JPH029263B2 - - Google Patents

Info

Publication number
JPH029263B2
JPH029263B2 JP57167282A JP16728282A JPH029263B2 JP H029263 B2 JPH029263 B2 JP H029263B2 JP 57167282 A JP57167282 A JP 57167282A JP 16728282 A JP16728282 A JP 16728282A JP H029263 B2 JPH029263 B2 JP H029263B2
Authority
JP
Japan
Prior art keywords
hot water
flow rate
temperature
water
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57167282A
Other languages
Japanese (ja)
Other versions
JPS5956653A (en
Inventor
Yutaka Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP57167282A priority Critical patent/JPS5956653A/en
Publication of JPS5956653A publication Critical patent/JPS5956653A/en
Publication of JPH029263B2 publication Critical patent/JPH029263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/20Membrane valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【発明の詳細な説明】 この発明は後沸き現象(バーナの間歇使用にお
いて燃焼停止後の保有熱で残留水が加熱昇温して
異常高温湯となり、出湯時に高温湯が吐出する現
象)と前冷え現象(出湯時に高温湯が吐出した直
後に熱交換器が所要温度に上昇安定するまで殆ど
昇温せず、冷水に近い状態で流出する現象)を防
止し、かつ、通水量の調整によりバーナの加熱能
力超過を的確に是正する極めて精度の高い温度制
御を可能とする有効な瞬間湯沸器に関し、給水路
の給水圧自動調整装置の流出側に弁室を連設し
て、第1流量調整弁と第2流量調整弁を備え、ベ
ンチユリーを介する等の構成とし熱交換器への通
水量調整とベンチユリーの後流側より分岐する分
岐路を開閉して分岐路から出湯管へ通じるバイパ
ス路の通水の給断を行うようになし、前記第1流
量調整弁と第2流量調整弁を駆動操作する駆動装
置にて始動位置で第1流量調整弁と第2流量調整
弁を開放状態として給水に備え、出湯初期に熱交
換器とバイパス路とに少量を分配して流すことが
でき、一定時間経過後、分岐路の第2流量調整弁
を閉止し、第1流量調整弁を所定最大開度にで
き、而して湯沸器の加熱最大能力を得ることがで
き、かつバーナの加熱能力超過時には出湯温度を
設定温度に制御すべく第1流量調整弁を貼宜開度
まで絞るようにして、後沸き現象、前冷え現象を
確実に防止し、かつ、能力超過状態を是正して出
湯温度の安定を計ることができるようにした瞬間
湯沸器を提供するにある。
[Detailed description of the invention] This invention is based on the after-boiling phenomenon (a phenomenon in which residual water is heated to an abnormally high temperature due to the retained heat after combustion stops when the burner is used intermittently and becomes abnormally high-temperature water, and the high-temperature water is discharged when hot water is tapped). It prevents the cooling phenomenon (immediately after high-temperature water is discharged when hot water is discharged, the heat exchanger hardly raises the temperature until it reaches the required temperature and stabilizes, and the water flows out in a state close to cold water), and the burner can be heated by adjusting the water flow rate. Regarding an effective instantaneous water heater that enables highly accurate temperature control that accurately corrects excess heating capacity of It is equipped with a regulating valve and a second flow rate regulating valve, and has a configuration such as via a ventilly to adjust the amount of water flowing to the heat exchanger, and a bypass channel that opens and closes a branching path that branches from the downstream side of the ventilary, leading from the branching channel to the hot water outlet pipe. The first flow regulating valve and the second flow regulating valve are set in an open state at a starting position by a drive device that drives and operates the first flow regulating valve and the second flow regulating valve. In preparation for water supply, a small amount can be distributed to the heat exchanger and bypass path at the beginning of hot water supply, and after a certain period of time, the second flow rate adjustment valve in the branch path is closed, and the first flow rate adjustment valve is set to a predetermined maximum. The opening of the first flow rate regulating valve can be adjusted to the desired opening so that the maximum heating capacity of the water heater can be obtained, and when the heating capacity of the burner is exceeded, the first flow rate regulating valve can be adjusted to the opening of the desired opening in order to control the hot water temperature to the set temperature. To provide an instantaneous water heater which can reliably prevent post-boiling phenomena and pre-cooling phenomena, correct over-capacity states, and stabilize the outlet temperature.

以下にこの発明を図面に示した実施例に基づい
て説明する。
The present invention will be described below based on embodiments shown in the drawings.

