JP 24638888A JP H0293356 A JPH0293356 A JP H0293356A
Authority
JP
Japan
Prior art keywords
sample
focus
spectroscope
electron beam
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63246388A
Other languages
Japanese (ja)
Inventor
Hitoshi Sugiura
杉浦 衡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63246388A priority Critical patent/JPH0293356A/en
Publication of JPH0293356A publication Critical patent/JPH0293356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To shorten an analytical time by dispensing with focus matching by vibrating a sample in the axial direction of exciting beam at amplitude larger than the depth of the surface unevenness of the sample and detecting the energy line of the sample through a spectroscope to store the intensity thereof. CONSTITUTION:A sample S is set to a sample mount stand 1 to be irradiated with electron beam B and minute vibration is given to said sample S in the axial direction of the electron beam B on the basis of the signal of an exciting circuit 5. By this method, the surface of the sample is excited by the electron beam B to generate fluorescent X-rays which are, in turn, incident to a detector 6 through a spectroscope 7 to be converted to an electric signal. From this, the focus of the spectroscope 7 is successively transferred from the front focus point of the sample to the rear focus point thereof and the output proportional to the matched focus to the spectroscope 7 of fluorescent X-rays is generated. Said X-rays are converted to an electric signal by the detector 6 to be inputted to a memory circuit 10 and surface properties are analyzed by a data analyser 11. By this method, focus matching is made unnecessary to make it possible to shorten an analytical time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電磁波ビームや粒子ビームを使用した表面分
析袋コに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a surface analysis bag using an electromagnetic beam or a particle beam.

(従来技術) 例えば、固体表面を電子線ビームにより励起し、その表
面から得られる各種信号を検出することによって固体表
面を形成しでいる元素の種類や、結合状態を分析する電
子線マイクロアナライザにあっては、検出器からの信号
強度か試料からの蛍光X線の分光器、つまり検出器に対
する合焦度合いに左右されるため、分析対象となってい
る領域と分光器との間の距離を相対的に調整して焦点合
せが行われている。
(Prior art) For example, an electron beam microanalyzer that analyzes the types of elements forming the solid surface and the bonding state by exciting the solid surface with an electron beam and detecting various signals obtained from the surface. In other words, the distance between the area to be analyzed and the spectrometer depends on the signal intensity from the detector or the degree of focus of the fluorescent X-rays from the sample on the spectrometer, that is, on the detector. Focusing is performed through relative adjustment.

(解決すべき課題) このため、試料代百台を走査方向ばかってなく、励起ビ
ームの軸方向にも移動させる関係上、精密な移動機構を
必要とするばかってなく、分析領域の変更の度に焦点合
せ作業を必要として分析作業に長時間を要するという問
題がある。
(Issues to be solved) For this reason, since the 100 sample units are moved not only in the scanning direction but also in the axial direction of the excitation beam, a precise movement mechanism is required, and each time the analysis area is changed. There is a problem in that the analysis requires a long time due to the need for focusing.

本発明はこのような問題に鑑みてなされたものであって
、その目的とするところは焦点合せを不要として分析時
間の短縮と装置の簡素化を図る仁とかできる新規な表面
分析装at提供することにある。
The present invention has been made in view of these problems, and its purpose is to provide a novel surface analysis device that does not require focusing, shortens analysis time, and simplifies the device. There is a particular thing.

(課題を解決するための手段) このような問題を解決するために、本発明においては励
起ビーム発生手段からの励起ビーム経路に、少なくとも
試料表面の凹凸深さよりも大きなi幅で励起ど−ム軸方
向に振動する試料載置手段と、試料から放出されたエネ
ルギー線を分光器を介して受けて電気信号に変換する構
出手段と、試料から放出されたエネルギー線の強度を記
憶する手段を備えた。
(Means for Solving the Problems) In order to solve such problems, in the present invention, an excitation beam is provided in the excitation beam path from the excitation beam generating means with an i width that is at least larger than the depth of the irregularities on the sample surface. A sample mounting means that vibrates in the axial direction, a configuration means that receives energy rays emitted from the sample via a spectrometer and converts them into electrical signals, and a means that stores the intensity of the energy rays emitted from the sample. Prepared.

