JPH029151Y2 - - Google Patents

Info

Publication number
JPH029151Y2
JPH029151Y2 JP18534685U JP18534685U JPH029151Y2 JP H029151 Y2 JPH029151 Y2 JP H029151Y2 JP 18534685 U JP18534685 U JP 18534685U JP 18534685 U JP18534685 U JP 18534685U JP H029151 Y2 JPH029151 Y2 JP H029151Y2
Authority
JP
Japan
Prior art keywords
gear
fixed
fixed gear
reduction mechanism
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18534685U
Other languages
Japanese (ja)
Other versions
JPS6292339U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18534685U priority Critical patent/JPH029151Y2/ja
Publication of JPS6292339U publication Critical patent/JPS6292339U/ja
Application granted granted Critical
Publication of JPH029151Y2 publication Critical patent/JPH029151Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)
  • Retarders (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は歯車減速機構に係り、特に回転駆動装
置に好適な歯車減速機構に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a gear reduction mechanism, and particularly to a gear reduction mechanism suitable for a rotational drive device.

従来の技術 従来よりダツシユポツトを利用したシヨツクア
ブソーバがある。このシヨツクアブソーバにおい
てはダツシユポツトのピストンに設けられた流通
孔の径に応じて緩衝効率が変化する。この現象を
利用することにより、例えば第2図に示す如く、
ピストンに設けられた径の異なる流量孔1,2,
3を有する管4と、この管4内に設けられる回転
部材5とにより緩衝効率を可変する機構がある。
このものは回転部材5を矢印A1又はA2方向に例
えば90度回転させて流通孔1〜3のうちの一を選
択し、ピストンにより隔離された管4の内方に通
じるシリンダの一方の室と管4の外方に通じるシ
リンダの他方の室との流体の流通量を可変させて
緩衝効率を可変する。上記の回転部材5は回転駆
動装置により駆動せしめられる。
BACKGROUND TECHNOLOGY There has been a shock absorber using a dart pot. In this shock absorber, the buffering efficiency changes depending on the diameter of the communication hole provided in the piston of the dart pot. By utilizing this phenomenon, for example, as shown in Figure 2,
Flow holes 1, 2 with different diameters provided in the piston,
There is a mechanism for varying the buffering efficiency using a tube 4 having a diameter of 3 and a rotating member 5 provided within the tube 4.
In this device, one of the communication holes 1 to 3 is selected by rotating the rotating member 5, for example, 90 degrees in the direction of the arrow A1 or A2 , and one of the cylinders communicating with the inside of the pipe 4 separated by the piston is selected. The buffering efficiency is varied by varying the amount of fluid flowing between the chamber and the other chamber of the cylinder that communicates with the outside of the pipe 4. The rotating member 5 described above is driven by a rotational drive device.

従来の回転駆動装置は平歯車輪列による歯車減
速機構を用いてモータの回転を減速し、回転部材
5を回転せしめるに足るだけのトルクを得てい
る。また、回転部材5の回転停止位置は正確でな
ければならず、回転部材5の回転停止時には歯車
減速機構に大なる荷重がかかる。
The conventional rotary drive device uses a gear reduction mechanism with a spur gear wheel train to reduce the rotation of the motor and obtain sufficient torque to rotate the rotating member 5. Further, the rotation stop position of the rotating member 5 must be accurate, and a large load is applied to the gear reduction mechanism when the rotating member 5 stops rotating.

考案が解決しようとする問題点 従来の平歯車輪列による歯車減速機構では、減
速比が大になる程歯車数が多くなり、歯車数を増
加させないとすると噛合する歯車の歯車比を大き
くとる必要がある。このためモータ回転力を回転
部材5に伝達する効率が悪化し、発生ノズルが大
となり、更に歯車減速機構を小型化すると各歯車
の加工性及び耐久性が悪化するという問題点があ
つた。
Problems that the invention aims to solve In a conventional gear reduction mechanism using a spur gear train, the number of gears increases as the reduction ratio increases, and if the number of gears is not increased, it is necessary to increase the gear ratio of the gears that mesh. There is. For this reason, the efficiency of transmitting the motor rotational force to the rotating member 5 deteriorates, the generation nozzle becomes large, and furthermore, when the gear reduction mechanism is downsized, there are problems in that the workability and durability of each gear deteriorate.