第1図乃至第3図は瞬間ガス湯沸器に適用した
場合を示す。Aはフインアンドチユーブ式の熱交
換器で、その熱交換器への給水路1に設けた給水
圧自動調整装置Dの流出側に弁室2を連設し、該
弁室2に自動ベンチユリー3の流入側を開口させ
ると共に該ベンチユリー3の後流側に設けた分岐
路4を該弁室2に開口させ、又弁室2に出湯管5
へ通じるバイパス路6を開口させ、更に該弁室2
にベンチユリー3の流入側の開度を調節する後記
する第1流量調整弁V1とバイパス路6の開度を
調節する後記する第2流量調整弁V2を一体的に
設けたコツク7を備え、該コツク7の一端をサー
ボモータMの駆動軸8に連結し、該駆動軸8と共
に回転するよう連結されたカム板9でコツク7の
始動位置、第1流量調整弁V1の最大開度位置お
よび最小開度位置にて二つのスイツチS1,S2
ON、OFF作動させ、そのON、OFF状態の組合
せ信号の相異を検出してそれぞれの位置を検知さ
せる瞬間ガス湯沸器である。実施例では給水圧自
動調整装置Dはダイヤフラム式とし、ガバナ式1
0を通つて水入口11より入る流水圧で作用し、
ダイヤフラムを介して水流スイツチSをON、
OFFさせる。自動ベンチユリー3は弁体12を
ばね13で閉止方向に附勢し、流水量が小のとき
絞りが大となり、流水量が大のとき絞りが小とな
る構造となす。
1 to 3 show the case where the present invention is applied to an instantaneous gas water heater. A is a fin-and-tube type heat exchanger, in which a valve chamber 2 is connected to the outflow side of a water supply pressure automatic adjustment device D provided in a water supply channel 1 to the heat exchanger, and an automatic vent 3 is connected to the valve chamber 2. At the same time, the branch passage 4 provided on the downstream side of the ventilate 3 is opened to the valve chamber 2, and the outlet pipe 5 is opened to the valve chamber 2.
The bypass passage 6 leading to the valve chamber 2 is opened, and the valve chamber 2 is opened.
The valve 7 is provided with a first flow regulating valve V 1 (to be described later) that adjusts the opening degree on the inflow side of the ventilate 3 and a second flow regulating valve V 2 (to be described later) that adjusts the opening degree of the bypass passage 6. , one end of the pot 7 is connected to a drive shaft 8 of a servo motor M, and a cam plate 9 connected to rotate together with the drive shaft 8 determines the starting position of the pot 7 and the maximum opening of the first flow rate regulating valve V1. two switches S 1 and S 2 at the position and minimum opening position.
This is an instantaneous gas water heater that operates ON and OFF and detects the difference in the combined signal of ON and OFF states to detect each position. In the example, the water supply pressure automatic adjustment device D is a diaphragm type, and a governor type 1 is used.
Acts on the pressure of flowing water entering from the water inlet 11 through 0,
Turn on the water flow switch S via the diaphragm,
Turn it off. The automatic ventilator 3 has a structure in which the valve body 12 is biased in the closing direction by a spring 13, and when the flow rate is small, the throttle becomes large, and when the flow rate is large, the throttle becomes small.

コツク7の前部には第1流量調整弁V1を形成
して円周方向に最大通水量を得る円形孔14とそ
れにより漸次絞つて最小通水量とするテーパ孔1
5を連設し、かつその後部には第2流量調整弁
V2を形成してかつ分岐路4を開閉する横断面が
半円状の切欠16を設けてあり、該コツク7の後
端をサーボモータMの駆動軸8に連結し、該駆動
軸8にはカム板9を備え、カム板9を器体17の
上下に対向して設けたリミツトスイツチS1,S2
関連させ、それぞれをON、OFF作動する。即ち
始動位置にてカム板9でリミツトスイツチS1,S2
を共にON状態となし、かつ第2流量調整弁V2
開とする(第3図a1,a2に示す)。水流スイツチ
SがONして熱交換器Aを加熱するガスバーナB
の着火時にはリミツトスイツチS2がOFFするま
での一定時間(例えば5秒間)サーボモータMを
回転駆動してリミツトスイツチS1,S2がそれぞれ
ON、OFFとなり、その状態を検出することによ
りその位置に停止させ、該停止位置で第2流量調
整弁V2の切欠16を閉じ第1流量調整弁V1の円
形孔14は中心部が開口している最大開度となる
(第3図b1,b2に示す)。そして後記する燃料調整
弁V3の開度を大小に変化させて出湯温度を設定
温度に制御する。そこでガスバーナBの加熱能力
を超過していて出湯温度が設定温度に達しない場
合にはサーボモータMを正回転させ、第1流量調
整弁V1の最大流量の円形孔14より漸次絞るテ
ーパ孔15を開口させ、所要開度位置で停止して
設定温度に適した流水量を熱交換器へ給水し、更
にガスバーナBの加熱能力がオーバーしている場
合はサーボモータMを更に回転し、遂にはリミツ
トスイツチS1がOFF、リミツトスイツチS2がON
となる位置で停止し、テーパ孔15の終端が開口
して第1流量調整弁V1の最小開度となる(第3
図c1,c2に示す)。即ち能力超過時にはサーボモ
ータMを水量を絞る方向に回転駆動させ設定温度
の範囲に昇温させて出湯温度を設定温度に制御す
る。
At the front of the pot 7, there is a circular hole 14 forming a first flow rate regulating valve V 1 to obtain the maximum amount of water flowing in the circumferential direction, and a tapered hole 1 that gradually narrows down to the minimum amount of water flowing.
5 in series, and a second flow rate adjustment valve at the rear.
A notch 16 with a semicircular cross section is provided to form the V 2 and open/close the branch path 4, and the rear end of the cutout 7 is connected to the drive shaft 8 of the servo motor M. The device is equipped with a cam plate 9, and the cam plate 9 is associated with limit switches S 1 and S 2 provided oppositely above and below the container body 17, and turns ON and OFF respectively. That is, limit switches S 1 and S 2 are activated by the cam plate 9 at the starting position.
Both are turned on, and the second flow rate regulating valve V2 is opened (as shown in Fig. 3 a1 and a2 ). Water flow switch S turns on and gas burner B heats heat exchanger A.
When igniting, the servo motor M is rotated for a certain period of time (for example, 5 seconds) until the limit switch S 2 turns OFF, and the limit switches S 1 and S 2 are turned off.
ON and OFF, and by detecting the state, it is stopped at that position, and at the stopped position, the notch 16 of the second flow regulating valve V 2 is closed, and the circular hole 14 of the first flow regulating valve V 1 is open at the center. (shown in Figure 3 b 1 and b 2 ). Then, the opening degree of a fuel regulating valve V3 , which will be described later, is varied to control the outlet hot water temperature to a set temperature. Therefore, if the heating capacity of the gas burner B is exceeded and the hot water temperature does not reach the set temperature, the servo motor M is rotated in the forward direction, and the taper hole 15 is gradually narrowed from the maximum flow circular hole 14 of the first flow rate regulating valve V1 . is opened, stopped at the required opening position, and supplied to the heat exchanger with a flow rate suitable for the set temperature.Furthermore, if the heating capacity of gas burner B is exceeded, servo motor M is further rotated, and finally Limit switch S 1 is OFF, limit switch S 2 is ON
The terminal end of the tapered hole 15 opens and the minimum opening degree of the first flow rate regulating valve V1 is reached (the third
(shown in Figures c 1 and c 2 ). That is, when the capacity is exceeded, the servo motor M is rotated in a direction to reduce the amount of water, and the temperature is raised to a set temperature range, thereby controlling the outlet temperature to the set temperature.

