JPH029185A - Device for generating fluorine gas for excimer laser - Google Patents

Device for generating fluorine gas for excimer laser

Info

Publication number
JPH029185A
JPH029185A JP16039288A JP16039288A JPH029185A JP H029185 A JPH029185 A JP H029185A JP 16039288 A JP16039288 A JP 16039288A JP 16039288 A JP16039288 A JP 16039288A JP H029185 A JPH029185 A JP H029185A
Authority
JP
Japan
Prior art keywords
fluorine gas
gas
fluorine
fluoride
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16039288A
Other languages
Japanese (ja)
Other versions
JPH0783148B2 (en
Inventor
Ryohei Tanuma
良平 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16039288A priority Critical patent/JPH0783148B2/en
Publication of JPH029185A publication Critical patent/JPH029185A/en
Publication of JPH0783148B2 publication Critical patent/JPH0783148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes

Abstract

PURPOSE:To simplify the structure, reduce size and simplify the operation by a method wherein only fluorine gas is purely generated from a device with fluorine gas generation with metallic fluoride in a heat-melting state subjected to electrolysis. CONSTITUTION:A lid of a vessel is removed, powder stannous fluoride 41 is put into a crucible 23 while sticking it fixed with an electrode rod 26 stood on its support 24, to assemble a generating device. A heater 25 is first applied with power to heat the crucible 23 so as to melt the stannous fluoride 41, maintaining it at 225 deg.C. Then by supplying specified current from a power source 29, the stannous fluoride 41 is subjected to electrolysis, and fluorine gas is generated from the electrode rod 26 serving as an anode. Although tin is gradually deposited or attached to the side of the crucible 23 serving as a cathode at this time, there is no gas generation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希ガスとふっ素ガスとをレーザ活性物質とし
て用い、紫外光等の短波長光をレーザ発振するエキシマ
レーザ装置にふっ素ガスを供給するためのガス発生装置
であって、そのふっ素ガス発生率が調節可能なものに関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention uses rare gas and fluorine gas as laser active substances, and supplies fluorine gas to an excimer laser device that lases short wavelength light such as ultraviolet light. The present invention relates to a gas generating device for fluorine gas generation, in which the rate of fluorine gas generation can be adjusted.

〔従来の技術] 上述のエキシマレーザ装置は、2000人程度0紫外光
を含む短波長光の発振に適するガスレーザ装置であって
、よく知られているようにAr、 Kr、 Xe等の希
ガス原子が励起状態でふっ素等のハロゲン原子と結び付
いたいわゆるエキシマ(励起2f1体)をレーザ活性体
とし、このエキシマの解離時に放出される自然放出光が
種となって、その後に誘導放出される光が増幅されてレ
ーザ発振作用が起こるようにしたものである。このため
、エキシマレーザ装置のレーザ発振管には、上のエキシ
マになる希ガスとしての例えばKrとハロゲンとしての
ふっ素ガスとをバッファガス例えばArで希釈した媒体
ガスを通流ないしは還流させ、ふつうは放電によってレ
ーザ活性物質としての上記のにrとふっ素とをエキシマ
に励起する。
[Prior Art] The above-mentioned excimer laser device is a gas laser device suitable for oscillating short wavelength light including about 2,000 ultraviolet light, and as is well known, it uses rare gas atoms such as Ar, Kr, and Xe. The so-called excimer (excited 2f1 body), which is bound to a halogen atom such as fluorine in an excited state, is used as a laser active substance, and the spontaneous emission light emitted when this excimer dissociates becomes a seed, and the light that is stimulated to be emitted afterwards is It is amplified to cause laser oscillation. For this reason, a medium gas prepared by diluting a rare gas such as Kr as the upper excimer and fluorine gas as a halogen with a buffer gas such as Ar is passed through or refluxed through the laser oscillation tube of an excimer laser device. The above-mentioned nitrogen and fluorine as laser active substances are excited into excimers by the discharge.

ところが、この媒体ガス中のふっ素はとくに高温下で極
めて反応性に富み、レーザ発振管内の構成材料や媒体ガ
ス中に若干台まれている不純物と容易に結合反応を起こ
すので、レーザ発振作用に伴って媒体ガス中のふっ素濃
度がかなり急速に減少し、これによる媒体ガスの組成変
化によってレーザ出力が次第に低下して行く。しかも、
ふっ素と反応した不純物はレーザ発振に好ましくない影
響を与える。従って、エキシマレーザ装置に供給する媒
体ガスは、常にそのふっ素濃度が一定でかつふっ素と反
応した不純物を含まないように制御することが望ましい
However, fluorine in this medium gas is extremely reactive, especially at high temperatures, and easily causes a bonding reaction with the constituent materials in the laser oscillation tube and impurities slightly contained in the medium gas, so it is The fluorine concentration in the medium gas decreases quite rapidly, and the resulting change in the composition of the medium gas causes the laser output to gradually decrease. Moreover,
Impurities that react with fluorine have an unfavorable effect on laser oscillation. Therefore, it is desirable to control the medium gas supplied to the excimer laser device so that its fluorine concentration is always constant and does not contain impurities that have reacted with fluorine.

