JPH0292540A - Vibration damping composite structural body and its manufacture - Google Patents

Vibration damping composite structural body and its manufacture

Info

Publication number
JPH0292540A
JPH0292540A JP24867488A JP24867488A JPH0292540A JP H0292540 A JPH0292540 A JP H0292540A JP 24867488 A JP24867488 A JP 24867488A JP 24867488 A JP24867488 A JP 24867488A JP H0292540 A JPH0292540 A JP H0292540A
Authority
JP
Japan
Prior art keywords
synthetic resin
resin
vibration damping
sheet
press molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24867488A
Other languages
Japanese (ja)
Inventor
Kiminari Nakamura
中村 公成
Tadahisa Hara
原 孚尚
Hiroo Totani
戸谷 博雄
Hideki Shimomura
秀樹 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP24867488A priority Critical patent/JPH0292540A/en
Publication of JPH0292540A publication Critical patent/JPH0292540A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve vibration damping/soundproof functions by forming a structural body singly with synthetic resin, by specifying a combination of resin by making use of a melt press molding method. CONSTITUTION:The whole resin which can perform melt press molding can be used for synthetic resin B constituting an outer layer. It is necessary that the maximum value of tan delta of synthetic resin (A) becoming a principal constituent material of an intermediate layer is at least 0.2 and the synthetic resin (A) has the low modulus of elasticity as compared with the modulus of elasticity of the synthetic resin (B) constituting an outer layer at 25 deg.C. A copolymer, for example, of ethylene and vinyl acetate, vinyl chloride, acrylic acid or acrylic acid derivative and methacrylic acid or methacrylic acid derivative is available as the synthetic resin (A) like this. It is necessary to mold with a melt press molding method to obtain a vibration damping composite structural body with a sheet having the synthetic resin (A) for its main constituent material and the synthetic resin (B). A sandwich injection molding method is available as a method to obtain a vibration damping composite structural body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車、オートバイ等のギヤケースカバー 
エアークリーナーケース、ラジェーターファン等騒音発
生源となっている部分あるいは洗濯機、掃除機等の家庭
用電気機器、ワードプロセッサ、パーソナルコンピュー
ターのプリンター等の事務機器等の分野にて用いる、優
れた制振音響性能を有する合成樹脂製の構造体およびそ
の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to gear case covers for automobiles, motorcycles, etc.
Excellent vibration-damping acoustics for use in noise-generating areas such as air cleaner cases and radiator fans, household appliances such as washing machines and vacuum cleaners, and office equipment such as word processors and personal computer printers. The present invention relates to a synthetic resin structure having high performance and a method for manufacturing the same.

〔従来技術〕[Prior art]

従来振動騒音を防止する目的の一手段として、材料自身
が振動吸収能を持つような振動吸収材料の研究開発が進
められ、振動吸収性能が高く用途に適した制振材料が車
両、船舶、産業機械や鉄橋等の構造部材として使用され
ている。
Conventionally, as a means of preventing vibration and noise, research and development of vibration-absorbing materials in which the material itself has vibration-absorbing ability has been advanced, and vibration-damping materials with high vibration-absorbing performance and suitable for applications are being developed for vehicles, ships, and industries. It is used as a structural member for machinery, iron bridges, etc.

このような制振材料としては、従来より酢酸ビニル−エ
チルアクリレート共重合物(特公昭45−35662号
)、酢酸ビニル−エチレン共重合物にスチロールとアク
リロニトリルの混合物をグラフトさせた共重合体(特公
昭46−17064号)、カルボン酸変成ポリオレフィ
ン系樹脂を主体とした樹脂組成物(特開昭59−804
54号)などの組成物を中間層とした積層構造物やビチ
ューメンに炭酸カルシウム等の充填材を加えた材料等が
知られている。
Conventionally, such damping materials include vinyl acetate-ethyl acrylate copolymer (Japanese Patent Publication No. 45-35662), a copolymer obtained by grafting a mixture of styrene and acrylonitrile onto vinyl acetate-ethylene copolymer (Japanese Patent Publication No. 45-35662), Publication No. 46-17064), resin compositions based on carboxylic acid-modified polyolefin resins (Japanese Patent Application Laid-open No. 59-804)
Laminated structures with a composition such as No. 54) as an intermediate layer, and materials in which filler such as calcium carbonate is added to bitumen are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これらの組成物は一般に弾性率が低く単
独で構造体を得るのは難しく鋼板等の基材と貼合して使
用する必要があることや、耐熱性に劣る等の欠点があっ
た。
However, these compositions generally have a low modulus of elasticity, making it difficult to obtain a structure by themselves, requiring them to be bonded to a base material such as a steel plate, and having drawbacks such as poor heat resistance.