(作用) 試料載置手段の振動により分析対象となっている領域か
らの検出ビームの焦点が、検出器の光学系を必す通過す
るため、これからの信号を積分することにより試料の試
料の凹凸に起因する信号強度の変化を相殺することがで
きる。
(Function) Because the focus of the detection beam from the area to be analyzed due to the vibration of the sample mounting means necessarily passes through the optical system of the detector, the unevenness of the sample is detected by integrating the signal. changes in signal strength caused by

(実施例) そこで以下に本発明の詳細を図示した実施例に基づいて
詳細(こ説明する。
(Example) Therefore, the details of the present invention will be explained below based on an illustrated example.

第1図は、本発明の一実施例を示すものであって、図中
符号]は、試料R置台で、検出光路系しの焦点近傍に配
置され電子線ビーム発生装置2からの電子ビームBを試
料か受けるように構成されている。この試料@j台1は
、駆動機構により3軸方向に移動可能な試料移動機構3
と、これの表面に設けた圧電素子等により電子線ビーム
の軸方向に振動する振動台4かうなり、励振回路5から
の信号を受けて少なくとも試料Sの凹凸深さよりも大き
な指幅て、電子ビームBの軸方向に振動して、分光器7
と試料台1を結ぶ検出光路系りの軸方向に対しても光路
長を時間的に変更させるように構成されでいる。
FIG. 1 shows an embodiment of the present invention, in which reference numerals in the figure denote a sample R mounting table, which is placed near the focal point of the detection optical path system, and generates an electron beam B from the electron beam generator 2. It is configured to receive a sample. This sample@j table 1 has a sample moving mechanism 3 that can be moved in three axial directions by a drive mechanism.
Then, the vibration table 4 vibrates in the axial direction of the electron beam by a piezoelectric element or the like provided on the surface of the vibration table 4, which vibrates in the axial direction of the electron beam. The beam B vibrates in the axial direction, and the spectrometer 7
The optical path length is also temporally changed in the axial direction of the detection optical path system connecting the sample stage 1 and the sample table 1.

10は、分光器7からの蛍光X線を電気信号に変換する
検出器8からの信号を記憶する記憶回路で、少なくとも
試料代言台1の振動の1/2周期の期間内に検出器6か
ら出力する信号を時間、つまつ軸方向の変位に対応させ
て記憶するように構成されている。11はデータ解析装
百で、信号記憶回路10に格納されているデータを分析
領域毎に読み出し、時間毎のデータの積分値に基づいて
試料Sの1状を解析するように構成されている。
10 is a storage circuit that stores signals from the detector 8 that convert fluorescent X-rays from the spectrometer 7 into electrical signals; It is configured to store output signals in correspondence with time, that is, displacement in the axial direction. A data analysis device 11 is configured to read data stored in the signal storage circuit 10 for each analysis region and analyze one shape of the sample S based on the integral value of the data for each time.

この実施例においで、試料載置台1に試料Sをセットし
て装Mを作動させると、振動台4は、励振回路5からの
信号を受けて電子ビームBの軸方向、この実施例では上
下方向に試料Sを微小振動させる。
In this embodiment, when the sample S is set on the sample mounting table 1 and the apparatus M is operated, the vibration table 4 receives a signal from the excitation circuit 5 and moves in the axial direction of the electron beam B, in this embodiment up and down. The sample S is slightly vibrated in this direction.

これにより、試料の分析対象となっている領域の表面は
、電子ビームBにより励起され、個々を構成している原
子、及びその結合状態を表わす蛍光X線を発生する。こ
の蛍光X線は分光器7を介して検出器6に入射して電気
信号に変換される。
As a result, the surface of the region to be analyzed of the sample is excited by the electron beam B and generates fluorescent X-rays representing the individual atoms and their bonding states. This fluorescent X-ray enters the detector 6 via the spectroscope 7 and is converted into an electrical signal.