なお上記始動位置、熱交換器Aへの最大通水位
置および最小通水位置を二つのリミツトスイツチ
S1,S2のON、OFFの異なる組み合わせ状態で検
出を行つたが、3つのリミツトスイツチを用いて
も良い。
In addition, the above starting position, maximum water flow position and minimum water flow position to heat exchanger A are set using two limit switches.
Although detection was performed in different combinations of ON and OFF of S 1 and S 2 , three limit switches may also be used.

第4図に流量調整弁の始動位置、最大開度位
置、最小開度位置における流水量を実線の点Qa、
Qb、Qcにて示し、第1流量調整弁の流水量、第
2流量調整弁の流水量を破線のQv1、Qv2にて示
す。即ち、始動位置で流水量を絞つた状態より漸
次増加して第1流量調整弁V1を全開して最大流
水量とし、(この時点でQv2が0となつている。)
それ以後漸次第1流量調整弁V1を絞つて水量を
最小流水量まで減少せしめたものである。又前記
サーボモータM、熱交換器Aの出口近くに出湯温
度を検知するために設けたサーミスタT、熱交換
器Aを加熱するガスバーナBへのガス供給管18
に介設した燃料調整弁V3、出湯温度設定器Eと
をコントローラCを介して接続してコントローラ
Cにて出湯温度設定器Eにて設定された設定温度
と出湯温度の温度差に比例して燃料調整弁V3
開度を調整してガスバーナBへの供給ガス量を調
整し、又バーナBの加熱能力を超える水量〔流水
量×(設定温度−出湯温度)の値〕流れる場合に
はコントローラCにて前記したようにサーボモー
タMを第1流量弁V1が最大開度と最小開度との
間の開度になるように回転させてコツクの回転操
作により所要の通水量として出湯温度の後記する
±2℃の温度範囲に温度制御する。即ち第5図に
おいてサーボモータMの印加電圧を上記温度差
(出湯温度−設定温度)に応じて段階的に変化さ
せてサーボモータMの回転速度を段階的に変化さ
せ、±2℃の範囲で0となしてサーボモータMを
停止し、その後燃料調整弁V3を所要開度に調節
してガスバーナBの発熱量を所要量に調節して自
動制御可能となす。なお、19は給水圧自動調整
装置Dの負圧側と自動ベンチユリー3とを連通す
る連孔、20はダイヤフラムの戻しばねである。
Figure 4 shows the flow rate at the starting position, maximum opening position, and minimum opening position of the flow regulating valve at the solid line point Qa,
The flow rate of the first flow rate regulating valve and the flow rate of the second flow rate regulating valve are indicated by Qv 1 and Qv 2 of broken lines. That is, the flow rate is gradually increased from the state where it is throttled at the starting position, and the first flow rate regulating valve V 1 is fully opened to reach the maximum flow rate (at this point, Qv 2 is 0).
Thereafter, the first flow rate regulating valve V1 is gradually throttled down to reduce the water flow to the minimum flow rate. Further, the servo motor M, a thermistor T provided near the outlet of the heat exchanger A to detect the hot water temperature, and a gas supply pipe 18 to the gas burner B that heats the heat exchanger A.
The fuel regulating valve V 3 installed in the hot water outlet temperature setting device E is connected via the controller C, and the controller C adjusts the temperature in proportion to the temperature difference between the set temperature set by the hot water temperature setting device E and the hot water temperature. The amount of gas supplied to gas burner B is adjusted by adjusting the opening degree of fuel adjustment valve V 3 , and when the amount of water flowing exceeds the heating capacity of burner B [flowing water amount x (set temperature - hot water temperature)] As described above, the controller C rotates the servo motor M so that the first flow valve V 1 has an opening between the maximum opening and the minimum opening, and the required water flow rate is determined by rotating the knob. The temperature is controlled within the temperature range of ±2°C as described below. That is, in FIG. 5, the voltage applied to the servo motor M is changed stepwise according to the temperature difference (output temperature - set temperature), and the rotational speed of the servo motor M is changed stepwise within a range of ±2°C. 0, the servo motor M is stopped, and then the fuel adjustment valve V3 is adjusted to the required opening degree to adjust the calorific value of the gas burner B to the required amount, thereby enabling automatic control. In addition, 19 is a communicating hole that communicates the negative pressure side of the automatic water supply pressure adjustment device D with the automatic ventilator 3, and 20 is a return spring of the diaphragm.