本発明は従来技術のもつ課題を解決するためになされた
ものであり、合成樹脂単独で構造体を形成できかつ制振
・防音機能に優れた成形品と、それを容易に得る方法に
関するものである。
The present invention was made in order to solve the problems of the prior art, and relates to a molded product that can form a structure solely from a synthetic resin and has excellent vibration damping and soundproofing functions, and a method for easily obtaining the molded product. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は従来の前記課題を解決するだめの手段として熔
融プレス成形法を用い、また樹脂の組合せに工夫を行っ
たものである。更に詳しくは、 (1)2種3層以上の構造体であって、その中間層とし
て−50’C〜50℃の温度範囲におけるtanδの最
大値が0.2以上である合成樹脂〔A〕を主要構成材料
とするシートを用い、その外層として25℃における弾
性率が合成樹脂〔A〕の弾性率以上の値を有する合成樹
脂(B〕を用い、かつ溶融プレス成形法によって得られ
ることを特徴とする制振複合構造体、 (2)−50℃〜50゛Cの温度範囲におけるtanδ
の最大値が0.2以上である合成樹脂〔A〕を主要構成
材料とするシートを金型内に設置した後、25゛Cにお
ける弾性率が合成樹脂〔A〕の弾性率以上の値を有する
合成樹脂〔B〕を、合成樹脂〔A〕を主要構成材料とす
るシートの両面に溶融プレス成形法によって成形するる
ことを特徴とする制振複合構造体の製造法、に関するも
のである。
The present invention uses a melt press molding method as a means to solve the conventional problems mentioned above, and also devises a combination of resins. More specifically, (1) A synthetic resin [A] which is a structure of two types and three or more layers, and whose intermediate layer has a maximum value of tan δ of 0.2 or more in the temperature range of -50'C to 50°C. A synthetic resin (B) whose elastic modulus at 25°C is greater than or equal to the elastic modulus of the synthetic resin [A] is used as the outer layer, and is obtained by a melt press molding method. Characteristic vibration damping composite structure, (2) tan δ in the temperature range of -50°C to 50°C
After installing a sheet whose main constituent material is synthetic resin [A] with a maximum value of 0.2 or more in a mold, The present invention relates to a method for producing a vibration-damping composite structure, which is characterized in that synthetic resin [B] is formed by melt press molding on both sides of a sheet whose main constituent material is synthetic resin [A].

外層を構成する合成樹脂〔B〕は、熔融プレス成形でき
る全ての樹脂を用いる事が可能であるが、その中でも常
温で弾性率が高くかつ成形が比較的暦車であるポリプロ
ピレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリ
−4−メチル−1−ペンテン樹脂、ポリスチレン樹脂、
アクリロニトリル−スチレン系樹脂、アクリロニトリル
ープクジエン−スチレン樹脂、ポリカーボネート樹脂、
ポリエチレンテレフタレート樹脂、ポリブチレンテレフ
タレート樹脂、ポリアセタール樹脂、ポリフェニレンオ
キサイド樹脂等が適している。
As the synthetic resin [B] constituting the outer layer, any resin that can be melt press-molded can be used, but among them, polypropylene resin, polyamide resin, which has a high elastic modulus at room temperature and is relatively easy to mold, polyethylene resin, poly-4-methyl-1-pentene resin, polystyrene resin,
Acrylonitrile-styrene resin, acrylonitrile-styrene resin, polycarbonate resin,
Polyethylene terephthalate resin, polybutylene terephthalate resin, polyacetal resin, polyphenylene oxide resin, etc. are suitable.