そこで、本考案は中間歯車とこれに噛合する固
定歯車及び従動歯車と、固定歯車にスリツプ機構
を設けることにより、上記の問題点を解決した歯
車減速機構を提供することを目的とする。
Therefore, an object of the present invention is to provide a gear reduction mechanism that solves the above problems by providing an intermediate gear, a fixed gear and a driven gear that mesh with the intermediate gear, and a slip mechanism on the fixed gear.

問題点を解決するための手段 本考案において、中間歯車は回転する駆動軸に
偏心して取付けられており、固定歯車に噛合して
上記駆動軸の歯車により回転及び公転を行なう。
また、中間歯車は固定歯車に対して歯数差を有す
る従動歯車に噛合しており、従動歯車は上記歯数
差に応じて減速回転し、従動歯車に固定された出
力回転軸が回転する。上記固定歯車とこれを挿嵌
支持する固定部材との間には、固定歯車を固定部
材より離脱する方向に付勢するバネ部材と、固定
部材に螺合挿入されて固定部材外周のV字状溝に
係合し挿入量に応じ固定歯車をバネ部材の付勢に
抗して固定部材に挿嵌圧接するネジ部材とよりな
るスリツプ機構を設けられており、中間歯車より
固定歯車に加わるトルクが所定値を越えたとき固
定歯車を固定部材に対して回転せしめる。
Means for Solving the Problems In the present invention, the intermediate gear is eccentrically attached to the rotating drive shaft, meshes with the fixed gear, and rotates and revolves by the gear of the drive shaft.
Further, the intermediate gear meshes with a driven gear having a difference in the number of teeth with respect to the fixed gear, the driven gear rotates at a reduced speed according to the difference in the number of teeth, and an output rotating shaft fixed to the driven gear rotates. Between the fixed gear and the fixed member that inserts and supports the fixed gear, there is a spring member that biases the fixed gear in a direction to separate from the fixed member, and a spring member that is threadedly inserted into the fixed member to form a V-shaped shape on the outer periphery of the fixed member. A slip mechanism is provided with a screw member that engages with the groove and presses the fixed gear against the fixed member against the bias of the spring member according to the insertion amount, so that the torque applied to the fixed gear from the intermediate gear is reduced. When the predetermined value is exceeded, the fixed gear is rotated relative to the fixed member.

作 用 本考案においては、歯車数が少なく小型化が可
能でノイズの発生も小となる。また、回転停止時
にはバネ部材とネジ部材とよりなるスリツプ機構
があるため、各歯車及びその回転軸に過荷重が加
わらず耐久性が向上する。
Effects In the present invention, the number of gears is small, making it possible to downsize and generate less noise. Furthermore, since there is a slip mechanism consisting of a spring member and a screw member when rotation is stopped, no overload is applied to each gear and its rotating shaft, improving durability.

実施例 第1図は本考案になる回転駆動装置の歯車減速
機構の一実施例の断面図を示す。同図中、11は
モータにより駆動される駆動軸である。駆動軸1
1の先端には偏心した位置に孔が穿設され、この
孔に中間歯車軸12が圧入固定されている。中間
歯車13は上記中間歯車軸12に回転自在に支持
されており、その外周に設けられた歯車の歯数は
例えば「30」程度である。固定歯車14は駆動軸
11を中心とする内歯車であり、その歯数は例え
ば「99」である。固定歯車14はその外側形状に
対応した内側形状を有する固定部材15に挿嵌支
持されている。固定歯車14は中間歯車13に対
して転位した状態で噛合している。
Embodiment FIG. 1 shows a sectional view of an embodiment of a gear reduction mechanism of a rotary drive device according to the present invention. In the figure, 11 is a drive shaft driven by a motor. Drive shaft 1
A hole is bored at an eccentric position at the tip of the gear 1, and an intermediate gear shaft 12 is press-fitted into this hole. The intermediate gear 13 is rotatably supported by the intermediate gear shaft 12, and the number of teeth of the gear provided on its outer periphery is, for example, about 30. The fixed gear 14 is an internal gear centered on the drive shaft 11, and has, for example, 99 teeth. The fixed gear 14 is fitted and supported by a fixed member 15 having an inner shape corresponding to its outer shape. The fixed gear 14 meshes with the intermediate gear 13 in a shifted state.