ところで、この検出過程において試料台1かビームBの
方向に振動している関係よ、試料Sと分光器7との相対
距離が時間的に変化することになり、分光器7の焦点は
、試料の前焦点側、図中上側から(第2図工)から順次
後側に焦点を移しくII)、次いで試料Sの表面に到達
しく■)、さらに下方に移動して後焦点側、図中下側に
位フする(■)。
By the way, since the sample stage 1 vibrates in the direction of the beam B during this detection process, the relative distance between the sample S and the spectrometer 7 changes over time, and the focal point of the spectrometer 7 Move the focus sequentially from the top side of the figure (Fig. 2) to the rear side (II), then move to the front focus side of the sample S (■), then move downward to the back focus side, the bottom side of the figure. Move to the side (■).

これにより、蛍光XS!の分光器7に対する合焦度に比
例した出力か順次発生する。
As a result, fluorescent XS! Outputs proportional to the degree of focus for the spectroscope 7 are sequentially generated.

この蛍光X線は、検出器6により電気信号に変換され、
記憶回路10により振動方向に対しで記憶される。この
記憶された信号は、データ解析装=11により読み出さ
れて分析対象領域毎に積分され、この積分値について通
常のデータ解析と同様の手法により試料表面についての
性状解析か行われる。
This fluorescent X-ray is converted into an electrical signal by the detector 6,
The memory circuit 10 stores the vibration direction. This stored signal is read out by the data analysis device 11 and integrated for each region to be analyzed, and the properties of the sample surface are analyzed using the same method as normal data analysis using this integrated value.

このようにして1つの分析対象領域についでの分析が終
了した時点で、駆動機構3を作動させて試料Sを移動さ
せ、分析対象領域を変更し、前述のプロセスと同様に焦
点合せ作業を行うことなく分析を行い、以下このような
過程を繰返しなから必要な領域についでの分析を行う。
When the analysis for one analysis target area is completed in this way, the drive mechanism 3 is operated to move the sample S, the analysis target area is changed, and the focusing operation is performed in the same manner as in the above process. After that, repeat this process to analyze the necessary areas.

ところで、電子ビームBの焦点が試料表面から一定距離
へ1、Δ1′ (第3図)以上離れると、試料から放出
される蛍光X線のレベルがバックグランドレベル程度B
1まで低下するため、積分された信号は、着目しでいる
領域の表面近傍の性状を表わす信号だけとなる。
By the way, when the focus of the electron beam B moves away from the sample surface to a certain distance by more than 1,Δ1' (Figure 3), the level of the fluorescent X-rays emitted from the sample decreases to about the background level B.
Since the value decreases to 1, the integrated signal becomes only a signal representing the properties near the surface of the region of interest.

なお、この実施例においては積分値を使用して解析する
ようにしでいるが、検出光路りの方向に対する平均値を
算出し、この平均値に基づいて解析するようにしても同
様の作用を奏することは明らかである。
In this example, the analysis is performed using the integral value, but the same effect can be obtained by calculating the average value for the direction of the detection light path and performing the analysis based on this average value. That is clear.

第4図は本発明の第2実施例を示すものであって、図中
符号12は、検出器6からの信号を少なくとも振動台4
の1/2周期分のデータを格納するバッファ、13は、
サンプリング回路で、バッファ12に格納されでいる信
号の内、最大強度の信号を抽出しでデータ解析袋=14
に出力するように構成されでいる。
FIG. 4 shows a second embodiment of the present invention, in which reference numeral 12 indicates that the signal from the detector 6 is transmitted to at least a vibration table 4.
Buffer 13 stores data for 1/2 period of
The sampling circuit extracts the signal with the maximum intensity from among the signals stored in the buffer 12, and the data analysis bag = 14.
It is configured to output to .

この実施例にあいで、振動台4により試料Sか電子ビー
ムBの軸方向に振動を行うと、その172周期内に検出
される蛍光X線の強度かバッファ12に一旦格納される
。サンプリング回路13は、バラノア12に格納された
信号の内、最大の信号、つまつ検出ビームが検出器7に
焦点を結んだ時の信号を抽出しでデータ解析装置14に
出力する。
In this embodiment, when the sample S is vibrated in the axial direction of the electron beam B by the vibration table 4, the intensity of the fluorescent X-rays detected within 172 cycles is temporarily stored in the buffer 12. The sampling circuit 13 extracts the maximum signal from among the signals stored in the Balanor 12, that is, the signal when the detection beam is focused on the detector 7, and outputs it to the data analysis device 14.