かかる媒体ガスをエキシマレーザ装置に供給する最も確
実な手段は、新しい媒体ガスを常時供給することである
が、これでは通流率を許容最低限に絞ってもそれに含ま
れる高価な希ガスがむだに消費され、かつ有害なふっ素
ガスが装置から外部に放出されることになる。従って、
エキシマレーザ装置への媒体ガス供給方式としては、そ
れをレーザ装置を通して循環させながら、ふっ素と反応
した不純物を除去し、かつ反応によって消費されたふっ
素を補給して行く循環供給方式がふつう採用される。こ
の方式によれば、媒体ガスの消費量は上の175〜1/
lOに減少し、逆にその寿命を5〜10倍に延ばすこと
ができる。この際の補給用のふっ素ガスは、その消費量
に応じて専用のボンベから取り出される。
The most reliable means of supplying such a medium gas to an excimer laser device is to constantly supply new medium gas, but this wastes the expensive noble gas contained therein even if the flow rate is reduced to the minimum allowable. In addition, harmful fluorine gas will be emitted from the device to the outside. Therefore,
As a method of supplying medium gas to an excimer laser device, a circulating supply method is usually adopted in which the medium gas is circulated through the laser device, removing impurities that have reacted with fluorine, and replenishing the fluorine consumed by the reaction. . According to this method, the consumption of medium gas is 175~1/
1O, and conversely its lifetime can be extended 5-10 times. At this time, fluorine gas for replenishment is taken out from a dedicated cylinder depending on the amount consumed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、ふっ素ガスは純粋な状態でボンベに貯溜する
ことは危険度が高いので許されず、このため前述のバッ
ファガスで希釈した状態で貯溜される。従って、媒体ガ
スにふっ素ガスを補給するには、ふっ素ガスだけでなく
バッファガスも補給しなければならないことになり、こ
のバッファガスの量に相当する媒体ガスを循環供給系か
ら放出しなければならない、この放出される媒体ガス中
にはもちろん希ガスとふっ素ガスが含まれているから、
これらの高価なレーザ活性物質がむだに捨てられ、かつ
有害なふっ素ガスが放出されることになる。このように
、ふっ素ガスを希釈した状態で系に補給する限り、せっ
かく循環供給方式を採用しても必ずしも問題をすべて解
決したことにならず、その完全な解決にはふっ素ガスを
純粋な形で消費された量だけそのつと発生させることが
必要である。
However, it is not allowed to store fluorine gas in a cylinder in its pure state because it is highly dangerous, so it is stored in a state diluted with the buffer gas mentioned above. Therefore, in order to replenish the medium gas with fluorine gas, it is necessary to replenish not only the fluorine gas but also the buffer gas, and the medium gas corresponding to the amount of this buffer gas must be released from the circulating supply system. Of course, this emitted medium gas contains noble gas and fluorine gas, so
These expensive laser active materials are wasted and harmful fluorine gas is released. In this way, as long as fluorine gas is supplied to the system in a diluted state, even if a circulating supply system is adopted, it does not necessarily solve all the problems. It is necessary to generate only the amount consumed.

かかるふっ素の発生方法としては、従来から広く工業的
に用いられている溶融K)IF、の電気分解法が知られ
ている。しかし、この方法をエキシマ−レーザ装置用の
ごく小規模なふっ素ガス発生装置に利用すると、その操
作がかなり厄介でかつ装置自体にも危険が伴いやすい、
すなわち、エキシマレーザ装置はふつう2〜3気圧の媒
体ガス下で運転されるので、ふっ素の発生もこの気圧下
でしなければならず、電気分解時の陰陽画電極領域間の
圧力平衡をとるのがかなり厄介なことになる。また電気
分解の際には陽極側にふっ素ガスが、陰極側には水素ガ
スがそれぞれ発生するので、万−両ガスが混ざり合いな
いし接触するようなことがあると、即座に爆発が起こる
おそれがある。
As a method for generating such fluorine, electrolysis of molten K)IF, which has been widely used industrially, is known. However, when this method is applied to a very small-scale fluorine gas generator for excimer laser equipment, the operation is quite cumbersome and the equipment itself is likely to be dangerous.
That is, since the excimer laser device is usually operated under a medium gas of 2 to 3 atmospheres, fluorine must be generated under this atmosphere, and it is necessary to balance the pressure between the negative and negative electrode areas during electrolysis. becomes quite troublesome. Furthermore, during electrolysis, fluorine gas is generated at the anode side and hydrogen gas is generated at the cathode side, so if the two gases do not mix or come into contact, there is a risk of an immediate explosion. be.

本発明はかかる問題点の認識に立脚して、簡単かつ安全
な手段によりふっ素ガスを純粋な状態で発生させること
ができ、かつ媒体ガスの循環供給系内のふっ素の消費量
に対応してその発生率を容易に制御nすることができる
エキシマレーザ用ふっ素ガス発生装置を得ることを目的
とする。
Based on the recognition of such problems, the present invention is capable of generating fluorine gas in a pure state by a simple and safe means, and is capable of generating fluorine gas in a pure state in accordance with the amount of fluorine consumed in the medium gas circulation supply system. An object of the present invention is to obtain a fluorine gas generator for an excimer laser whose generation rate can be easily controlled.

〔課題を解決するための手段) この目的は本発明によれば、加熱溶融状態にあるふつ化
第1錫やふっ化銀等の金属ふつ化物の電気分解によりふ
っ素ガスを発生し、その際電気分解用電流の制御により
ふっ素ガス発生率が調節可能なふっ素ガス発生装置から
、エキシマレーザ装置にレーザ活性物質としてふっ素ガ
スを供給することにより達成される。
[Means for Solving the Problems] According to the present invention, this purpose is to generate fluorine gas by electrolysis of metal fluorides such as stannous fluoride and silver fluoride in a heated and molten state, and to This is achieved by supplying fluorine gas as a laser active substance to the excimer laser device from a fluorine gas generator whose fluorine gas generation rate can be adjusted by controlling the decomposition current.