またこの中に炭酸カルシウム、タルク、マイカ、ガラス
繊維等の充填材を混入した複合コンパウンドとしたもの
はさらに適している。
Moreover, a composite compound in which fillers such as calcium carbonate, talc, mica, and glass fiber are mixed is even more suitable.

次に、中間層の主要構成材料となる合成樹脂〔A〕はそ
の−50℃〜50”Cの温度範囲におけるtanδの最
大値が0.2以上であって、かつ外層を構成する合成樹
脂CB)の25℃における弾性率に比較して低い弾性率
を有していることが必要である。
Next, the synthetic resin [A] which is the main constituent material of the intermediate layer has a maximum value of tan δ of 0.2 or more in the temperature range of -50°C to 50''C, and the synthetic resin CB which forms the outer layer ) is required to have a lower elastic modulus than the elastic modulus at 25°C.

合成樹脂、〔A〕のta、nδの最大値が一50℃〜5
0℃の温度範囲で0.2を下回る値をとる場合には、制
振材料が通常使用される温度域すなわち室温およびその
前後の温度域で良好な制振性能を発現できない。
Maximum values of ta and nδ of synthetic resin [A] are 150°C to 5
When the value is less than 0.2 in the temperature range of 0° C., good vibration damping performance cannot be exhibited in the temperature range where the damping material is normally used, that is, at room temperature and the temperature range around it.

このような合成樹脂〔A〕としては、例えばエチレンと
酢酸ビニル、塩化ビニル、アクリル酸またはアクリル酸
誘導体、メタクリル酸またはメタクリル酸誘導体等との
共重合体、具体的にはエチレン−酢酸ビニル共重合体、
エチレン−アクリル酸共重合体、エチレン−エチルアク
リレート共重合体、エチレン−メチルメタクリレート共
重合体、エチレン−エチルアクリレート−無水マレイン
酸共重合体、エチレン−酢酸ビニル−グリシジルメタク
リレート共重合体、エチレン−酢酸ビニル−塩化ヒニル
共m合体sが挙げられる。このほかエチレンを含まない
ものでは、酢酸ビニルとアクリル酸またはアクリル酸誘
導体との共重合体、具体的に例示すれば酢酸ビニル−メ
チルアクリレート共重合体等が使用できる。
Examples of such synthetic resins [A] include copolymers of ethylene and vinyl acetate, vinyl chloride, acrylic acid or acrylic acid derivatives, methacrylic acid or methacrylic acid derivatives, and specifically ethylene-vinyl acetate copolymers. Union,
Ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer, ethylene-vinyl acetate-glycidyl methacrylate copolymer, ethylene-acetic acid Vinyl-hinyl chloride co-m combination s can be mentioned. In addition, copolymers of vinyl acetate and acrylic acid or acrylic acid derivatives that do not contain ethylene can be used, such as vinyl acetate-methyl acrylate copolymers and the like.

また熱可塑性高分子量ポリエステル樹脂も好ましく、こ
の中でもガラス転1M度が0℃〜60℃の温度範囲にあ
る非品性熱可塑性高分子量ポリエステル樹脂がより好ま
しい。
Thermoplastic high molecular weight polyester resins are also preferred, and among these, non-grade thermoplastic high molecular weight polyester resins having a glass transition of 1M degrees in the temperature range of 0°C to 60°C are more preferred.

また分子中にゴム弾性を有する成分(ソフトセグメント
)と熱可塑性能力を有する成分(ハードセグメント)が
、複合・改質されて存在する構造を有している熱可塑性
ポリエステル樹脂も好ましい樹脂である。
Also preferred is a thermoplastic polyester resin having a structure in which a component having rubber elasticity (soft segment) and a component having thermoplastic ability (hard segment) are combined and modified in the molecule.