従動歯車16は内径及び外径寸法が略固定歯車
14のそれと同一の内歯車であり、その歯数は固
定歯車14より多く例えば「102」とされている。
従動歯車16は駆動軸11と軸中心が一致する出
力回転軸17に固定されており、中間歯車13は
従動歯車16に対して転位なく噛合している。出
力回転軸17は固定部18に設けられたブツシユ
19に軸承されている。上記出力回転軸17によ
り第2図示の回転部材5が回転駆動せしめられ
る。
The driven gear 16 is an internal gear whose inner and outer diameter dimensions are substantially the same as those of the fixed gear 14, and the number of teeth thereof is greater than that of the fixed gear 14, for example, "102".
The driven gear 16 is fixed to an output rotation shaft 17 whose shaft center coincides with the drive shaft 11, and the intermediate gear 13 meshes with the driven gear 16 without displacement. The output rotating shaft 17 is supported by a bush 19 provided on the fixed part 18. The output rotating shaft 17 rotates the rotating member 5 shown in the second figure.

ところで、固定歯車14の外周には断面略V字
状の溝14aが穿設され、また、固定歯車14の
駆動軸11を挿通した底部に円周上に凹部14b
が穿設されている。固定歯車14は凹部14b内
に波状バネ21を収納して固定部材15に挿嵌さ
れる。このとき固定歯車14は波状バネ21によ
り固定部材15より離脱する方向(図中上部方
向)に付勢される。固定歯車14を波状バネ21
に抗して固定部材15に挿嵌したとき、固定部材
15の溝14aに対応する位置で、かつ駆動軸1
1を中心として回転角度120度毎の計3箇所には、
ネジ穴15aが穿設されている。このネジ穴15
aには先端が略円錐状のネジ22が螺合挿入され
て溝14aに係合している。上記の波状バネ21
及びネジ22等によりスリツプ機構が構成されて
いる。第3図Aに示す如くネジ22の挿入量が大
なるとき、波状バネ21による固定歯車14の溝
14aのネジ22に対する圧接力は大であり、固
定歯車14が固定部材15に対して回転する際の
摩擦力は大となる。また第3図Bに示す如くネジ
22の挿入量が小なるとき溝14aのネジ22に
対する圧接力は小であり、固定歯車14の摩擦力
は小となる。
Incidentally, a groove 14a having a substantially V-shaped cross section is bored on the outer periphery of the fixed gear 14, and a recess 14b is formed on the circumference at the bottom through which the drive shaft 11 of the fixed gear 14 is inserted.
is drilled. The fixed gear 14 accommodates the wave spring 21 in the recess 14b and is inserted into the fixed member 15. At this time, the fixed gear 14 is biased by the wave spring 21 in a direction in which it is separated from the fixed member 15 (in the upper direction in the figure). Fixed gear 14 is connected to wavy spring 21
When inserted into the fixing member 15 against the
There are a total of 3 locations at every 120 degrees of rotation angle around 1.
A screw hole 15a is bored. This screw hole 15
A screw 22 having a substantially conical tip is screwed into the groove 14a and engaged with the groove 14a. The above wavy spring 21
A slip mechanism is constituted by the screws 22 and the like. When the insertion amount of the screw 22 is large as shown in FIG. The frictional force becomes large. Further, as shown in FIG. 3B, when the insertion amount of the screw 22 is small, the pressing force of the groove 14a against the screw 22 is small, and the frictional force of the fixed gear 14 is small.