前記構成としたので、瞬間ガス湯沸器を繰り返
し間歇使用する場合、コツク7の始動位置では第
3図a2に示すように第1流量調整弁V1は若干絞
つて一定開度となし、かつ第2流量調整弁V2
第1流量調整弁V1とほぼ同じ一定開度となして
おり出湯初期に流水圧で水流スイツチSが作動す
るときから、プリパージ等のためのある一定時間
(例えば5秒間)は第1流量調整弁V1と第2流量
調整弁V2を介して自動ベンチユリー3より熱交
換器Aおよびバイパス路6へ略同量の少量の冷水
を流して熱交換器Aにおける後沸き現象により高
温となつた沸騰水に出湯管5の途中において混合
せしめ、熱交換器Aからの吐出沸騰水等が適宜温
度に下げられ、後沸き現象を適切に防止できる。
ここで熱交換器Aとバイパス路4へ例えばそれぞ
れ略2/分の水量が流れ、給湯後止水した時の
熱交換器A内の残留水が過熱されてその温度が例
えば70℃に達し、かつ入水温度が25℃であるとす
ると出湯管5よりの出湯温度は 70℃×2+25℃×2/4=47.5℃ に低下する。かつ又出湯初期においてプリバージ
等の一定時間は略4/分の水量しか流れず熱交
換器内への水量とバイパス路への水量が略1/2づ
つ流れて熱交換器に流れる水量が略2/分と少
ないために熱交換器Aにおける流水速度が相当遅
くなり、通過時間も長くなつて冷水を充分昇温さ
せることができ、前冷え現象をなくすことができ
る。水流スイツチSが作動して上記出湯初期にお
ける一定時間後ガスバーナBの着火時にサーボモ
ータMの回転駆動によりカム板9を回転し、リミ
ツトスイツチS1がONで、リミツトスイツチS2
OFFしたのを検知してその位置でサーボモータ
Mを停止させて第1流量調整弁V1を最大開度と
なし第2流量調整弁V2を閉じて所定最大流水量
を熱交換器Aに通水して後通常の給湯に移行する
(第3図b1,b2および第4図のQb点参照)。ここ
で熱交換器AにガスバーナBの加熱能力を越える
水量が流れておれば設定出湯温度が得られないの
でサーボモータMを正回転して第1流量調整弁
V1の流水量を減少して前述の如く所要通水量位
置に停止する。例えば入水温度が10℃、設定出湯
温度度が50℃、バーナBの最大加熱能力が
400Kcal/分とすると、得られる流水量は、 400Kcal/分/50℃−10℃=400×℃/分/40℃=10
/分 となり、テーパ孔15の適宜位置にて10に絞つ
て流水量を設定出湯温度50℃を得る。ここで前記
した如く出湯温度と設定温度との温度差が例えば
±2℃範囲になるまでサーボモータMを正、逆回
転して±2℃となつた後燃料調整弁V3のみを上
記温度差に比例してその開度を調節して正確、安
定的に出湯温度を制御する。上記温度差が±2℃
より大きくなる程サーボモータMの回転速度を大
きくして熱交換器の流水量の調節速度を大きくし
て応答速度の遅れをなくしている。ここでサーボ
モータMによるコツク7の回動操作のみにより所
要流水量として出湯温度を設定温度に制御しうる
ことは勿論である。更にガスバーナBの加熱能力
を越えておればサーボモータMを更に回転させて
リミツトスイツチS1,S2をそれぞれOFF、ONす
るまで駆動して停止させ、遂に第1流量調整弁
V1は最少開度となり熱交換器Aに最少水量を流
すようになす(第3図c1,c2および第4図Qc点
参照)。以上述べたことから明らかなように出湯
により水流スイツチSが作動して上記一定時間経
過後に燃料調整弁V3を通じてガスバーナBにガ
スが供給されてガスバーナBが点火し、フルイン
プツトで燃焼し、熱交換器Aが加熱されて漸次一
定温度に昇温安定化するのであるが、その間の熱
交換器Aの流水量の漸次増加させられるので流水
量に見合つた加熱能力で加熱が行われ、最初一定
時間は熱交換器に流れる水量は少ないので出湯温
度の極端な低下が生ずることはなくて前冷え現象
を防止できる。出場を停止するとサーボモータM
は逆回転してリミツトスイツチS1,S2が共にON
したのを検知してサーボモータMが停止して元の
始動位置へ戻つて(第3図a1,a2および第4図
Qa点参照)第1流量調整弁V1と第2流量調整弁
V2を始動位置へ戻して次の出湯に備える。前記
出湯初期における熱交換器Aの所定最少水量を規
制する円形孔14の開度(断面積)は熱交換器A
の吸熱管の内径と長さ、プリパージ等の前記一定
時間、熱交換器Aの熱容量等により供給水が冷水
のままないし極端に低温の状態で熱交換器Aを流
出することがない様適宜な大きさに定める。更に
サーボモータによりコツク7を回動させる場合を
例示したが、進退させる方式となしても良く、そ
の場合円形孔14とテーパ孔15とを連続して軸
方向に延長形成する必要があることは明らかであ
る。
With the above configuration, when the instantaneous gas water heater is repeatedly used intermittently, the first flow rate regulating valve V1 is slightly throttled to a constant opening at the starting position of the pot 7, as shown in Figure 3a2 . In addition, the second flow rate adjustment valve V 2 is set at a constant opening degree that is almost the same as the first flow rate adjustment valve V 1 , and from the time when the water flow switch S is activated by the flow water pressure at the beginning of hot water dispensing, there is a certain period of time for pre-purge etc. For example, for 5 seconds), a small amount of cold water of approximately the same amount is flowed from the automatic ventilator 3 to the heat exchanger A and the bypass path 6 via the first flow rate regulating valve V 1 and the second flow rate regulating valve V 2. The boiling water that has reached a high temperature due to the after-boiling phenomenon is mixed in the middle of the outlet pipe 5, and the temperature of the boiling water etc. discharged from the heat exchanger A is lowered to an appropriate temperature, thereby appropriately preventing the after-boiling phenomenon.
Here, approximately 2/min of water flows into the heat exchanger A and the bypass path 4, respectively, and the residual water in the heat exchanger A when the water is stopped after hot water supply is superheated and its temperature reaches, for example, 70°C. Moreover, assuming that the incoming water temperature is 25°C, the temperature of hot water exiting from the hot water outlet pipe 5 decreases to 70°C x 2 + 25°C x 2/4 = 47.5°C. Moreover, at the beginning of hot water dispensing, during a certain period of time such as pre-barge, only approximately 4/min of water flows, and the amount of water flowing into the heat exchanger and the amount of water flowing to the bypass path are approximately 1/2, and the amount of water flowing to the heat exchanger is approximately 2/min. /min, the water flow rate in the heat exchanger A becomes considerably slow, and the passing time becomes long, so that the temperature of the cold water can be sufficiently raised, and the pre-cooling phenomenon can be eliminated. When the water flow switch S is activated and the gas burner B is ignited after a certain period of time in the initial stage of hot water dispensing, the cam plate 9 is rotated by the rotational drive of the servo motor M, and the limit switch S 1 is ON and the limit switch S 2 is turned on.
