JPH029304B2 - - Google Patents

Info

Publication number
JPH029304B2
JPH029304B2 JP56047897A JP4789781A JPH029304B2 JP H029304 B2 JPH029304 B2 JP H029304B2 JP 56047897 A JP56047897 A JP 56047897A JP 4789781 A JP4789781 A JP 4789781A JP H029304 B2 JPH029304 B2 JP H029304B2
Authority
JP
Japan
Prior art keywords
electrode
ion
selective
sensitive
potential difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56047897A
Other languages
Japanese (ja)
Other versions
JPS57161543A (en
Inventor
Osamu Tawara
Shotaro Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP56047897A priority Critical patent/JPS57161543A/en
Publication of JPS57161543A publication Critical patent/JPS57161543A/en
Publication of JPH029304B2 publication Critical patent/JPH029304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 本発明はイオン選択性感応物質膜を用いたイオ
ン選択性電極に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion-selective electrode using an ion-selective sensitive material membrane.

或る種の膜で2種の液を境しておくと両側の液
における特定イオンの濃度差に応じて膜の両面間
に電位差を発生する。このような膜がイオン選択
性感応膜(以後単に感応膜と云う)で、このよう
な膜は電示的分析においてイオン選択性電極を構
成するのに利用される。この種の膜は多くは有機
質で柔軟でありそれを薄膜にして用いるので取扱
い上大へん不便である。
When two types of liquids are separated by a certain type of membrane, a potential difference is generated between both sides of the membrane depending on the difference in the concentration of specific ions in the liquids on both sides. Such a membrane is an ion-selective sensitive membrane (hereinafter simply referred to as a sensitive membrane), and such a membrane is used to constitute an ion-selective electrode in electrochemical analysis. Most of these types of membranes are organic and flexible, and are very inconvenient to handle because they are used in thin films.

本発明は上述したような感応膜を用いたイオン
選択性電極で感応膜の柔軟性に基く取扱い上の不
便さを解消することを目的としてなされた。
The present invention was made with the purpose of solving the inconvenience in handling due to the flexibility of the sensitive membrane in an ion-selective electrode using the above-mentioned sensitive membrane.

上述したような目的に適するものとして従来か
ら金属電極棒の表面に上述した感応膜を塗布法に
より形成したものが提案されている。この型のイ
オン選択性電極は感応膜と金属電極棒との間に一
定の接触電位差があり、感応膜表面と試料液との
間に特定のイオンの活量に応じた電位差が発生し
て、この2つの電位差が加算されたものが試料液
の電極棒との間の電位差として現れるものと考え
られる。しかし具体的にこの電位差を測定するに
は試料液に参照電極を挿入し、上記した電極棒と
参照電極との間の電位差を測定することになる
が、電極棒と感応膜との間の接触電位差が不明で
あるから、実際の測定に当つては何等かの方法に
よる較正が必要であり、上記接触電位差は温度に
より変る可能性があるから、この型のイオン選択
性電極は測定操作が面倒になる。
As a device suitable for the above-mentioned purpose, one in which the above-mentioned sensitive film is formed on the surface of a metal electrode rod by a coating method has been proposed. This type of ion-selective electrode has a certain contact potential difference between the sensitive membrane and the metal electrode rod, and a potential difference depending on the activity of a specific ion is generated between the sensitive membrane surface and the sample liquid. It is thought that the sum of these two potential differences appears as a potential difference between the sample liquid and the electrode rod. However, to specifically measure this potential difference, a reference electrode must be inserted into the sample solution and the potential difference between the electrode rod and the reference electrode described above must be measured. Since the potential difference is unknown, calibration using some method is required for actual measurement, and since the contact potential difference mentioned above may change depending on temperature, measurement operations with this type of ion-selective electrode are troublesome. become.

本発明に係るイオン選択性電極は上述したよう
な測定操作上の面倒さも解消することができるも
のである。以下実施例によつて本発明を説明す
る。
The ion selective electrode according to the present invention can also eliminate the troublesome measurement operations as described above. The present invention will be explained below with reference to Examples.