上記構成中の金属ふつ化物としては、比較的融点の低い
ふつ化第1錫やふっ化銀を用いるのが実用上有利である
。それぞれの融点は、ふつ化第1錫が210〜215°
C1ふっ化銀が435”Cである。ふつ化第1錫の場合
、それを電解るつぼ中で220〜230°C程度に加熱
して溶融させ、電極棒を溶融物中に浸漬した状態で、電
極棒を陽極にるつぼを陰極にして通電することにより、
ふつ化第1錫を電気分解してt掻棒側からふっ素ガスを
発生させるのが有利である。ふつ化銀の場合は、それを
電解血中で450°C前後の温度に加熱して溶融させ、
陽極側の電極棒の先端と陰極側の電解皿との間に放電を
起こさせた状態で、ふっ化銀を電気分解してふっ素ガス
を発生させるのがを利である。いずれの場合にも、通電
ないし放電電流を制御することにより、ふっ素ガス発生
率が調節される。
As the metal fluoride in the above structure, it is practically advantageous to use stannous fluoride or silver fluoride, which have a relatively low melting point. The melting point of each is 210 to 215° for stannous fluoride.
C1 silver fluoride is 435"C. In the case of stannous fluoride, it is heated to about 220 to 230 ° C in an electrolytic crucible to melt it, and with the electrode rod immersed in the melt, By applying electricity with the electrode rod as the anode and the crucible as the cathode,
It is advantageous to electrolyze the stannous fluoride to generate fluorine gas from the scraper side. In the case of silver fluoride, it is heated to a temperature of around 450°C in electrolyzed blood to melt it.
It is advantageous to generate fluorine gas by electrolyzing silver fluoride while causing a discharge between the tip of the electrode rod on the anode side and the electrolytic plate on the cathode side. In either case, the fluorine gas generation rate is adjusted by controlling the current supply or discharge current.

本発明によるふっ素ガス発生装置を用いてエキシマレー
ザ装置用のふっ素ガスを含む媒体ガスの循環供給系を構
成する場合、このふっ素ガス発生装置をレーザ装置の運
転開始時に媒体ガスに与えるふっ電源としても、装置の
運転中に消費されたふっ素ガスの補給源としても利用す
ることができる。前者の場合、媒体ガス中のふっ素ガス
濃度をスペクトル吸収形のガス分析計により測定しなが
ら、ふっ素ガス発生装置の発生率を制御するのが望まし
いが、後者の場合はむしろエキシマレーザ装置からのレ
ーザ光出力の強度を測定し、その結果に応じてふっ素ガ
ス発生装置の発生率を調節するのが実用上有利である。
When the fluorine gas generator according to the present invention is used to configure a circulating supply system for a medium gas containing fluorine gas for an excimer laser device, the fluorine gas generator can also be used as a fluorine power source to supply the medium gas at the start of operation of the laser device. It can also be used as a replenishment source for fluorine gas consumed during operation of the device. In the former case, it is preferable to control the generation rate of the fluorine gas generator while measuring the fluorine gas concentration in the medium gas with a spectral absorption type gas analyzer, but in the latter case, it is preferable to control the generation rate of the fluorine gas generator. It is practically advantageous to measure the intensity of the light output and adjust the generation rate of the fluorine gas generator accordingly.

〔作用〕[Effect]

上述の構成かられかるように、ふっ素を含有する化合物
の電気分解によってふっ素ガスを発生させる点は従来と
同じであるが、本発明では電気分解する対象を金属ふつ
化物としたので、電気分解によるガス状の生成物が純粋
にふっ素ガスだけになる点が異なって来る。すなわち、
金属ふつ化物は加熱溶融された導電性をもつ状態で通電
により電気分解され、ふっ素ガスは陽極側から発生する
のであるが、本発明では陰極側には電気分解された金属
が析出ないしは付着するだけでガス状物が発生すること
がない。
As can be seen from the above structure, fluorine gas is generated by electrolysis of a fluorine-containing compound, which is the same as in the conventional method, but in the present invention, since the object to be electrolyzed is a metal fluoride, it is possible to generate fluorine gas by electrolysis. The difference is that the gaseous product is purely fluorine gas. That is,
The metal fluoride is electrolyzed by electricity when it is heated and molten and has conductivity, and fluorine gas is generated from the anode side, but in the present invention, the electrolyzed metal is only deposited or attached to the cathode side. No gaseous substances are generated.

このため、陰陽両極側からそれぞれ発生するガス用にガ
ス区画を分離する必要がなくなって、本発明では発生装
置の圧力容器をふっ素ガス用の単一区画とすればよいの
で、装置の構造が従来より格段に簡単になり、ガス区画
間の圧力平衡をとる煩わしさから一切解放され、かつな
ににも増してガスの混合や接触による危険が全くなくな
る利点が得られる。
For this reason, it is no longer necessary to separate gas compartments for the gas generated from the cathode and anode sides, and in the present invention, the pressure vessel of the generator can be made into a single compartment for fluorine gas, so the structure of the equipment is different from that of the conventional one. It is much simpler, there is no need for pressure balancing between the gas compartments, and above all there is no risk of gas mixing or contact.