Detects that the servo motor M has turned OFF, stops the servo motor M at that position, sets the first flow rate adjustment valve V1 to the maximum opening, closes the second flow rate adjustment valve V2 , and supplies the predetermined maximum flow rate to the heat exchanger A. After water is passed through, normal hot water supply begins (see b 1 and b 2 in Figure 3 and point Qb in Figure 4). If the amount of water flowing through the heat exchanger A exceeds the heating capacity of the gas burner B, the set hot water temperature cannot be obtained, so the servo motor M is rotated in the forward direction and the first flow rate regulating valve is turned on.
Reduce the flow rate of V1 and stop at the required water flow rate position as described above. For example, the inlet water temperature is 10℃, the set water outlet temperature is 50℃, and the maximum heating capacity of burner B is
Assuming 400Kcal/min, the flow rate obtained is: 400Kcal/min/50℃-10℃=400×℃/min/40℃=10
/min, and the flow rate is set to 10 at an appropriate position of the taper hole 15 to obtain a hot water temperature of 50°C. As mentioned above, the servo motor M is rotated forward and backward until the temperature difference between the outlet hot water temperature and the set temperature is, for example, within the range of ±2°C. After the temperature difference reaches ±2°C, only the fuel regulating valve V3 is adjusted to the above temperature range. The opening degree is adjusted in proportion to the temperature to accurately and stably control the hot water temperature. The above temperature difference is ±2℃
As the size increases, the rotational speed of the servo motor M is increased to increase the adjustment speed of the water flow rate of the heat exchanger, thereby eliminating delay in response speed. Here, it is of course possible to control the outlet temperature to the set temperature as the required flow rate only by rotating the pot 7 by the servo motor M. Furthermore, if the heating capacity of the gas burner B is exceeded, the servo motor M is further rotated to drive the limit switches S 1 and S 2 until they are turned OFF and ON, respectively, and then stopped.
V 1 is set to the minimum opening degree to allow the minimum amount of water to flow into heat exchanger A (see c 1 and c 2 in Figure 3 and point Qc in Figure 4). As is clear from the above description, the water flow switch S is activated by the hot water discharge, and after the above-mentioned certain period of time has elapsed, gas is supplied to the gas burner B through the fuel adjustment valve V3 , the gas burner B ignites, burns at full input, and performs heat exchange. Heater A is heated and the temperature is gradually raised to a constant temperature and stabilized, but during that time the flow rate of heat exchanger A is gradually increased, so heating is performed with a heating capacity commensurate with the flow rate, and at first it remains at a constant temperature for a certain period of time. Since the amount of water flowing into the heat exchanger is small, the temperature of the hot water does not drop drastically and the pre-chilling phenomenon can be prevented. When you stop participating, the servo motor M
rotates in the opposite direction and limit switches S 1 and S 2 are both turned on.
When this is detected, the servo motor M stops and returns to the original starting position (Fig. 3 a 1 , a 2 and Fig. 4).
(See point Qa) 1st flow regulating valve V 1 and 2nd flow regulating valve
Return V 2 to the starting position to prepare for the next tap. The degree of opening (cross-sectional area) of the circular hole 14 that regulates the predetermined minimum amount of water in the heat exchanger A at the initial stage of hot water tapping is the same as that of the heat exchanger A.
Depending on the inner diameter and length of the heat absorption pipe, the pre-purge time, etc., the heat capacity of heat exchanger A, etc., appropriate measures should be taken to ensure that the supplied water does not leave heat exchanger A as cold water or in an extremely low temperature state. Determine the size. Furthermore, although the case where the cock 7 is rotated by a servo motor is illustrated, it may be moved forward and backward, and in that case, it is necessary to form the circular hole 14 and the tapered hole 15 to extend continuously in the axial direction. it is obvious.