第1図及び第2図は本発明の一実施例を示す。
11は電極本体で容器を一本の管12が貫通した
形になつている。この電極本体の材質は任意で、
このような形に成形できかつ丈夫なものであれ
ば、プラスチツク、ガラス、金属何れでもよい。
実際にイオン選択性電極として作用するのは管1
2の部分で、管12に試料溶液を流すようになつ
ている。管12の内面及び電極本体11の内面
(管12の外面も含む)全体に感応膜4が付着形
成してある。このような感応膜物質はイオン感応
物質とポリ塩化ビニルとの混合物をテトラヒドロ
フラン(THF)で溶解したもので、これを塗布
し溶媒のTHFを蒸発させ膜を乾固させて感応膜
を得る。イオン感応物質としてバリノマイシンを
用いるとK+イオンに対し選択的に応答する感応
膜が得られる。電極本体11内には感応膜が応答
するイオンの既知濃度の電極液2が入れてあり、
その液中に内部電極1が挿入してある。感応膜4
が上述したK+イオン選択性感応膜であるときは
この電極は云うまでもなくK+イオンに選択性を
持つのであり、その場合電極液2としては濃度既
知のKCl溶液を用い内部電極1はKCl溶液中の
Cl-イオンに応答するAgCl膜を形成した銀線のよ
うなものを用いる。こゝで内部電極としてK+
応答するものを用いても良いことは云うまでもな
い。
1 and 2 show an embodiment of the present invention.
Reference numeral 11 denotes the electrode body, which has a shape in which a single tube 12 passes through the container. The material of this electrode body is optional.
It may be made of plastic, glass, or metal as long as it can be molded into this shape and is durable.
Tube 1 actually acts as an ion-selective electrode.
2, the sample solution is allowed to flow into the tube 12. A sensitive film 4 is attached to the entire inner surface of the tube 12 and the inner surface of the electrode body 11 (including the outer surface of the tube 12). Such a sensitive film material is a mixture of an ion-sensitive material and polyvinyl chloride dissolved in tetrahydrofuran (THF), and a sensitive film is obtained by applying this, evaporating the solvent THF, and drying the film. When valinomycin is used as an ion-sensitive substance, a sensitive membrane that responds selectively to K + ions can be obtained. The electrode body 11 contains an electrode solution 2 with a known concentration of ions to which the sensitive membrane responds.
An internal electrode 1 is inserted into the liquid. Sensitive membrane 4
When is the above-mentioned K + ion-selective sensitive membrane, this electrode is, of course, selective to K + ions, and in that case, the electrode solution 2 is a KCl solution with a known concentration, and the internal electrode 1 is in KCl solution
A silver wire-like material with an AgCl film that responds to Cl - ions is used. It goes without saying that an internal electrode that responds to K + may be used here.

以上の構成で管12に試料溶液を流すと、試料
溶液中の目的イオンの活量に応じた電位差が試料
溶液と管12内面の感応膜4との間に発生し、電
極本体11内面の感応膜4と電極液2との間には
一定の電位差が生じており、電極液2と電極1と
の間にも一定の電位差が発生しているので、電極
1と試料溶液との間には上述した3つの電位差を
加算した電位差が発生している。
When a sample solution is flowed through the tube 12 with the above configuration, a potential difference corresponding to the activity of the target ion in the sample solution is generated between the sample solution and the sensitive membrane 4 on the inner surface of the tube 12, and the sensitive membrane 4 on the inner surface of the electrode body 11 is generated. A certain potential difference occurs between the membrane 4 and the electrode solution 2, and a certain potential difference also occurs between the electrode solution 2 and the electrode 1, so there is a difference between the electrode 1 and the sample solution. A potential difference is generated that is the sum of the three potential differences described above.

