JPH029218A - Pulse generator - Google Patents

Pulse generator

Info

Publication number
JPH029218A
JPH029218A JP63159795A JP15979588A JPH029218A JP H029218 A JPH029218 A JP H029218A JP 63159795 A JP63159795 A JP 63159795A JP 15979588 A JP15979588 A JP 15979588A JP H029218 A JPH029218 A JP H029218A
Authority
JP
Japan
Prior art keywords
state
voltage
reactor
capacitor
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63159795A
Other languages
Japanese (ja)
Inventor
Masaru Yasuda
賢 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63159795A priority Critical patent/JPH029218A/en
Publication of JPH029218A publication Critical patent/JPH029218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE:To eliminate the need for a charging high voltage power supply, to select a low voltage charging power supply and to expand the output voltage variable range by storing an electric energy by a reactor and varying the conductive state of a superconducting material so as to change the switching by means of a changeover means. CONSTITUTION:The conducting state mode of a superconducting material 2 is kept to the superconducting state. In this state, when a switch 9 is closed, a current flows through a loop of power supply 7 power impedance 8 switch 9 reactor 5 superconducting material. When a current I flowing to the reactor 5 reaches a prescribed value and the switch 9 is opened, the said current loop changes to a loop of reactor 5 superconducting material 2 diode 6. In this state, when the conducting state mode of the superconducting material 2 is selected to the normal conducting state from the superconducting state, the current flowing so far to the superconducting material 2 is commutated to the capacitor 1, which si charged. The charging voltage in this case shows a rapid voltage leading from the state of voltage 0.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、レーザ、イオンビーム等のための急峻な立
上り電圧、電流を必要とする電源として用いて好適のパ
ルス発生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a pulse generator suitable for use as a power source for lasers, ion beams, etc. that require steep rising voltages and currents.

[従来の技術] 一般に、レーザ用電源などでは、とりわけ急峻な立上り
の電圧、電流を必要とし、このようなレーザ用電源とし
て用いるパルス発生装置には、従来、第2図に示すよう
なものがある。この第2図は例えば特開昭60−961
82号公報に示された従来のパルス発生装置の回路図で
ある。
[Prior Art] In general, power sources for lasers require voltages and currents with particularly steep rises, and conventional pulse generators used as power sources for such lasers include those shown in Fig. 2. be. This figure 2 is, for example, published in Japanese Patent Application Laid-Open No. 60-961.
1 is a circuit diagram of a conventional pulse generator disclosed in Japanese Patent No. 82; FIG.

パルス発生には、何らかのスイッチング素子のスイッチ
ングが必要となるが、1つのスイッチング素子でレーザ
等の用途の急峻パルス電圧(例えば立上り時間100n
s程度)を発生させることは、スイッチング素子の電圧
、電流ピークおよび峻度の責務が大きく、従来のスイッ
チング素子、例えばサイラトロン、サイリスタ等を単独
で適用するには限界があり、レーザの大出力化に伴うパ
ルス発生装置の大容量化には、従来のスイッチング素子
の責務を軽減する補助的スイッチング手段の開発が必要
であった。
Pulse generation requires switching of some kind of switching element, but one switching element can produce a steep pulse voltage (for example, a rise time of 100 nm) for applications such as lasers.
In order to generate a voltage of about s), the voltage, current peak, and steepness of the switching element are largely responsible, and there is a limit to the use of conventional switching elements such as thyratrons and thyristors alone, and it is difficult to increase the output of the laser. The increased capacity of pulse generators associated with this has required the development of auxiliary switching means that alleviates the responsibility of conventional switching elements.

そこで、第2図に示す従来装置においては、可飽和リア
クトルSIとコンデンサC1〜C3とを組み合わせた、
いわゆる磁気スイッチを、スイッチSのための補助的ス
イッチング手段として用いている。
Therefore, in the conventional device shown in FIG. 2, a saturable reactor SI and capacitors C1 to C3 are combined.
A so-called magnetic switch is used as an auxiliary switching means for switch S.