以上述べた如くこの発明に係わる湯沸器にあつ
ては、上記一定時間の保持制御、コツク7の回動
操作による給水量の制御などはコントローラCに
よつて予め設定されたプログラムに従つて適正に
行われるものであり、かつ出湯温度及び出湯量の
調節もコントローラCを介して行い、出湯温度検
出用サーミスタTにてコツク7のテーパ孔15お
よび燃料調整弁V3の開度を調節制御し、熱交換
器Aの加熱能力範囲で第1流量調整弁V1の開度
を所要値となるよう調節制御することによつて自
動的に出湯温度を設定出湯温度に制御可能とする
ものである。
As described above, in the water heater according to the present invention, the above-mentioned holding control for a certain period of time, control of water supply amount by rotating operation of the pot 7, etc. are performed appropriately according to a preset program by the controller C. The hot water temperature and the amount of hot water are also adjusted via the controller C, and the taper hole 15 of the tap 7 and the opening degree of the fuel regulating valve V3 are adjusted and controlled by the thermistor T for detecting the hot water temperature. By adjusting and controlling the opening degree of the first flow rate regulating valve V1 to a required value within the heating capacity range of the heat exchanger A, it is possible to automatically control the outlet hot water temperature to the set outlet temperature. .

なお、この発明の瞬間湯沸器によれば、出湯停
止時にはバイパス管6と熱交換器Aへの給水管1
及び熱交換器Aからの出湯管5とが第2流量調整
弁V2を通じて閉ループになつて連通しているた
め、厳寒時にバイパス管6を電熱ヒータ等で暖め
れば器体内の残留水が加熱循環されて配水管の大
部分を加熱し得るので、凍結を効果的に防止する
ことができる効果がある。
According to the instantaneous water heater of the present invention, when the hot water supply is stopped, the bypass pipe 6 and the water supply pipe 1 to the heat exchanger A are connected to each other.
and hot water outlet pipe 5 from heat exchanger A are connected in a closed loop through the second flow rate adjustment valve V 2 , so if the bypass pipe 6 is heated with an electric heater etc. in severe cold, the residual water in the vessel will be heated. Since it is circulated and can heat most of the water pipes, it has the effect of effectively preventing freezing.