電極本体11の材質は前述したように任意であ
るが、ガラスとかプラスチツクのような絶縁性材
質を用いたときは電極抵抗を低下させるためイオ
ン選択性電極として機能する管12の本体11内
に在る部分はなるべく薄肉であることが望まし
い。電極本体11を金属にするときは管12は特
に薄肉であることは必要ではないが、感応膜にピ
ンホールがないように特に注意する必要がある。
これは試料液とか電極液がピンホールを通して金
属に接触すると金属と溶液間に一定の起電力が生
じ、金属全体がその電位になるから内部電極と試
料溶液との間の電位差はピンホールが無い場合と
かなり異つた値になる。
The material of the electrode body 11 is arbitrary as described above, but when an insulating material such as glass or plastic is used, it may be present in the body 11 of the tube 12 that functions as an ion-selective electrode in order to reduce the electrode resistance. It is desirable that the part that is exposed is as thin as possible. When the electrode body 11 is made of metal, the tube 12 does not need to be particularly thin, but special care must be taken to ensure that there are no pinholes in the sensitive membrane.
This is because when the sample solution or electrode solution contacts the metal through a pinhole, a certain electromotive force is generated between the metal and the solution, and the entire metal becomes at that potential, so there is no pinhole in the potential difference between the internal electrode and the sample solution. The value will be quite different in this case.

第1図,第2図に示した電極は単独ではもちろ
ん電極電位を測定できない。試料溶液には他方で
参照電極を接触させる必要がある。この参照電極
として電極の内部構造即ち電極本体内面のイオン
感応性,電極液,内部電極のイオン感応性を上述
イオン選択性電極の内部構造と同じにしておくこ
とにより電極内部に発生している電位差を相殺で
きるから2つの電極間の電位差はイオン選択性電
極の目的イオン活量に応答した電位差となる。始
めに述べた金属棒電極に直接感応膜を形成したも
のでは上述した電極内部構造において発生してい
る電位差を相殺するようにできないから測定操作
が面倒になるのである。
Of course, the electrodes shown in FIGS. 1 and 2 cannot measure electrode potentials alone. On the other hand, it is necessary to contact the sample solution with a reference electrode. As this reference electrode, the internal structure of the electrode, i.e., the ion sensitivity of the inner surface of the electrode body, the electrode liquid, and the ion sensitivity of the internal electrode are kept the same as the internal structure of the ion-selective electrode described above, thereby generating a potential difference inside the electrode. can be canceled out, so the potential difference between the two electrodes is a potential difference that responds to the target ion activity of the ion-selective electrode. In the case where a sensitive film is directly formed on the metal rod electrode mentioned above, the measurement operation becomes troublesome because it is not possible to cancel out the potential difference generated in the internal structure of the electrode.

なお上述第1図の実施例は容器に管を貫通させ
た形に意味があるのではないから中に内部電極液
を入れ、その中に内部電極を挿入した中空電極本
体を被検液中に挿入する形で中空電極本体の内外
面に感応膜を形成してもよい。電極本体材料は任
意であるがポリ塩化ビニルを用い、イオン感応物
質とテトラヒドロフラン(PVCの溶媒)との混
合物を表面に塗布してTHFを蒸発させると電極
本体表面が溶かされてイオン感応物質と混合して
固まるから電極本体表面に強固な感応膜面を形成
することができる。また上述した塗布と云つた方
法に限らずスパツタリング,CVD或はプラズマ
による感応膜の付着のさせ方も可能である。
Note that in the embodiment shown in Figure 1 above, there is no meaning in having the tube penetrate the container, so the internal electrode liquid is placed inside the container, and the hollow electrode body with the internal electrode inserted therein is immersed in the test liquid. A sensitive film may be formed on the inner and outer surfaces of the hollow electrode body in an inserted manner. The electrode body material can be any material, but polyvinyl chloride is used, and when a mixture of an ion-sensitive substance and tetrahydrofuran (PVC solvent) is applied to the surface and THF is evaporated, the electrode body surface is dissolved and mixed with the ion-sensitive substance. Since it hardens, a strong sensitive membrane surface can be formed on the surface of the electrode body. In addition to the coating method described above, it is also possible to apply the sensitive film by sputtering, CVD, or plasma.