この構造上の分類としては、 (i)1分子中にソフト部とハード部がブロンク的に配
列されているタイプ にi)ソフト部とハード部がグラフトした構造を有して
いるタイプ (iii )ソフト部が、部分的に架橋されているタイ
プ (iv )ハード部が、イオン的に架橋された構造を有
しているタイプ が存在する。
This structural classification is as follows: (i) a type in which a soft part and a hard part are arranged in a bronch-like manner in one molecule, and (iii) a type in which a soft part and a hard part are grafted together. There is a type (iv) in which the soft part is partially cross-linked and a type in which the hard part has an ionically cross-linked structure.

中間層を構成する合成樹脂〔A〕を主要構成材料とする
シートは、平板状シートの他に成形され特定の形状を有
するシートであってもよい、また合成樹脂〔A〕から成
る単層のみに限定されるものではなく、合成樹脂〔A〕
から成る届を一層として含む多層シートであっても良い
The sheet whose main constituent material is synthetic resin [A] constituting the intermediate layer may be a sheet formed into a specific shape other than a flat sheet, or it may be a single layer made of synthetic resin [A]. Synthetic resin [A]
It may also be a multi-layer sheet containing a sheet consisting of as one layer.

この多層シートの場合、合成樹脂〔A〕と外層の合成樹
脂〔B〕との接着性を向上させるため、合成樹脂〔Δ〕
から成る層に接着層を設けた多層シート等を本発明の制
振複合構造体の中間層として用いる事もできる。
In the case of this multilayer sheet, in order to improve the adhesion between the synthetic resin [A] and the outer layer synthetic resin [B], the synthetic resin [Δ]
It is also possible to use a multilayer sheet, etc., in which an adhesive layer is provided on the layers consisting of the above, as the intermediate layer of the vibration damping composite structure of the present invention.

あるいは針侵入温度が合成樹脂〔A〕の針侵入温度より
高いもの、すなわち合成樹脂〔A〕よりも耐熱性の大き
い合成樹脂(C)を合成樹脂〔A〕の少なくとも一方の
面に設けた多層シートを中間層として用いることもでき
る。このような耐熱性の大きい合成樹脂(C)を用いな
いで、合成樹脂〔A〕のシートの上に直接合成樹脂〔B
〕を溶融プレス成形する際には、合成樹脂〔A〕が著し
く変形してしまうことがある。
Alternatively, a multi-layered material having a needle penetration temperature higher than that of the synthetic resin [A], that is, a synthetic resin (C) having higher heat resistance than the synthetic resin [A] is provided on at least one side of the synthetic resin [A]. Sheets can also be used as intermediate layers. Instead of using such a synthetic resin (C) with high heat resistance, the synthetic resin [B] is directly placed on the sheet of synthetic resin [A].
] When melt-press molding the synthetic resin [A], the synthetic resin [A] may be significantly deformed.

このような場合に、合成樹脂〔A〕のシートの少なくと
も一方の面に耐熱性の大きい合成樹脂CC)を設けるこ
とにより、中間層シートの変形を防ぐことができる。
In such a case, deformation of the intermediate layer sheet can be prevented by providing a synthetic resin (CC) with high heat resistance on at least one surface of the sheet of synthetic resin [A].

ここでいう針侵入温度とは次の方法によって測定した温
度のことをいう、すなわち、断面が0.5mの円である
石英製の針状圧子を、フィルム状ないしはシート状の材
料に垂直に置き、圧子を通じて20gの荷重をかける。
The needle penetration temperature here refers to the temperature measured by the following method: A needle-like indenter made of quartz with a circular cross section of 0.5 m is placed vertically on a film or sheet material. , a load of 20 g is applied through the indenter.