また、ガス発生率の調節については、原理が電気分解で
あってガス発生量は通電電流に正確に比例しかつ発生の
時間遅れがほとんどないので、単純に電流値を制御する
ことによって高精度でかつ即応性よく所望の率ないし量
のふっ素ガスを発生させることができる。
In addition, the gas generation rate can be adjusted with high precision by simply controlling the current value, since the principle is electrolysis and the amount of gas generated is exactly proportional to the applied current and there is almost no time delay in generation. In addition, fluorine gas can be generated in a desired ratio or amount with good responsiveness.

〔実施例〕〔Example〕

以下、図を参照しながら本発明の詳細な説明する。第1
図は金属ふつ化物としてふつ化第1錫を用いたふっ素ガ
ス発生装置の実施例の断面を第2図はふっ化銀を用いた
実施例の断面をそれぞれ示すものである。
Hereinafter, the present invention will be described in detail with reference to the drawings. 1st
The figure shows a cross section of an embodiment of a fluorine gas generator using stannous fluoride as the metal fluoride, and FIG. 2 shows a cross section of an embodiment using silver fluoride.

第1図に示すように、ふっ素ガス発生装置並は媒体ガス
G用の入口配管60aおよび出口配管60bを備える1
個の頑丈な高圧用密閉容器を備え、ガス発生部はこの容
器内に納められる。この容器はその本体21と蓋22と
からなり、いずれもモネルメタル等のふっ素ガスへの耐
食性のよい金属材料で作られ、図示のように互いに密封
的にフランジ結合される。本体21の底部には底面より
高い位置に台部21aが設けられ、この台部21aと底
面との間は熱伝導を少なくするためやや薄肉に形成され
た筒状部21bで連結される。
As shown in FIG.
It is equipped with two sturdy high-pressure airtight containers, and the gas generator is housed within this container. This container consists of a main body 21 and a lid 22, both of which are made of a metal material with good corrosion resistance to fluorine gas, such as Monel metal, and are hermetically flange-connected to each other as shown. A platform 21a is provided at the bottom of the main body 21 at a position higher than the bottom surface, and the platform 21a and the bottom surface are connected by a cylindrical section 21b formed with a slightly thinner wall to reduce heat conduction.

電解るつぼ23は例えばニッケルの耐食性金属で作られ
た筒状体で、上記の台部21aの上面突出部に固く嵌め
込まれる。このるつぼ23の底部にはふっ素樹脂等で作
られた絶縁性でかつ耐熱性の電陽棒支え24が挿入され
る。台部21aと筒状部21bとで囲まれた本体21の
底の凹み部には、るつぼ23を加熱するためのヒータ2
5が取り付けられる。電極棒26はるつぼ23と同様に
例えばニッケル製であって、122の中央の孔に鞘状の
絶縁筒27を介してねじ込み式の環状のキャップ28に
よって取り付けられ、その下端を支え24の上面の穴に
挿入することにより安定した姿勢で固定され企。
The electrolytic crucible 23 is a cylindrical body made of a corrosion-resistant metal such as nickel, and is firmly fitted into the upper protrusion of the pedestal 21a. An insulating and heat-resistant electrode support 24 made of fluororesin or the like is inserted into the bottom of the crucible 23. A heater 2 for heating the crucible 23 is provided in a concave portion at the bottom of the main body 21 surrounded by the base portion 21a and the cylindrical portion 21b.
5 is attached. The electrode rod 26 is made of nickel, for example, like the crucible 23, and is attached to the central hole of the crucible 122 through a sheath-like insulating cylinder 27 with a screw-in annular cap 28, supporting its lower end and covering the upper surface of the electrode rod 24. It is fixed in a stable position by inserting it into the hole.

電気分解用の電源29は手動および電流指令siによっ
て電流を指定値に一定制御可能な直流電源であって、そ
の正側端子が電極棒26に1負側端子が容器本体21つ
まりるつぼ23にそれぞれ図示のように接続される。
The power supply 29 for electrolysis is a DC power supply that can control the current to a specified value manually and by the current command si, and its positive terminal is connected to the electrode rod 26, and its negative terminal is connected to the container body 21, that is, the crucible 23. Connect as shown.

この実施例においては、金属ふつ化物としてふつ化第1
錫41が用いられる。これを装置に装入するに当たって
は、容器の122を外し電極棒26をその支え24の上
に立てた状態で粉状のふつ化第1錫41をよく鵬き固め
ながらるつぼ23に入れた上で、図示の状態に装置を組
み立てる。装置の運転開始前には、まずヒータ25に通
電してるつぼ23を加熱することによりふつ化第1錫4
1を溶融させ、図示しない温度制御器によりその温度を
例えば225°Cの所定値に保つ。
In this example, the metal fluoride is
Tin 41 is used. To load this into the device, remove the container 122, stand the electrode rod 26 on its support 24, and place the powdered stannous tin 41 into the crucible 23 while thoroughly solidifying it. Assemble the device as shown. Before starting the operation of the apparatus, firstly, the heater 25 is energized to heat the crucible 23, thereby converting the sulfurized tin 4
1 is melted, and its temperature is maintained at a predetermined value of, for example, 225°C by a temperature controller (not shown).