以上給水量(出湯量)特性を山形形状をなす場
合について述べたが、第6図に示すように流量特
性のグラフが右半分を上り傾斜状となして第1流
量調節弁V1の回転端で最大開度(流水量Qb点に
て示す)となして第1流量調整弁V1を最大開度
位置から逆回転して最少開度位置(流水量Qc点
にて示し、又、この角度でQv2がOとなつてい
る。)となす構成とするものである。この場合に
はコツク7は小から大に漸次開度が変化する円周
方向に延びる通孔21を形成する必要がある(第
7図参照)。又第1流量調整弁V1、第2流量調整
弁V2を一体に成形した場合を述べたが別体とな
してこれらを同期して駆動(回転)しても良い。
The case where the water supply amount (hot water output amount) characteristic has a chevron shape has been described above, but as shown in Fig. 6, the graph of the flow rate characteristic has an upward slope in the right half, and the rotation end of the first flow rate control valve V 1 is shown. The first flow regulating valve V 1 is rotated in the opposite direction from the maximum opening position to the minimum opening position (indicated by the water flow rate Qc point), and this angle is Qv 2 is O.). In this case, the hole 7 needs to have a circumferentially extending through hole 21 whose opening degree gradually changes from small to large (see FIG. 7). Further, although the case has been described in which the first flow rate regulating valve V 1 and the second flow rate regulating valve V 2 are integrally molded, they may be formed as separate bodies and driven (rotated) synchronously.

前記したこの発明によれば熱交換器とバイパス
路への通水量を調節する流量調整弁を給水路に配
設し、その駆動軸に設けたカム板にスイツチを作
動するよう関連せしめて流量調整弁の始動位置、
熱交換器への最大流水量位置および最少流水量位
置を位置決め可能となし出湯初期には流量調整弁
を通じて熱交換器とバイパス路に一定時間(数秒
間)少量の流水量を分流せしめ、その後熱交換器
への通水量を適正な量となして、後沸き現象と前
冷え現象を簡単な構成により確実に防止すること
ができ、かつ能力超過時には適宜流量調整弁を絞
るようにして所要流水量に調整するもので、従来
の如く能力超過による不本意な出湯温度の降下を
是正することができ的確、迅速で高精度の出湯温
度制御が行え出湯温度の安定を計ることができ
る。
According to the above-mentioned invention, a flow rate regulating valve for regulating the amount of water flowing to the heat exchanger and the bypass passage is disposed in the water supply channel, and a switch is connected to the cam plate provided on the drive shaft to adjust the flow rate. starting position of the valve,
The position of the maximum water flow to the heat exchanger and the position of the minimum water flow can be determined.In the initial stage of hot water dispensing, a small amount of water is diverted to the heat exchanger and the bypass path for a certain period of time (several seconds) through the flow rate adjustment valve, and then the heat By setting the appropriate amount of water to the exchanger, the after-boiling phenomenon and pre-cooling phenomenon can be reliably prevented with a simple configuration, and when the capacity is exceeded, the flow rate adjustment valve can be appropriately throttled to maintain the required water flow rate. By adjusting the temperature, it is possible to correct the unintentional drop in the hot water temperature due to overcapacity as in the past, and to control the hot water temperature accurately, quickly, and with high precision, and to stabilize the hot water temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の一実施例を示す概略構成
図、第2図は同流量調整弁(コツク)の一実施例
を示す斜視図、第3図は流量調整弁の回転(停
止)角度と流量調整弁の開度を示す説明図、第4
図は同流量調整弁の流水量(出湯量)特性を示す
グラフ、第5図はサーボモータの印加電圧特性の
概略を示すグラフ、第6図は流量調整弁の別の流
水量(出湯量)特性を示すグラフ、第7図は第6
図における流量調整弁の一実施例を示す斜視図で
ある。 1……給水路、2……弁室、3……自動ベンチ
ユリー、4……分岐路、5……出湯管、6……バ
イパス路、7……コツク、8……駆動軸、9……
カム板、A……熱交換器、V1……第1流量調整
弁、V2……第2流量調整弁、M……サーボモー
タ。
Fig. 1 is a schematic configuration diagram showing an embodiment of this invention, Fig. 2 is a perspective view showing an embodiment of the same flow regulating valve (Kotoku), and Fig. 3 shows the rotation (stop) angle of the flow regulating valve. Explanatory diagram showing the opening degree of the flow rate adjustment valve, No. 4
The figure is a graph showing the flow rate (output amount) characteristics of the same flow rate adjustment valve, Figure 5 is a graph showing the outline of the applied voltage characteristics of the servo motor, and Figure 6 is a graph showing the flow rate (output amount) of another flow rate adjustment valve. Graph showing the characteristics, Figure 7 is the 6th
It is a perspective view which shows one Example of the flow regulating valve in a figure. DESCRIPTION OF SYMBOLS 1... Water supply channel, 2... Valve chamber, 3... Automatic ventilate, 4... Branch path, 5... Hot water outlet pipe, 6... Bypass path, 7... Kotoku, 8... Drive shaft, 9...
Cam plate, A...heat exchanger, V1 ...first flow rate regulating valve, V2 ...second flow rate regulating valve, M...servo motor.