この従来装置の動作を説明すると、直流電源HVにより
、抵抗Rを介してコンデンサC□、C2をそれぞれ端子
電圧U0まで充電した後、コンデンサC1に並列接続さ
れたスイッチSを投入することにより、スイッチS、リ
アクトルL6.コンデンサC□にループ電流が流れ、コ
ンデンサC1の端子電圧の極性が反転(LC反転方式)
するが、この過程で可飽和リアクトルS1が非飽和状態
で大きなインダクタンスを有しているものとすれば、L
記反転電圧はほぼ充電時と同じピーク値で極性のみが反
転する。従って、この時点では、可飽和リアクトルSI
には、コンデンサC□、C2の各々の端子電圧が直列加
算され、初めにコンデンサ値工、C2に充電された電圧
U0の2倍の一2Ul、の電圧が印加されることになる
が、この時点において、可飽和リアクトルSIが飽和す
るように、可飽和リアクトルSIの飽和磁束を設定しお
けば、可飽和リアクトルSIは非飽和から飽和への状態
が急変するに伴い可飽和リアクトルSIのインダグタン
ス値が大から小へ急変する9 このように可飽和リアクトルSIの磁気的スイッチング
が行なわれると、コンデンサC,,C,の直列回路に充
電された一2U、の電圧は、コンデンサC3へ移行する
。簡単のため、コンデンサc、。
To explain the operation of this conventional device, after each capacitor C□, C2 is charged to a terminal voltage U0 through a resistor R by a DC power supply HV, a switch S connected in parallel to the capacitor C1 is turned on. S, reactor L6. A loop current flows through capacitor C□, and the polarity of the terminal voltage of capacitor C1 is reversed (LC inversion method)
However, if it is assumed that the saturable reactor S1 has a large inductance in an unsaturated state during this process, then L
The reversal voltage has approximately the same peak value as during charging, and only the polarity is reversed. Therefore, at this point, the saturable reactor SI
, the terminal voltages of each of capacitors C□ and C2 are added in series, and a voltage of twice the voltage U0 charged to capacitor C2 is first applied, but this If the saturation magnetic flux of the saturable reactor SI is set so that the saturable reactor SI becomes saturated at a certain point in time, the inductance value of the saturable reactor SI changes as the state of the saturable reactor SI suddenly changes from unsaturated to saturated. suddenly changes from large to small.9 When the saturable reactor SI is magnetically switched in this way, the 12 U voltage charged in the series circuit of capacitors C, , C, transfers to capacitor C3. For simplicity, capacitor c.

C2,可飽和リアクトルSI、コンデンサC1のループ
の抵抗成分を0、コンデンサC2充電用コイルLocが
無限大と仮定すると、コンデンサC3は2tJ、に充電
されようとしくC移行)、コンデンサC)に並列に接続
された負荷R+、に電圧U、を供給する。
Assuming that the resistance component of the loop of C2, saturable reactor SI, and capacitor C1 is 0, and the capacitor C2 charging coil Loc is infinite, capacitor C3 is about to be charged to 2tJ, and the capacitor C) is parallel to the capacitor C). Supplies a voltage U, to a load R+, connected to.

以上の動作で、↑ず、コンデンサC2の極性を反転させ
る時間と、コンデンサC□、C7の直列加算電圧をコン
デンサC□に移行させる時間とは、コンデンサ値C,,
C,,C,が与λられれば前者の方が長くなるようにイ
ンダクタンスL。値を可飽和リアクトル飽和時の上記C
移行ループインダクタンスに比べ大きくすることにより
長くすることができる。この場合のスイッチSの責務は
、■電圧責務としては充電電圧U。に耐えること、■電
流峻度(dj/dt)責務としてはU、/L。、■電流
ピーク責務としてはUo・ff’;、/T、、の3つと
なることから、インダクタンスL0により、スイッチS
の責務が軽減されている。
In the above operation, ↑first, the time to reverse the polarity of capacitor C2 and the time to transfer the series added voltage of capacitors C□ and C7 to capacitor C□ are the capacitor values C, ,
If C,,C, are given λ, the inductance L is set so that the former is longer. The above C when the reactor is saturated
It can be made longer by making it larger than the transition loop inductance. The responsibility of the switch S in this case is: (1) The voltage responsibility is the charging voltage U. ■ Current steepness (dj/dt) duties are U, /L. , ■The current peak duty is Uo・ff';, /T, , so the inductance L0 causes the switch S
responsibilities are reduced.

[発明が解決しようとする課題] 従来のパルス発生装置は以上のように構成されているの
で、充電に高電圧電源(HV)が必要であること、磁気
スイッチの条件が可飽和リアクトルSIに印加される電
圧に依存するために充電電圧の可変範囲が狭く出力電圧
の可変範囲も狭いことなどの課題があった。
[Problems to be solved by the invention] Since the conventional pulse generator is configured as described above, a high voltage power supply (HV) is required for charging, and the conditions of the magnetic switch are such that the voltage applied to the saturable reactor SI is There were problems such as the variable range of the charging voltage was narrow and the variable range of the output voltage was also narrow because the charging voltage depended on the applied voltage.