装置の運転に当たっては、単に電源29から所定値の電
流を供給してふつ化第1錫41を電気分解することでよ
く、前述のように電気分解上の陽極である電極棒26側
からふっ素ガスが発生し、陰極であるるつぼ23側には
錫が漸次析出ないし付着するだけでガスの発生はない、
なお、この例では媒体ガスGが出入口配管からふっ素ガ
ス発生装置内を通流するものとしたが、その出入口を共
通として媒体ガスの循環供給系の配管に開口させ、装置
から発生したふっ素ガスを媒体ガスに添加するようにし
てもよい。
To operate the device, it is sufficient to simply supply a predetermined value of current from the power source 29 to electrolyze the stannous tin fluoride 41, and as described above, fluorine gas is supplied from the electrode rod 26 side, which is the anode for electrolysis. is generated, and tin is only gradually deposited or attached to the crucible 23 side, which is the cathode, and no gas is generated.
In this example, it is assumed that the medium gas G flows through the fluorine gas generator from the inlet/outlet piping, but the inlet/outlet is opened to the piping of the medium gas circulation supply system, and the fluorine gas generated from the apparatus is passed through the fluorine gas generator. It may also be added to the medium gas.

第2図に示すふっ素ガス発生装置1Qでは、上と同様に
密閉容器は台部31aと筒状部31bをもつ本体31と
その蓋32とからなるが、前のるつぼのかわりに例えば
ニッケル製の電解皿33が台部31aに取り付けられ、
その上面の凹みに金属ふつ化物としてふっ化銀42が装
入される。ニッケル等からなる電極棒36も前と同様に
1132の孔に絶縁筒37を介して環状キャップ38に
より取り付けられるが、この実施例では電解が放電電流
によってなされるので、その放電電圧を調整しかつ運転
中の放電によるその先端の若干の消耗を補償できるよう
に、電極棒36にはねじが切られており、図で矢印tl
Dで示したように環状キャップを緩めてその上下方向位
置を微調整できるようになっている。装置の運転中の電
極棒36の先端とふつ化1I42との間のギャップはふ
つう数■を若干下回る程度とされる。
In the fluorine gas generator 1Q shown in FIG. 2, the closed container consists of a main body 31 having a base part 31a and a cylindrical part 31b and a lid 32, as in the above case, but instead of the previous crucible, for example, a nickel-made one is used. An electrolytic dish 33 is attached to the stand 31a,
Silver fluoride 42 is charged as a metal fluoride into the recess on the upper surface. The electrode rod 36 made of nickel or the like is also attached to the hole 1132 via the insulating cylinder 37 with the annular cap 38 as before, but in this embodiment, electrolysis is performed by the discharge current, so the discharge voltage is adjusted and The electrode rod 36 is threaded, as indicated by the arrow tl in the figure, to compensate for some wear on its tip due to discharge during operation.
As shown in D, the annular cap can be loosened to finely adjust its vertical position. During operation of the device, the gap between the tip of the electrode rod 36 and the normalized 1I42 is generally a little less than a few square meters.

電源39は前の実施例よりは高電圧の数にνの直流パル
スtaであり、例えば数七程度のパルス率を制御するご
とによって電解電流を一定に保つようになっている。こ
の電′a39が手動でないしは電流指令Siを受けてこ
の制御動作を行なうのは前と同じである。ヒータ35は
前の実施例と同様でよい。
The power source 39 is a DC pulse ta with a higher voltage than the previous embodiment, and the electrolytic current is kept constant by controlling the pulse rate of, for example, several sevens. As before, this control operation is performed manually by the electric current a39 or in response to the current command Si. Heater 35 may be similar to the previous embodiment.

ただしこの実施例では、装置の運転開始後はふっ化銀が
放電電力によってかなりの程度直接に加熱されるので、
装置の加熱効率は前の実施例よりも良好になる。
However, in this embodiment, after the apparatus starts operating, the silver fluoride is directly heated to a considerable extent by the discharge power.
The heating efficiency of the device will be better than the previous embodiment.

ふっ電源としてふつ化銀を用いるとき、このように装置
を放電式にするのは、電極棒に用いられているニッケル
のイオン化1頃向がふっ化銀に含まれる銀よりもはるか
に太き(、電極棒を溶融ふっ化銀中に浸漬したのではニ
ッケルが溶出してその消耗が著しくなるからである。こ
の実施例における装置の運転およびその手順は、ふっ化
銀の温度が450°C前後に保たれる点を除いて前の実
施例と同様である。
When silver fluoride is used as a fluoride source, the reason why the device is of a discharge type is because the ionization direction of the nickel used in the electrode rod is much thicker than the silver contained in silver fluoride ( This is because if the electrode rod is immersed in molten silver fluoride, nickel will be eluted and its consumption will be significant. Similar to the previous embodiment except that .

第3図は本発明によるふっ素ガス発生装置のエキシマレ
ーザ装置の媒体ガスi環供給系への適用例を示すもので
ある。この実施例では例えば第1図のふっ素ガス発生装
置赳が、媒体ガスの系への初期充填と系内の消費ふっ素
ガスの補給に用いられる。以下この実施例では、媒体ガ
ス中のレーザ活性物質にはこのふっ素のほかに希ガスと
してKrが用いられ、またバッファガスとしてArが用
いられるものとする。
FIG. 3 shows an example of application of the excimer laser device of the fluorine gas generator according to the present invention to a medium gas i-ring supply system. In this embodiment, for example, the fluorine gas generator shown in FIG. 1 is used to initially fill the system with medium gas and to replenish consumed fluorine gas in the system. In this embodiment, in addition to fluorine, Kr is used as a rare gas in addition to fluorine as the laser active substance in the medium gas, and Ar is used as a buffer gas.