これにより、試料からの蛍光X線が分光器7に合焦した
時点の信号に基づいて分析することになる。
Thereby, analysis is performed based on the signal at the time when the fluorescent X-rays from the sample are focused on the spectrometer 7.

なお、この実施例においては検出器からの信号をバッフ
ァに一旦格納するようにしているか、サンプリング回路
の応答速度が速い場合にはバッファを経由することなく
検出器からの信号の内、振動期間内における最大のもの
を抽出することもできる。
In this embodiment, the signal from the detector is temporarily stored in the buffer, or if the response speed of the sampling circuit is fast, the signal from the detector is stored within the vibration period without passing through the buffer. It is also possible to extract the largest one in .

なお、上述の実施例においでは電子ビームを励起源とす
るものに例を採って説明したが、イオンやX線等他の励
起線を使用する表面分析袋ゴ、ざらには光学顕微鏡に適
用しても同様の作用を奏することは明らかである。
Although the above embodiments have been explained using electron beams as an excitation source, the present invention can also be applied to surface analysis microscopes and optical microscopes that use other excitation rays such as ions and X-rays. It is clear that the same effect can be achieved.

また、上述の実施例においては振動台を圧電素子により
駆動するようにしでいるか、電歪素子等の他の振動素子
を使用しても同様の作用を奏することは明らかである。
Further, in the above-described embodiments, it is clear that the same effect can be obtained even if the vibration table is driven by a piezoelectric element or other vibration elements such as an electrostrictive element are used.

(9カ果 ) 以上説明したように本発明においてはしたので、励起ビ
ーム発生手段からの励起ど−ム経路に、少なくとも試料
表面の凹凸深さよりも大きな振幅で励起ビーム軸方向に
振動する試料載薗手段と、試料から放出されたエネルギ
ー線を分光器を介して受けて電気信号に変換する検出手
段と、試料から放出されたエネルギー線の強度を記憶す
る手段を備えたので、分析対象となっている領域からの
エネルギー線を分光器に合焦させることができ、試料の
凹凸に関わりなく少なくとも1/2振動周期内で均一な
検出ビームを受けることになり、試料の凹凸に起因する
信号強度の変化を相殺しで分析精度の向上を図りつつ、
逐次的な焦点合せ動作を不要として分析速度の向上を図
ることかできる。
(Nine results) As explained above, since the present invention has been adopted, a sample is mounted on the excitation beam path from the excitation beam generating means, and the sample is vibrated in the axial direction of the excitation beam with an amplitude larger than at least the depth of the irregularities on the sample surface. It is equipped with a detection means that receives the energy rays emitted from the sample via a spectrometer and converts them into electrical signals, and a means that stores the intensity of the energy rays emitted from the sample. The spectrometer can focus the energy rays from the area where the specimen is located, and receive a uniform detection beam within at least 1/2 oscillation period regardless of the irregularities of the sample. While aiming to improve analysis accuracy by offsetting changes in
Analysis speed can be improved by eliminating the need for sequential focusing operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2.3図は
同上装百の動作を示す説明図、及び第4図は本発明の他
の実施例を示す構成図である。 1・・・試料載百合 2・・・電子ビーム発生装百 B・・・電子ビーム 4・・・振動台 S・・・試料
FIG. 1 is a block diagram showing one embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams showing the operation of the upper cover, and FIG. 4 is a block diagram showing another embodiment of the present invention. 1... Sample mounting 2... Electron beam generator 100 B... Electron beam 4... Shaking table S... Sample

Claims (2)