Claims (1)

【特許請求の範囲】 1 熱交換器への給水管の適所に熱交換器への通
水量を調整する第1流量調整弁を備え、かつ該給
水管から出湯管に連通接続されたバイパス管に出
湯管への通水を給断する第2流量調整弁を備え、
該第1、第2流量調整弁を連動して駆動する駆動
装置を設けるとともに該駆動装置に熱交換器の出
口近くの出湯管に設けた出湯温度検出器とガスバ
ーナの燃料供給路に設けた燃料調整弁および出湯
温度設定器をコントローラを介して接続し、第
1、第2流量弁を駆動装置で駆動して出湯開始の
始動時に所定時間だけ一定の開度となして少量ず
つ流水を熱交換器とバイパス路に分流させ、所定
時間後は第2流量調整弁を閉じ、かつ第1流量調
整弁の開度を最大開度となして熱交換器への出湯
量を最大となし、バーナの加熱能力範囲外であれ
ば所要開度に調整して出湯温度を設定出湯温度に
制御しうるようにしたことを特徴とする瞬間湯沸
器。 2 出湯開始から所定時間後における第1流量調
整弁の開度調整において、出湯温度検出器による
検知出湯温度と出湯温度設定器の設定出湯温度の
温度差に応じて調整弁を駆動するサーボモータの
印加電圧を大小変化させて該温度差が大きくなる
に従つて流量調整弁の駆動速度を大きくすること
を特徴とする特許請求の範囲第1項記載の瞬間湯
沸器。
[Claims] 1. A water supply pipe to the heat exchanger is provided with a first flow rate adjustment valve for adjusting the amount of water flowing to the heat exchanger, and a bypass pipe connected from the water supply pipe to a hot water outlet pipe is provided. Equipped with a second flow rate adjustment valve that supplies and disconnects water flow to the hot water tap pipe,
A drive device is provided to drive the first and second flow rate regulating valves in conjunction with each other, and the drive device includes a hot water temperature detector installed in a hot water tap near the outlet of the heat exchanger, and a fuel installed in the fuel supply path of the gas burner. The regulating valve and hot water temperature setting device are connected via a controller, and the first and second flow rate valves are driven by a drive device to maintain a constant opening for a predetermined time at the start of hot water tap to exchange heat in small amounts of flowing water. After a predetermined time, the second flow rate adjustment valve is closed, and the first flow rate adjustment valve is set to the maximum opening to maximize the amount of hot water flowing into the heat exchanger, and the burner is An instantaneous water heater characterized in that if the heating capacity is outside the range, the hot water temperature can be controlled to a set hot water temperature by adjusting the opening degree to a required degree. 2. In adjusting the opening degree of the first flow rate regulating valve after a predetermined period of time after the start of hot water dispensing, a servo motor that drives the regulating valve is operated according to the temperature difference between the discharging hot water temperature detected by the dispensing hot water temperature sensor and the discharging hot water temperature set by the dispensing hot water temperature setting device. 2. The instantaneous water heater according to claim 1, wherein the driving speed of the flow rate regulating valve is increased as the temperature difference increases by varying the applied voltage.
JP57167282A 1982-09-25 1982-09-25 Tap-controlled water heater Granted JPS5956653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167282A JPS5956653A (en) 1982-09-25 1982-09-25 Tap-controlled water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167282A JPS5956653A (en) 1982-09-25 1982-09-25 Tap-controlled water heater

Publications (2)

Publication Number Publication Date
JPS5956653A JPS5956653A (en) 1984-04-02
JPH029263B2 true JPH029263B2 (en) 1990-03-01

Family

ID=15846855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167282A Granted JPS5956653A (en) 1982-09-25 1982-09-25 Tap-controlled water heater

Country Status (1)

Country Link
JP (1) JPS5956653A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228354Y2 (en) * 1985-12-11 1990-07-30
JPH0228355Y2 (en) * 1985-12-20 1990-07-30
JPH0830608B2 (en) * 1989-03-29 1996-03-27 株式会社ハーマン Water heater
JPH0361247U (en) * 1989-10-17 1991-06-17
JP5810112B2 (en) * 2013-02-18 2015-11-11 リンナイ株式会社 Water heater

Also Published As

Publication number Publication date
JPS5956653A (en) 1984-04-02

Similar Documents

Publication Publication Date Title
US7628123B2 (en) Combined hot water supply system
JPS58205043A (en) Tap-controlled type hot-water supplying machine equipped with automatic mixer
JPH029263B2 (en)
JPH0377421B2 (en)
JPH0236043Y2 (en)
JPS6160339B2 (en)
KR930010393B1 (en) Flow control method of hot-water supply apparatus
JPH0239167Y2 (en)
JP3719292B2 (en) Water heater
JP3129035B2 (en) Water heater
JPH01203844A (en) Hot-water apparatus
JP2564722B2 (en) Gas combustion equipment
JPH026977B2 (en)
JP2820583B2 (en) Water heater temperature control device
JPH102609A (en) Hot-water supply apparatus
JPH0749317Y2 (en) Oil instant water heater
JPH0142765Y2 (en)
JPS58145842A (en) Controller of hot water feeder
KR930010392B1 (en) Flow control method of hot-water supply apparatus
JP2522130B2 (en) How to determine the use of other plugs for a water heater with an automatic bath drop function
JPH04340050A (en) By-pass control valve of hot water supply device
KR0171730B1 (en) Hot water feeding device
JPH09210462A (en) Water volume control device
JPS6121345B2 (en)
KR930022024A (en) Hot water supply control device