材料を10’C/minで昇温しでゆくと圧子の変位と
温度の関係は第6図に示すようなグラフになる。このと
き第6図に示した2木の接線AB、CDの交点Eの温度
を針侵入温度と定義する。
When the temperature of the material is increased at 10'C/min, the relationship between the displacement of the indenter and the temperature becomes a graph as shown in FIG. At this time, the temperature at the intersection E of the tangents AB and CD of the two trees shown in FIG. 6 is defined as the needle penetration temperature.

合成樹脂〔A〕を主要構成材料とするシートと合成樹脂
〔B〕とから本発明の制振複合構造体を得るには溶融プ
レス成形法により成形を行うことが必要である。制振複
合構造体を得る一つの方法としてサンドインチ射出成形
法がある。
In order to obtain the vibration-damping composite structure of the present invention from a sheet mainly composed of synthetic resin [A] and synthetic resin [B], it is necessary to perform molding by a melt press molding method. Sand inch injection molding is one method for obtaining vibration damping composite structures.

この場合、外層を構成する合成樹脂CB)を金型キャビ
ティの容積未満に射出した後、中間層の合成樹脂〔A〕
を射出する方法が一般的であるが、制振複合構造体内の
中間層の厚さを均一にすることが難しく、制振性能の良
好な制振複合構造体を安定して成形することは困難であ
る。
In this case, after injecting the synthetic resin CB) constituting the outer layer to a volume less than the volume of the mold cavity, the synthetic resin [A] for the intermediate layer is injected.
However, it is difficult to make the thickness of the intermediate layer within the damping composite structure uniform, making it difficult to stably mold a damping composite structure with good damping performance. It is.

制振複合構造体を得る別の方法として合成樹脂〔A〕を
中間層とする多層押出成形法がある。
Another method for obtaining a vibration-damping composite structure is a multilayer extrusion method using synthetic resin [A] as an intermediate layer.

この場合中間層の厚さは比較的均一となるが、この方法
はシート状等の形状の比較的単純な制振複合構造体にし
か通用できず、本発明の目的とする自動車部品、家庭用
電気機器、事務機器の部品等の複雑な形状の制振複合構
造体を成形するのには通さない、−力木発明の溶融プレ
ス成形法を用いれば、中間層の厚さを必要な値に保ちな
がら、複雑な形状の制振複合構造体を得ることが可能と
なる。
In this case, the thickness of the intermediate layer becomes relatively uniform, but this method is applicable only to relatively simple vibration-damping composite structures in the form of sheets, etc. If you use the melt press molding method invented by Riki, you can reduce the thickness of the intermediate layer to the required value, which is not suitable for molding complex-shaped vibration damping composite structures such as parts for electrical equipment and office equipment. It becomes possible to obtain a vibration-damping composite structure with a complex shape while maintaining the same.

本発明の溶融プレス成形法とは、合成樹脂〔A〕を主要
構成材料とする固体状態のシートを一対のプレス板の間
の金型内に設置した後、このシートの少なくとも一方の
面に溶融状態の合成樹脂CB)を供給し、さらにプレス
板を加圧してその間隙を小さくすることにより合成樹脂
〔B〕を冷却、賦形し、所定の成形品を得る方法である
。制振性の高い制振複合構造体を得るには合成樹脂〔A
〕を主要構成材料とするシートの両面に合成樹脂〔B〕
を設けることが望ましい、前記シートの両面に合成樹脂
〔B〕を設ける熔融プレス成形法の一例を図によって以
下に示す。
The melt press molding method of the present invention involves placing a solid sheet mainly composed of synthetic resin [A] in a mold between a pair of press plates, and then applying a molten sheet to at least one surface of the sheet. This is a method of supplying synthetic resin CB) and further compressing a press plate to reduce the gap therebetween, thereby cooling and shaping the synthetic resin [B] to obtain a predetermined molded product. To obtain a vibration damping composite structure with high vibration damping properties, synthetic resin [A
] The main constituent material is synthetic resin [B] on both sides of the sheet.
An example of a melt press molding method in which synthetic resin [B] is preferably provided on both sides of the sheet is shown below with reference to the drawings.