本発明イオン選択性電極は上述したような構成
で、感応膜が丈夫な物体表面に形成されているの
で構造的に強く取扱いが楽となり、電極形状が任
意にできる(電極本体の造型可能な範囲で任意)
ので、流通試料の連続測定用とか試料を容器に採
つては測定するバツチ式の精密測定用とか目的に
応じた形の電極を得ることができる。
The ion-selective electrode of the present invention has the above-described structure, and the sensitive membrane is formed on the surface of a durable object, making it structurally strong and easy to handle. (optional)
Therefore, it is possible to obtain electrodes of a shape suitable for the purpose, such as for continuous measurement of circulating samples or batch-type precision measurement in which samples are collected in a container and measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における縦断側面
図、第2図は上記のA―A水平断面図である。 1……内部電極、2……電極内部液、4……感
応膜、5……試料溶液、11……電極本体。
FIG. 1 is a longitudinal sectional side view of one embodiment of the present invention, and FIG. 2 is a horizontal sectional view taken along the line AA mentioned above. DESCRIPTION OF SYMBOLS 1... Internal electrode, 2... Electrode internal liquid, 4... Sensitive membrane, 5... Sample solution, 11... Electrode body.

Claims (1)

【特許請求の範囲】[Claims] 1 適宜の固体物質で任意中空形状に形成された
電極本体の試料溶液との接液面及び電極本体内面
にイオン選択性感応膜を形成し、電極本体内に電
極内部液を入れ、同液内に内部電極を挿入してな
ることを特徴とするイオン選択性電極。
1. An ion-selective sensitive membrane is formed on the surface of the electrode body formed in an arbitrary hollow shape from an appropriate solid material in contact with the sample solution and on the inner surface of the electrode body, and the electrode internal solution is placed inside the electrode body. An ion-selective electrode characterized by inserting an internal electrode into the ion-selective electrode.
JP56047897A 1981-03-30 1981-03-30 Ion selective electrode Granted JPS57161543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56047897A JPS57161543A (en) 1981-03-30 1981-03-30 Ion selective electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56047897A JPS57161543A (en) 1981-03-30 1981-03-30 Ion selective electrode

Publications (2)

Publication Number Publication Date
JPS57161543A JPS57161543A (en) 1982-10-05
JPH029304B2 true JPH029304B2 (en) 1990-03-01

Family

ID=12788186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56047897A Granted JPS57161543A (en) 1981-03-30 1981-03-30 Ion selective electrode

Country Status (1)

Country Link
JP (1) JPS57161543A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558451A (en) * 1978-05-10 1980-05-01 Fresenius Eduard Dr Ion selecting sensor and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558451A (en) * 1978-05-10 1980-05-01 Fresenius Eduard Dr Ion selecting sensor and method of producing same

Also Published As

Publication number Publication date
JPS57161543A (en) 1982-10-05

Similar Documents

Publication Publication Date Title
JP2521826B2 (en) Reference electrode
US6793789B2 (en) Reference electrode with a polymeric reference electrode membrane
JPS62116252A (en) Method and device for electrochemical analysis
JPH0633063U (en) Graphite-based solid polymer membrane ion-selective electrode
KR970705022A (en) Method of measuring gas concentration and micro-fabricated sensor
JPH06229973A (en) Current detection type dry ion selective electrode
JPS584981B2 (en) ion selective electrode
US5384031A (en) Reference electrode
US3357908A (en) Electrolytic sensor with water diffusion compensation
JP3625448B2 (en) Ion sensor and biochemical automatic analyzer using the same
Afshar et al. Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis
JPH1096710A (en) Measuring method for ion concentration
JPH029304B2 (en)
JPS61176846A (en) Ion sensor body
Lemke et al. Coated film electrodes
Khalil et al. Novel potentiometric sensors for pyrilamine maleate
JPS63128253A (en) Semiconductor chemical sensor
JPH06281616A (en) Ion-selective electrode
JP2549311B2 (en) Ion sensor
Kahlert Micro-reference electrodes
JPH0139781B2 (en)
EP1038172A1 (en) Sensor devices and analytical method
JPS5852522Y2 (en) ion selective electrode
JPH0129259B2 (en)
JPH0416221Y2 (en)