第3図の上部に示されたエキシマレーザ装置10内には
、両端が透明な窓12で閉じられたレーザ管11とその
外側の部分反射ミラー14および全反射ミラー15が設
けられており、これらによってレーザ共振系が形成され
ている。レーザ管11は高圧を源13により放電励起さ
れ、レーザ光りを部分ミラー14側から出力する。
Inside the excimer laser device 10 shown in the upper part of FIG. 3, there is provided a laser tube 11 whose both ends are closed with transparent windows 12, and a partial reflection mirror 14 and a total reflection mirror 15 on the outside thereof. A laser resonant system is formed by this. The laser tube 11 is discharge excited by a high voltage source 13 and outputs laser light from the partial mirror 14 side.

レーザ装置10の下側に示された循環供給系は媒体ガス
Gをレーザ管11に流すためのもので、配管60で結ば
れたその環状の経路には、媒体ガスを循環させるための
ファン61と、図では枠で簡略に示された本発明による
ふっ素ガス発生装置t20と、不純物除去装置50とが
含まれる。この内の不純物除表装置50は、媒体ガスG
から固形の不純物を除くフィルタ51と低温トラップと
からなり、後者は低温容器52をジャケット53との間
に満たした液体窒素54により冷却して、媒体ガスG内
のガス状不純物をa線除去するものである。
The circulation supply system shown on the lower side of the laser device 10 is for flowing the medium gas G into the laser tube 11, and the annular path connected by the pipe 60 has a fan 61 for circulating the medium gas. , a fluorine gas generator t20 according to the present invention, which is simply shown by a frame in the figure, and an impurity removal device 50. Among these, the impurity removal device 50 is equipped with a medium gas G
It consists of a filter 51 for removing solid impurities from the medium gas G and a low-temperature trap, and the latter cools the low-temperature container 52 with liquid nitrogen 54 filled between it and the jacket 53 to remove gaseous impurities in the medium gas G by the a-line. It is something.

さらにこの循環供給系には、それに媒体ガスGを初期充
填する際に系内の空気を排出するための排出弁62と、
図の左下部に示された媒体ガスG中のKrおよび^r用
の供給系とが接続される。後者にはこれら希ガスの貯溜
用ボンベ63および64.それらの減圧弁63aおよび
64a+?JL量調整弁65および66、締切弁67等
が含まれる。
Furthermore, this circulating supply system includes a discharge valve 62 for discharging air within the system when initially filling it with medium gas G;
A supply system for Kr and ^r in the medium gas G shown at the lower left of the figure is connected. The latter includes cylinders 63 and 64 for storing these rare gases. Those pressure reducing valves 63a and 64a+? JL amount adjustment valves 65 and 66, a shutoff valve 67, etc. are included.

媒体ガスの初期充填に当たっては、まず排出弁62を介
して循環供給系をよく排気した上で、上記の希ガス供給
系の弁を開いて圧力計72を見ながら流!it調整弁6
5および66を操作して、ArおよびKrを所定の圧力
および4度になるように循環供給系に充填する。この希
ガスの初期充填終了後は締切弁67が締め切られ、循環
供給系は外部から完全に閉鎖された閉ループとされる。
When initially filling the medium gas, first thoroughly exhaust the circulation supply system through the exhaust valve 62, then open the valve of the rare gas supply system and let the gas flow while watching the pressure gauge 72. it adjustment valve 6
5 and 66 to fill the circulation supply system with Ar and Kr to a predetermined pressure and 4 degrees. After the initial filling of the rare gas is completed, the shutoff valve 67 is closed, and the circulating supply system is made into a closed loop that is completely closed from the outside.

ついで、ファン61で系内のガスを循環させながらふっ
素ガス発生装置鎚を手動で運転してふっ素を媒体ガスに
添加し、前と同様に圧力計72を見ながら媒体ガス内の
ふっ素濃度を所定値まで上げる。この初期充填終了時の
媒体ガス中の成分比は、例えばArが96.5%、 K
rが3.0%、ふっ素が0.5%とされる。
Next, while circulating the gas in the system with the fan 61, fluorine is added to the medium gas by manually operating the fluorine gas generator hammer, and the fluorine concentration in the medium gas is set to a predetermined value while watching the pressure gauge 72 as before. raise it to the value. The component ratio in the medium gas at the end of this initial filling is, for example, 96.5% Ar, K
It is assumed that r is 3.0% and fluorine is 0.5%.

エキシマレーザ装置lOの運転時のふっ素ガス発生装置
■のガス発生率は、原理上はレーザ装置および循環供給
系内で漸次消費されて行(分だけのふっ素を補給するよ
うに調節すればよいのであるが、この実施例では便宜上
レーザ光りの強度を一定にするように調節される。光検
出器71はこのレーザ光強度の検出用で、小さなミラー
71aからレーザ光束のごく一部を受け、その検出信号
Sdを制御回路70に与える。この制御回路70はこの
検出信号Sdの値をあらかじめそれに設定された目標値
と比較し、レーザ光強度を一定にするように電流指令5
1をふっ素ガス発生装置銭に与えて、そのふっ素ガス発
生率を!J1節させる。
In principle, the gas generation rate of the fluorine gas generator (■) during the operation of the excimer laser device (10) should be adjusted so that the amount of fluorine that is gradually consumed in the laser device and the circulation supply system is replenished. However, in this embodiment, the intensity of the laser beam is adjusted to be constant for convenience.The photodetector 71 is used to detect the intensity of the laser beam, and receives a small portion of the laser beam from a small mirror 71a. The detection signal Sd is given to the control circuit 70.The control circuit 70 compares the value of the detection signal Sd with a target value set in advance, and issues a current command 5 to keep the laser light intensity constant.
1 to the fluorine gas generator, and its fluorine gas generation rate! Have J1 section.