(イ)第1図に示すように溶融した合成樹脂〔B〕の供
給口(6)と同等もしくはそれより大きい穴を有する合
成樹脂〔A〕を主要構成材料とするシート(7)を、穴
(8)の周辺が供給口(6)の周辺に当接するようにR
Wする。
(b) As shown in Figure 1, a sheet (7) whose main constituent material is synthetic resin [A], which has holes equivalent to or larger than the supply port (6) for molten synthetic resin [B], is R such that the periphery of (8) touches the periphery of the supply port (6).
W.

(ロ)供給口(6)より、穴(8)を通してシート(7
)に対して反供給口側に熔融した合成樹脂CB)(9)
を供給しながら、又は、供給した直後に第2図のように
プレス成形して賦形する。
(b) From the supply port (6), pass the sheet (7) through the hole (8).
) The synthetic resin CB melted on the side opposite to the supply port) (9)
While supplying or immediately after supplying, press molding is performed as shown in FIG. 2 to shape the product.

(ハ)上下金型(2及び4)間の間隙を最v!賦形完了
時の間隙より大きくなるまで上又は下金型(2又は4)
を移動させた後、第3図のように溶融した合成樹脂〔B
〕(10)をシート(7)に対して供給口側に供給する
(c) Maximize the gap between the upper and lower molds (2 and 4)! Upper or lower mold (2 or 4) until the gap is larger than the gap when shaping is completed.
After moving the molten synthetic resin [B
] (10) is supplied to the supply port side with respect to the sheet (7).

(ニ)合成樹脂〔B〕(10)を供給しながら、又は、
供給した直後に第4図のようムこプレス成形して最終賦
形する。
(d) While supplying synthetic resin [B] (10), or
Immediately after being supplied, the material is press-molded as shown in FIG. 4 for final shaping.

本例においてシート(7)にあらかじめ供給口(6)と
同等もしくはそれよりも大きい穴(8)を設けた例を示
したが、シート(7)に穴(8)がないほうが望ましい
場合には、上金型(2)として、樹脂通路(5)と供給
口(6)とを有する下金型(4)と同種の構造のものを
用いることにより、シート(7)に穴のおいていない制
振複合構造体を得ることができる。
In this example, a hole (8) that is equal to or larger than the supply port (6) is provided in advance in the sheet (7), but if it is desirable that the sheet (7) does not have a hole (8), By using the upper mold (2) with the same structure as the lower mold (4), which has a resin passageway (5) and a supply port (6), no holes are formed in the sheet (7). A damping composite structure can be obtained.

〔実施例〕〔Example〕

以下本発明を実施例によって説明するが、これらは−例
であってこれらによって本発明が限定されるものではな
い。
The present invention will be explained below with reference to Examples, but these are just examples and the present invention is not limited by these.

実施例中、合成樹脂〔A〕および〔B〕の弾性率および
tanδはオリエンテンク社製レオパイブロンにて測定
した。また合成樹脂〔A〕および(C)の針侵入温度は
、魚津製作所製熱分析測定装置(TMA−30)を用い
て測定した。
In the examples, the elastic modulus and tan δ of the synthetic resins [A] and [B] were measured using a Rheopyblon manufactured by Orientenk. The needle penetration temperatures of the synthetic resins [A] and (C) were measured using a thermal analysis measuring device (TMA-30) manufactured by Uozu Seisakusho.

材料の振動吸収能を表す損失係数(η)は機械インピー
ダンス法(中央加振)による強制振動で周波数1000
Hz、温度は一20℃〜80℃で測定した。
The loss coefficient (η), which represents the vibration absorption ability of the material, is determined by forced vibration using the mechanical impedance method (center excitation) at a frequency of 1000.
Hz and temperature was measured at -20°C to 80°C.