この発明は上記のような課題を解消するためになされた
もので、高電圧電源が不要で、また出力電圧の可変範囲
が広くとれるパルス発生装置を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a pulse generator that does not require a high voltage power supply and can have a wide variable range of output voltage.

[課題を解決するための手段] この発明に係るパルス発生装置は、互いに並列的に接続
されたコンデンサおよび超電導体と、同超電導体に並列
的に接続されたリアクトルおよびダイオードの直列回路
と、上記ダイオードに並列的に接続された電源およびス
イッチの直列回路と、上記超電導体の導電状態を超電4
もしくは常電導に切り換える切換手段とをそなえ、パル
ス出力を上記コンデンサの端子電圧とjl、で得るもの
である。
[Means for Solving the Problems] A pulse generator according to the present invention includes a series circuit of a capacitor and a superconductor connected in parallel to each other, a reactor and a diode connected in parallel to the superconductor, and the above-mentioned series circuit. A series circuit of a power supply and a switch connected in parallel to the diode and the conductivity state of the superconductor are
Alternatively, a switching means for switching to normal conductivity is provided, and a pulse output is obtained by the terminal voltage of the capacitor and jl.

[作   用] この発明にお番ブるパルス発生装置では、切換手段によ
り超電導体を超電導状態にし、でおくと、コンデンサの
端子電圧は短絡状態で0となり、電源からの電流は、ス
イッチを閉じることにより、リアクトル、超電導体を流
れる。ここで、スイッチを開くと、電流はリアクトル、
超電導体、ダイオードのループに沿って流れ、この状態
で、切換手段により超電導体を超電導から常電導に切り
換えると、それまで超電導体、リアクトルを流れる電流
により蓄積された電気エネルギが、コンデンサに転流し
、このコンデンサは充電され、その端子電圧はOの状態
から急峻な立上りを示すとど[こなる。そして、このコ
ンデンサの端子電圧がパルス出力として用いられる。
[Function] In the pulse generator which is most suitable for the present invention, when the superconductor is brought into the superconducting state by the switching means and left in the superconducting state, the terminal voltage of the capacitor becomes 0 in a short-circuited state, and the current from the power source closes the switch. This allows the reactor to flow through the superconductor. Now, when the switch is opened, the current flows through the reactor,
The current flows along the loop of the superconductor and diode, and in this state, when the switching means switches the superconductor from superconductivity to normal conductivity, the electrical energy accumulated by the current flowing through the superconductor and reactor is commutated to the capacitor. , this capacitor is charged and its terminal voltage shows a steep rise from the O state. The terminal voltage of this capacitor is then used as a pulse output.

[発明の実施例] 以下、この発明の一実施例を図について説明する、第1
図において、1はコンデンサ、2は超電導と常電導との
2つの電導状態モードを有する超電導体で、コンデンサ
1を並列的に接続されている。また、3は超電導体2に
外部磁場を印加する外部磁場印加用コイル(切換手段)
で、このコイル3は、制御端子4,4により図示しない
制御電源からの制御電流を供給することで外部磁場を生
成し、超電導体2の電導状態を超電導もしくは常電導に
切り換えるものである。
[Embodiments of the Invention] Hereinafter, an embodiment of the present invention will be explained with reference to the drawings.
In the figure, 1 is a capacitor, 2 is a superconductor having two modes of conduction, superconductivity and normal conductivity, and the capacitor 1 is connected in parallel. In addition, 3 is an external magnetic field application coil (switching means) that applies an external magnetic field to the superconductor 2.
This coil 3 generates an external magnetic field by supplying a control current from a control power source (not shown) through control terminals 4, 4, and switches the conductivity state of the superconductor 2 to superconductivity or normal conductivity.

さらに、超電4体2には、リアクトル5およびダイオー
ド6の直列回路が並列的に接続され、ダイオード6には
、電源7.電源インピーダンス8およびスイッチ9の直
列回路が並列的に接続されている。
Furthermore, a series circuit of a reactor 5 and a diode 6 is connected in parallel to the superelectric 4 body 2, and the diode 6 is connected to a power source 7. A series circuit of a power supply impedance 8 and a switch 9 is connected in parallel.

次に、本実施例装置の動作について説明する。Next, the operation of the device of this embodiment will be explained.

まず、超電導体2の電導状態モードは超電溝状態にして
おく。つまり、コンデンサ1の両端は完全に短絡され端
子電圧はOにしておく。
First, the conduction state mode of the superconductor 2 is set to the superconducting groove state. In other words, both ends of the capacitor 1 are completely short-circuited and the terminal voltage is set to O.