媒体ガス中のふっ素ガス濃度を検出するよりレーザ光の
強度を検出する方がずっと簡単で、上のようにレーザ光
強度に基づいてふっ素ガス発生率を調節することにより
、媒体ガス中のふっ素ガス1度を実質上一定に制御する
ことができる。がかるレーザ光強度ないし媒体ガス中の
ふっ素ガス濃度に基づく制御に際して、本発明によるふ
っ素ガス発生装置は与えられた電流指令Siの値に正確
に比例した率でふっ素ガスを時間遅れなく発生するので
、制御の行き過ぎや不足が起こらず、循環供給系の動作
を安定化させることができる。
It is much easier to detect the intensity of laser light than to detect the fluorine gas concentration in the medium gas, and by adjusting the fluorine gas generation rate based on the laser light intensity as described above, it is possible to detect the fluorine gas in the medium gas. 1 degree can be controlled to be substantially constant. During control based on the laser light intensity or the fluorine gas concentration in the medium gas, the fluorine gas generator according to the present invention generates fluorine gas without time delay at a rate exactly proportional to the value of the given current command Si. The operation of the circulating supply system can be stabilized without over- or under-control.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によるエキシマレーザ用ふ
っ素ガス発生装置では、加熱溶融状態にある金属ふつ化
物を電気分解してふっ素ガスを発生させることにより、
装置からはふっ素ガスのみが純粋に発生されるようにし
たので、ふっ素ガス以外のガスの発生が同時に発生され
る従来装置に較べて、装置の構成を格段に簡単かつ小形
化し、その運転操作を容易にし、しかも発生ガス間の混
合や接触による爆発等の危険を全くなくすことができる
。また本発明装置は、電気分解用電流の制御によりその
ふっ素ガス発生率を直接に調節できるので、エキシマレ
ーザ装置の媒体ガス循環供給系に組み込んだ場合、所望
の量のふっ素ガスを正確かつ時間遅れなく発生すること
により、系の制御安定性を向上させてレーザ装置の性能
を高めることができる。
As explained above, in the fluorine gas generator for excimer laser according to the present invention, fluorine gas is generated by electrolyzing a metal fluoride in a heated molten state.
Since the device only generates pure fluorine gas, the configuration of the device is much simpler and smaller compared to conventional devices that generate gases other than fluorine gas at the same time, making it easier to operate. Moreover, it is possible to completely eliminate the risk of explosion due to mixing or contact between generated gases. In addition, since the device of the present invention can directly adjust the fluorine gas generation rate by controlling the electrolytic current, when it is incorporated into the medium gas circulation supply system of an excimer laser device, it is possible to accurately and time-delay the desired amount of fluorine gas. By generating this without any problem, the control stability of the system can be improved and the performance of the laser device can be improved.

さらに実施例かられかるように、本発明装置はUIi環
供給系の媒体ガスの初期充填時にもレーザ装置の運転中
の媒体ガスへのふっ素ガスの補給にも使用することがで
きるので、本発明の実施によりふっ素ガスをボンベの形
で貯溜する必要をなくすことができる。しかも、ふっ素
ガスが前述のように純粋な状態で発生されるので、媒体
ガスへのふっ素ガスの補給に際して従来の希釈されたふ
っ素ガスをボンベから補給する場合のように、補給時に
媒体ガスを循環供給系外に放出する要がなくなり、これ
によって高価な希ガスのむだな消費やふっ素ガスの放出
による公害発生のおそれをなくすことができる。
Furthermore, as can be seen from the examples, the present invention can be used both at the time of initial filling of the medium gas in the UIi ring supply system and for replenishing the medium gas with fluorine gas during operation of the laser device. By implementing this, it is possible to eliminate the need to store fluorine gas in the form of a cylinder. Moreover, since the fluorine gas is generated in a pure state as mentioned above, the medium gas is circulated during replenishment, unlike the conventional case of replenishing diluted fluorine gas from a cylinder. There is no need to release it outside the supply system, which eliminates the wasteful consumption of expensive rare gases and the risk of pollution caused by the release of fluorine gas.

このように本発明は、エキシマレーザ装置の運転経費を
削減し、公害等のトラブルを未然に防止し、かつ媒体ガ
ス循環供給系の構成を簡単化しながら、その運転性能を
高める効果を奏することができ、この種レーザ装置の実
用化と発展に貢献することが期待される。
As described above, the present invention has the effect of reducing operating costs of an excimer laser device, preventing troubles such as pollution, and simplifying the configuration of the medium gas circulation supply system while improving its operating performance. It is expected that this will contribute to the practical application and development of this type of laser device.