実施例、比較例 合成樹脂〔A〕として、エチレン−エチルアクリレート
−無水マレイン酸共重合体樹脂(住化シーデイエフ化学
製、ボンダインAX8390、針侵入温度54℃)を用
い、この1帥厚シートの両側に合成樹脂(C)として厚
み100μのナイロンフィルム(東し製、レイファン[
F]No、針侵入温度216℃)をラミネートし、中間
層用シート材料とした。
Examples and Comparative Examples Ethylene-ethyl acrylate-maleic anhydride copolymer resin (manufactured by Sumika CDF Chemical, Bondine AX8390, needle penetration temperature 54°C) was used as the synthetic resin [A]. The synthetic resin (C) is a 100μ thick nylon film (made by Toshi, Rayfan [
F]No., needle penetration temperature: 216° C.) was laminated to obtain a sheet material for the intermediate layer.

外層用合成樹脂CB)として、ガラス繊維強化ナイロン
樹脂(東し製、アミランCMIOIIG45、ガラス繊
維45wt%)を用い、これを260℃に熔融した後、
第1図〜第4図の方法で中間層用シート材料の両面に1
髄の厚さに溶融プレス成形し、制振複合構造体を得た。
As the synthetic resin for the outer layer (CB), a glass fiber reinforced nylon resin (manufactured by Toshi, Amiran CMIOIIG45, glass fiber 45 wt%) was used, and after melting it at 260 ° C.
1 to 4 on both sides of the sheet material for the intermediate layer.
A damping composite structure was obtained by melt press molding to the thickness of the pith.

使用した合成樹脂〔A〕および〔B〕の主要物性値を第
1表に示す、得られた制振複合構造体の損失係数の値を
第5図に示す、第5図には比較例として、同一の形状で
ガラス繊維強化ナイロン樹脂からなる成形品の損失係数
も示した。
The main physical properties of the synthetic resins [A] and [B] used are shown in Table 1, and the values of the loss coefficients of the obtained vibration damping composite structures are shown in Figure 5. , the loss coefficient of a molded article made of glass fiber reinforced nylon resin with the same shape is also shown.

本発明の制振複合構造体とすることにより、ガラス繊維
強化ナイロン樹脂の損失係数は向上し制振性は大幅に改
良された。
By using the vibration damping composite structure of the present invention, the loss coefficient of the glass fiber reinforced nylon resin was improved and the vibration damping properties were significantly improved.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の詳細な説明する装宜断面図で
ある。 第5図は実施例の制振複合構造体および比較例の100
0Hzにおける損失係数の温度依存性を示すグラフであ
る。 第6図は針状圧子の変位と温度の関係を示すグラフであ
る。 1、上プラテン 2、 上金型 3、 下プラテン 4、 下金型 5、 樹脂通路 6、 供給口 ア、 合成樹脂〔A〕を主要構成材料とするシート 8、 中間層の穴 9.10.溶融した合成樹脂〔B〕 11.12.冷却固化後の合成樹脂〔B〕13.14.
それぞれ実施例および比較例の構造体の損失係数の温度
依存性を表す。 (以下余白) 温 度(℃) 第3図 3 G ’L4r54
1 to 4 are cross-sectional views illustrating the present invention in detail. Figure 5 shows the vibration damping composite structure of the example and the 100 vibration damping composite structure of the comparative example.
It is a graph showing the temperature dependence of the loss coefficient at 0 Hz. FIG. 6 is a graph showing the relationship between displacement of the needle indenter and temperature. 1. Upper platen 2, upper mold 3, lower platen 4, lower mold 5, resin passage 6, supply port A, sheet 8 whose main constituent material is synthetic resin [A], hole in intermediate layer 9.10. Melted synthetic resin [B] 11.12. Synthetic resin after cooling and solidification [B] 13.14.
The temperature dependence of the loss coefficient of the structures of Examples and Comparative Examples is shown, respectively. (Margin below) Temperature (°C) Fig. 3 3 G'L4r54

Claims (2)