この状態で、スイッチ9を閉じると、電源7→電源イン
ピ一ダンス8→スイツチ9→リアクトル5→超電導体2
のループで電流が流れる。簡単のため、電源7の電圧を
直流電圧E、電源インピーダンス8の値を抵抗R、リア
クトル5のインダクタンスをLであるとすれば、リアク
トル5に流れる電流丁は、I =(E / R)(1−
e−”)で時刻もの増加関数となる。この電流が所定の
値に達した時点でスイッチ9を開くと5上記の電流ルー
プはリアクトル5→超電導体2→ダイオード6のループ
に変わる。
In this state, when switch 9 is closed, power supply 7 → power supply impedance 8 → switch 9 → reactor 5 → superconductor 2
Current flows in the loop. For simplicity, if we assume that the voltage of the power supply 7 is the DC voltage E, the value of the power source impedance 8 is the resistance R, and the inductance of the reactor 5 is L, the current flowing through the reactor 5 is I = (E / R) ( 1-
When this current reaches a predetermined value, the switch 9 is opened, and the above current loop changes to a loop of reactor 5 → superconductor 2 → diode 6.

この状態において、制御端子4,4に接続した図示しな
い制御電源から外部磁場印加用コイル3に電流を通し、
超電導体2の電導状態モードを超電導から常電導にする
と、それまで超電導体2に流れていた電流は、コンデン
サ1に転流し、コンデンサ1は充電されることになる。
In this state, current is passed through the external magnetic field applying coil 3 from a control power source (not shown) connected to the control terminals 4, 4.
When the conductivity mode of the superconductor 2 is changed from superconductivity to normal conductivity, the current that had been flowing through the superconductor 2 is commutated to the capacitor 1, and the capacitor 1 is charged.

このときの充電電圧は、理想的にはlゴー7で−・I(
ただし、Lはリアクトル5のインダクタンス、Cはコン
デンサ1の静電容量、Iは電源7によQ供給した所定の
電流値)が得られ、電圧Oの状態から急峻な電圧の立」
ニリを示すことになる。
The charging voltage at this time is ideally l go 7 - I (
However, L is the inductance of the reactor 5, C is the capacitance of the capacitor 1, and I is the predetermined current value supplied by the power supply 7.
It will show your enthusiasm.

そして、コンデンサ1に並列に接続される負荷(図示せ
ず)に、コンデンサ1の端子電圧がパルス出力として供
給される。
The terminal voltage of the capacitor 1 is then supplied as a pulse output to a load (not shown) connected in parallel to the capacitor 1.

このように、本実施例の装置によれば、電気エネルギの
蓄積をリアクトル5に流れる電流により行なうことによ
り、充電用の高電圧電源を不要とすることができる。ま
た、スイッチングは、超電導体2の導電状態をコイル3
を用いて変化させることにより行なわれるため、任意の
時点で制御され、出力電圧の可変範囲は、充@電流のみ
に依存し、従来装置に比べて制約が大幅に少なくなる。
In this way, according to the device of this embodiment, by storing electrical energy using the current flowing through the reactor 5, a high voltage power source for charging can be made unnecessary. In addition, switching changes the conductive state of the superconductor 2 to the coil 3.
Since the output voltage is controlled at any given time, the variable range of the output voltage depends only on the charging current, and there are far fewer restrictions than in conventional devices.

なお、上記実施例では、超電導体2の電導状態を超電導
もしくは常電導に切り換える手段として、コイル3によ
る磁場を利用する場合について説明したが、ヒータによ
る加熱により超電導体2の温度を制御して、電導状態の
切換を行なってもよく、この場合も上記実施例と同様の
効果を奏する。
In addition, in the above embodiment, a case has been described in which the magnetic field by the coil 3 is used as a means for switching the conductive state of the superconductor 2 to superconductivity or normal conductivity, but it is also possible to control the temperature of the superconductor 2 by heating with a heater, The conduction state may also be switched, and in this case, the same effects as in the above embodiment can be achieved.