【特許請求の範囲】[Claims] (1)励起ビーム発生手段からの励起ビーム経路に、少
なくとも試料表面の凹凸深さよりも大きな振幅で励起ビ
ーム軸方向に振動する試料載置手段と、試料から放出さ
れたエネルギー線を分光器を介して受けて電気信号に変
換する検出手段と、試料から放出されたエネルギー線の
強度を記憶する手段を備えてなるビーム型表面分析装置
(1) In the excitation beam path from the excitation beam generation means, there is a sample mounting means that vibrates in the excitation beam axis direction with an amplitude greater than at least the depth of unevenness on the sample surface, and the energy rays emitted from the sample are passed through the spectrometer. A beam-type surface analysis device comprising a detection means for receiving energy rays and converting them into electrical signals, and a means for storing the intensity of energy rays emitted from a sample.
(2)励起ビーム発生手段からの励起ビーム経路に、少
なくとも試料表面の凹凸深さよりも大きな振幅で励起ビ
ーム軸方向に振動する試料載置手段を設けるとともに、
試料から放出されたエネルギー線を分光器を介して受け
て電気信号に変換する検出手段と、前記試料載置手段の
1振幅内における最大強度の信号を抽出する手段を備え
てなるビーム型表面分析装置。
(2) In the excitation beam path from the excitation beam generating means, a sample mounting means is provided that vibrates in the excitation beam axial direction with an amplitude larger than at least the depth of unevenness on the sample surface, and
A beam-type surface analysis comprising a detection means for receiving energy rays emitted from a sample via a spectroscope and converting them into electrical signals, and a means for extracting a signal of maximum intensity within one amplitude of the sample mounting means. Device.
JP63246388A 1988-09-30 1988-09-30 Beam type surface analyser Pending JPH0293356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63246388A JPH0293356A (en) 1988-09-30 1988-09-30 Beam type surface analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63246388A JPH0293356A (en) 1988-09-30 1988-09-30 Beam type surface analyser

Publications (1)

Publication Number Publication Date
JPH0293356A true JPH0293356A (en) 1990-04-04

Family

ID=17147789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63246388A Pending JPH0293356A (en) 1988-09-30 1988-09-30 Beam type surface analyser

Country Status (1)

Country Link
JP (1) JPH0293356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221918A (en) * 2005-02-09 2006-08-24 Jeol Ltd Measuring method of testpiece surface, analysis device and electron beam device
JP2007171193A (en) * 2005-12-21 2007-07-05 Carl Zeiss Nts Gmbh Method and instrument for measuring distance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221918A (en) * 2005-02-09 2006-08-24 Jeol Ltd Measuring method of testpiece surface, analysis device and electron beam device
JP4628127B2 (en) * 2005-02-09 2011-02-09 日本電子株式会社 Sample surface measurement method and analysis method, and electron beam apparatus
JP2007171193A (en) * 2005-12-21 2007-07-05 Carl Zeiss Nts Gmbh Method and instrument for measuring distance

Similar Documents

Publication Publication Date Title
Finer et al. Characterization of single actin-myosin interactions.
US8451524B2 (en) Modifying the output of a laser to achieve a flat top in the laser's Gaussian beam intensity profile
JPH02181639A (en) Method and apparatus for surface analysis
JP2010019853A (en) Optically commensurate device for capillary electrophoresis device
US9081173B2 (en) Laser scanning microscope for scanning along a 3D trajectory
WO1992008120A1 (en) Pulsed laser flow cytometry
JP2014124242A (en) Photoacoustic microscope
JPH05126725A (en) Scanning type analysis microscope
EP0283256A2 (en) Scanning optical microscope
JPH031117A (en) Scanning type laser microscope device and usage thereof
JP2001194305A (en) Device for fluorescence correlative spectroscopic analysis
CN110208360B (en) Photodynamic resonance type single cell mass spectrometer and single cell mass spectrum obtaining method
JPS61176044A (en) Electric field release scan type auger electron microscope
CN111855568B (en) Transmission electron microscope system with optical and electronic dual detection characteristics and method
JPH0293356A (en) Beam type surface analyser
JP2001194303A (en) Device for analyzing diffusion motion of fluorescent molecule
KR100790707B1 (en) Dispersion control confocal laser microscope
JP2006242726A (en) Fluorescence detection device
CN108873294A (en) A kind of optical tweezer trapped particle of double excitation or the device of cell
KR102267767B1 (en) Raman analysis system
KR102014482B1 (en) Food component analysis appratus using an optical drive
JP4115755B2 (en) Sampling clock generation apparatus and sampling clock generation method
JPH11133200A (en) X-ray scanning microscopic method and microscope
JPH09292335A (en) Surface plasmon sensor
JP2660612B2 (en) Scanning width detector and magnification display of scanning microscope