【特許請求の範囲】[Claims] (1)2種3層以上の構造体であって、その中間層とし
て−50℃〜50℃の温度範囲におけるtanδの最大
値が0.2以上である合成樹脂〔A〕を主要構成材料と
するシートを用い、その外層として25℃における弾性
率が合成樹脂〔A〕の弾性率以上の値を有する合成樹脂
〔B〕を用い、かつ溶融プレス成形法によって得られる
ことを特徴とする制振複合構造体。
(1) A structure with two or more types and three or more layers, in which the main constituent material is a synthetic resin [A] with a maximum value of tan δ of 0.2 or more in the temperature range of -50°C to 50°C as the intermediate layer. A vibration damping method characterized by using a synthetic resin [B] having an elastic modulus at 25° C. or higher than that of the synthetic resin [A] as the outer layer, and obtained by a melt press molding method. Composite structure.
(2)−50℃〜50℃の温度範囲におけるtanδの
最大値が0.2以上である合成樹脂〔A〕を主要構成材
料とするシートを金型内に設置した後、25℃における
弾性率が合成樹脂〔A〕の弾性率以上の値を有する合成
樹脂〔B〕を、該シートの両面に溶融プレス成形法によ
って成形することを特徴とする制振複合構造体の製造法
(2) After installing a sheet made of synthetic resin [A] whose main constituent material is a synthetic resin [A] with a maximum value of tan δ of 0.2 or more in the temperature range of -50°C to 50°C, the elastic modulus at 25°C A method for producing a vibration-damping composite structure, characterized in that a synthetic resin [B] having a modulus of elasticity greater than or equal to that of the synthetic resin [A] is formed on both sides of the sheet by melt press molding.
JP24867488A 1988-09-29 1988-09-29 Vibration damping composite structural body and its manufacture Pending JPH0292540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24867488A JPH0292540A (en) 1988-09-29 1988-09-29 Vibration damping composite structural body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24867488A JPH0292540A (en) 1988-09-29 1988-09-29 Vibration damping composite structural body and its manufacture

Publications (1)

Publication Number Publication Date
JPH0292540A true JPH0292540A (en) 1990-04-03

Family

ID=17181647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24867488A Pending JPH0292540A (en) 1988-09-29 1988-09-29 Vibration damping composite structural body and its manufacture

Country Status (1)

Country Link
JP (1) JPH0292540A (en)

Similar Documents

Publication Publication Date Title
US4044188A (en) Stampable thermoplastic sheet reinforced with multilength fiber
US4946738A (en) Non-woven fibrous product
US4596736A (en) Fiber-reinforced resinous sheet
JPS60158228A (en) Fiber reinforced plastic material sheet
JPH07165984A (en) Synthetic resin molding compound to manufacture molding with decoration pattern
JP2000202978A (en) Layered composite material based on thermoplastic polymer
JPH05508360A (en) Method for manufacturing polypropylene composite
EP0916481B1 (en) Composite polyester resin moldings
US20080314517A1 (en) Alternative Polyolefin Composite Veil/Compatibilizing Mat Materials
JP2006205436A (en) Fiber reinforced composite material sheet and molded product using it
DE10014046A1 (en) Chemical compound, process for its preparation and its use in catalyst systems for the production of polyolefins
EP0296611B1 (en) Stamping-moldable material
US5989723A (en) Conductive polyester-based alloy sheet
GB2344785A (en) Conductive laminated sheet
JP2006130924A (en) Multi-layer structure
JPH0292540A (en) Vibration damping composite structural body and its manufacture
JPH0267326A (en) Fiber-reinforced thermoplastic resin composition with excellent surface flatness
JPH0999511A (en) Synthetic resin composite material and production thereof
US5149486A (en) Method for manufacturing speaker vibration member
JPS61237630A (en) Silencer for automobile
JP2005144674A (en) Monolithic molded product of metal or woody material and thermoplastic resin and its manufacturing method
JPH01115630A (en) Vibration damping composite structural body
JPH06278187A (en) Manufacture of glass fiber reinforced sheet
JP2002012093A (en) Member for forming automobile interior trim ceiling, and automobile interior trim ceiling member using it
JP3453027B2 (en) Thermal adhesive film for polyacetal resin molded product, molded product thereof, and method for producing molded product