[発明の効果コ 以上のように、この発明によれば、電気エネルギの蓄積
をリアクトルを用いて行なうとどもに、急峻な立上りの
パルス出力を得るためのスイッチング動作を、超電導体
の導電状態を切換手段にて変化させることにより行なう
ように構成したので、充電用の高電圧電源が不要となる
ほか、スイッチングを任意の時点で制御でき、出力電圧
の可変範囲は、充ffl電流のみに依存し、その制約が
大幅に少なくなる。このように、充?!電源の低電圧化
および出力電圧可変範囲の拡大を実現でき、低コスト化
、高機能化を達成できる効果がある。
[Effects of the Invention] As described above, according to the present invention, while electrical energy is stored using a reactor, the switching operation for obtaining a steeply rising pulse output is performed by changing the conductive state of the superconductor. Since this is configured to be performed by changing the output voltage using a switching means, there is no need for a high-voltage power supply for charging, and switching can be controlled at any time, and the variable range of the output voltage depends only on the charging current. , that restriction is greatly reduced. In this way, Mitsuru? ! It is possible to lower the voltage of the power supply and expand the output voltage variable range, resulting in lower costs and higher functionality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるパルス発生装置を示
す回路図、第2図は従来のパルス発生装置を示す回路図
である。 図において、ゴー・−コンデンサ、2・・−超電導体、
3−・外部磁場印加用コイル(切換手段)、5−リアク
トル、6−・−ダイオード、7−・・電源、9−・−ス
イッチ。 なお、図中、同一の符号は同一、又は相当部分を示して
いる。
FIG. 1 is a circuit diagram showing a pulse generator according to an embodiment of the present invention, and FIG. 2 is a circuit diagram showing a conventional pulse generator. In the figure, go - capacitor, 2... - superconductor,
3-. Coil for applying external magnetic field (switching means), 5-. Reactor, 6-.- diode, 7-.. power supply, 9-.- switch. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 互いに並列的に接続されたコンデンサおよび超電導体と
、同超電導体に並列的に接続されたリアクトルおよびダ
イオードの直列回路と、上記ダイオードに並列的に接続
された電源およびスイッチの直列回路と、上記超電導体
の導電状態を超電導もしくは常電導に切り換える切換手
段とがそなえられ、パルス出力が上記コンデンサの端子
電圧として得られることを特徴とするパルス発生装置。
A series circuit of a capacitor and a superconductor connected in parallel to each other, a series circuit of a reactor and a diode connected in parallel to the superconductor, a series circuit of a power supply and a switch connected in parallel to the diode, and the superconductor 1. A pulse generator, comprising: switching means for switching a conductive state of a body to superconductivity or normal conductivity, and a pulse output is obtained as a terminal voltage of the capacitor.
JP63159795A 1988-06-27 1988-06-27 Pulse generator Pending JPH029218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63159795A JPH029218A (en) 1988-06-27 1988-06-27 Pulse generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63159795A JPH029218A (en) 1988-06-27 1988-06-27 Pulse generator

Publications (1)

Publication Number Publication Date
JPH029218A true JPH029218A (en) 1990-01-12

Family

ID=15701432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63159795A Pending JPH029218A (en) 1988-06-27 1988-06-27 Pulse generator

Country Status (1)

Country Link
JP (1) JPH029218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359979A (en) * 2001-05-31 2002-12-13 Ngk Insulators Ltd High-voltage pulse generating circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359979A (en) * 2001-05-31 2002-12-13 Ngk Insulators Ltd High-voltage pulse generating circuit

Similar Documents

Publication Publication Date Title
US4820986A (en) Inductive circuit arrangements
US5083001A (en) Waveform control device for electrical discharge machining apparatus
SG44848A1 (en) Motor control arrangement and shaver comprising such a motor control arrangement
JPS593892A (en) Power source for load of low voltage incandescent bulb or the like
JPH029218A (en) Pulse generator
US3188579A (en) Cryogenic oscillator
US5111381A (en) H-bridge flyback recirculator
US4386396A (en) Self-commutated inverter
US3932800A (en) Direct current power control circuit
US3068420A (en) Frequency discriminator
JPH09289979A (en) Power unit for magnetic resonance imaging device
JP4182306B2 (en) Forward converter with active snubber
RU2176851C2 (en) Magnetotransistor generator
US3475675A (en) Transformer regulated self-stabilizing chopper
GB2048596A (en) Device for switching D-C circuits
JPS625539B2 (en)
JPH0216114B2 (en)
RU2030095C1 (en) Pulse generator
JPS6481207A (en) Magnetic field generating device
RU2038686C1 (en) Voltage inverter
SU1732304A1 (en) Current source of electrical magnet of strong field
CA1138542A (en) Static inverter and a transformer for use in a static inverter
SU1444923A1 (en) A.c. voltage converter
JP2004194441A (en) Pulse power supply device
JPS6218971A (en) Pulse power source