【図面の簡単な説明】[Brief explanation of the drawing]

図はすべて本発明に関し、第1図および第2図は本発明
によるエキシマレーザ用ふっ素ガス発生装置のそれぞれ
異なる実施例を示す断面図、第3図はこれをエキシマレ
ーザ装置の媒体ガス循環供給系に通用した例を示す系の
構成図である。図において、 lO;エキシマレーザ装置、鎚:ふっ素ガス発生装置、
23:電解るつぼ、25;ヒータ、26:電極棒、29
;電解用電源、30:ふっ素ガス発生装!、33:電解
皿、35:ヒータ、36:電極棒、39:電解用電源、
41:金属ふつ化物としてのふつ化第1錫、42:金属
ふつ化物としてのふつ化銀、50:不純物除去装!、7
0:制御n回路、G:媒体カス、Lニレ−”l’Sd 
; レーザ光強度検出信号、 ふっ素ガス 第3図
The figures all relate to the present invention; FIGS. 1 and 2 are cross-sectional views showing different embodiments of the fluorine gas generator for excimer laser according to the present invention, and FIG. FIG. In the figure, lO: excimer laser device, hammer: fluorine gas generator,
23: Electrolytic crucible, 25; Heater, 26: Electrode rod, 29
; Power source for electrolysis, 30: Fluorine gas generator! , 33: Electrolytic dish, 35: Heater, 36: Electrode rod, 39: Power source for electrolysis,
41: Stannous fluoride as a metal fluoride, 42: Silver fluoride as a metal fluoride, 50: Impurity removal device! ,7
0: Control n circuit, G: Media waste, L elm-"l'Sd
; Laser light intensity detection signal, fluorine gas Figure 3

Claims (1)

【特許請求の範囲】  1)エキシマレーザ装置に供給すべきレーザ活性物質
としてのふっ素ガスを調節可能な率で発生する装置であ
って、加熱溶融状態にある金属ふっ化物の電気分解によ
りふっ素ガスを発生させ、電気分解用電流の制御により
ふっ素ガス発生率を調節し得るようにしたことを特徴と
するエキシマレーザ用ふっ素ガス発生装置。  2)請求項1記載の装置において、金属ふっ化物にふ
っ化第1錫を用いることを特徴とするエキシマレーザ用
ふっ素ガス発生装置。  3)請求項1記載の装置において、金属ふっ化物にふ
っ化銀を用いることを特徴とするエキシマレーザ用ふっ
素ガス発生装置。
[Claims] 1) A device for generating fluorine gas as a laser active material to be supplied to an excimer laser device at an adjustable rate, the device generating fluorine gas by electrolysis of a metal fluoride in a heated molten state. A fluorine gas generator for an excimer laser, characterized in that the rate of fluorine gas generation can be adjusted by controlling the electrolysis current. 2) A fluorine gas generating device for an excimer laser according to claim 1, wherein the metal fluoride is stannous fluoride. 3) A fluorine gas generating device for an excimer laser according to claim 1, wherein silver fluoride is used as the metal fluoride.
JP16039288A 1988-06-28 1988-06-28 Fluorine gas generator for excimer laser Expired - Lifetime JPH0783148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16039288A JPH0783148B2 (en) 1988-06-28 1988-06-28 Fluorine gas generator for excimer laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16039288A JPH0783148B2 (en) 1988-06-28 1988-06-28 Fluorine gas generator for excimer laser

Publications (2)

Publication Number Publication Date
JPH029185A true JPH029185A (en) 1990-01-12
JPH0783148B2 JPH0783148B2 (en) 1995-09-06

Family

ID=15713966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16039288A Expired - Lifetime JPH0783148B2 (en) 1988-06-28 1988-06-28 Fluorine gas generator for excimer laser

Country Status (1)

Country Link
JP (1) JPH0783148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609540B1 (en) 1999-06-24 2003-08-26 Showa Denko Kabushiki Kaisha Method and apparatus for supplying fluorine gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609540B1 (en) 1999-06-24 2003-08-26 Showa Denko Kabushiki Kaisha Method and apparatus for supplying fluorine gas

Also Published As

Publication number Publication date
JPH0783148B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
KR100485490B1 (en) Apparatus for generating fluorine gas
JP3645495B2 (en) Fluorine gas generator
US6780304B1 (en) Electrochemical generation of carbon dioxide and hydrogen from organic acids
JPH02112292A (en) Gas controller of halogen gas laser
Mizuno et al. Production of heat during plasma electrolysis in liquid
JP2004169123A (en) Fluorine gas generator
JP6861550B2 (en) Hydrogen mixed gas generator and hydrogen mixed gas generation method
TWI248990B (en) Fluorine producer and level control method of electrolyte thereof
JPH029185A (en) Device for generating fluorine gas for excimer laser
JPH0756905B2 (en) Excimer laser device
US7448427B2 (en) Fine particle generating apparatus, casting apparatus and casting method
JPS5993893A (en) Alumina concentration watching control device for aluminum electrolytic refinement
JP3637039B2 (en) Hydrogen gas generation method and hydrogen gas generator
CA3000477A1 (en) Device for converting a liquid into vapour and associated method for regulating a heating power
US4347613A (en) Method and apparatus for convection control of metallic halide vapor density in a metallic halide laser
JP2009191362A (en) Apparatus for molten salt electrolysis and method for producing fluorine gas
Benarie Enrichment of the 6Li-isotope in dekagram quantities by electromigration in molten lithium chloride
JP2000160383A (en) Gas generator and electrolytic cell
JPH01115182A (en) Medium gas control apparatus for excimer laser
JPS6122678A (en) Gas laser unit
JPH1066973A (en) Electrolyzed water forming device
Tsuda et al. Practical small-scale hollow-cathode CW metal-ion lasers
JPH0480551B2 (en)
JPH02201983A (en) Fluorine gas supplying device for arf laser and krf laser
JPH04212486A (en) Gas feeding method for excimer laser and feeding device