また、固定歯車14の周縁面14cには回転角
度120度毎の計3箇所に、第4図に示す如き円筒
状の孔14dが穿設されている。孔14dにはグ
リース等の潤滑剤が充填された後、孔14dと同
径の鋼球23が挿入される。孔14dの深さはそ
の径の略1/2であり、鋼球23は孔14dより突
出している。従動歯車16の周縁面16aには、
駆動軸11及び出力回転軸17の軸中心より鋼球
23の中心までの距離を半径とする溝16bが穿
設されている。溝16bはその断面が鋼鉄球23
の径より径の円弧状で、深さは鋼球23の径の1/
2未満である。従動歯車16は溝16bを鋼球2
3に当接させて、周縁面16aは周縁面14cに
僅かな距離で離間対向しており、鋼球23を用い
たスラスト軸受構造が構成されている。
Furthermore, cylindrical holes 14d as shown in FIG. 4 are bored in the peripheral surface 14c of the fixed gear 14 at three locations at each rotation angle of 120 degrees. After the hole 14d is filled with a lubricant such as grease, a steel ball 23 having the same diameter as the hole 14d is inserted. The depth of the hole 14d is approximately 1/2 of its diameter, and the steel ball 23 protrudes from the hole 14d. On the peripheral surface 16a of the driven gear 16,
A groove 16b whose radius is the distance from the axial centers of the drive shaft 11 and the output rotating shaft 17 to the center of the steel ball 23 is bored. The cross section of the groove 16b is the steel ball 23.
It has a circular arc shape with a diameter smaller than the diameter of the steel ball 23, and the depth is 1/1 of the diameter of the steel ball 23.
Less than 2. The driven gear 16 has the groove 16b connected to the steel ball 2.
3, the peripheral edge surface 16a faces the peripheral edge surface 14c at a small distance, and a thrust bearing structure using steel balls 23 is constructed.

ここで、駆動軸11が回転して中間歯車13が
固定歯車14との噛合により自転及び公転を行な
う。このとき固定歯車14は後述する如く摩擦に
より固定部材15に固定された状態である。中間
歯車13は同時に従動歯車16とも噛合している
ため、従動歯車16は中間歯車13の1公転につ
き歯数差(従動歯車16と固定歯車14との歯数
差)分だけ固定歯車14に対して回転せしめら
れ、出力回転軸17が減速回転する。ところで、
出力回転軸17の駆動軸11に対する回転減速比
iは次式の如く表わされる。
Here, the drive shaft 11 rotates, and the intermediate gear 13 engages with the fixed gear 14 to rotate and revolve. At this time, the fixed gear 14 is fixed to the fixed member 15 by friction, as will be described later. Since the intermediate gear 13 is also meshed with the driven gear 16 at the same time, the driven gear 16 is engaged with the fixed gear 14 by the difference in the number of teeth (difference in the number of teeth between the driven gear 16 and the fixed gear 14) per revolution of the intermediate gear 13. The output rotating shaft 17 rotates at a reduced speed. by the way,
The rotational reduction ratio i of the output rotation shaft 17 with respect to the drive shaft 11 is expressed by the following equation.

i=1−Z1/Z2 ……(1) 但し、Z1は固定歯車14の歯数、Z2は従動歯車
15の歯数である。
i=1−Z 1 /Z 2 (1) where Z 1 is the number of teeth of the fixed gear 14 and Z 2 is the number of teeth of the driven gear 15.

このように、第1図示の歯車減速機構は歯車数
が「3」と非常に少なく小型化が可能であると共
に、構造が簡単でコストが低く制えられ、また、
ノイズの発生も小さくなる。また、固定歯車14
と従動歯車15との間は鋼球23によるスラスト
軸受構造が設けられているため、この間の摩擦が
小さくなり駆動軸11の回転を出力回転軸17に
伝達する効率がほとんど低下することがない。ま
た、出力回転軸17はブツシユ19で支持されて
いるため構成が簡単で小型化が可能であり、固定
歯車14と従動歯車16との間の隙間は極く僅か
であるため中間歯車13の回転により発生するノ
イズの外部への洩れはほとんどない。
In this way, the gear reduction mechanism shown in the first figure has a very small number of gears (3) and can be downsized, has a simple structure, and can keep costs low.
Noise generation is also reduced. In addition, the fixed gear 14
Since a thrust bearing structure using steel balls 23 is provided between the driven gear 15 and the driven gear 15, the friction therebetween is reduced and the efficiency of transmitting the rotation of the drive shaft 11 to the output rotating shaft 17 is hardly reduced. In addition, since the output rotating shaft 17 is supported by the bush 19, the structure is simple and can be made compact, and since the gap between the fixed gear 14 and the driven gear 16 is extremely small, the rotation of the intermediate gear 13 is There is almost no leakage of the noise generated by this to the outside.

回転部材5の回転停止により出力回転軸17の
回転が停止せしめられたとき、駆動軸11、中間
歯車13等の慣性回転により第1図示の機構各部
に急激な力が加わる。このとき、出力回転軸17
の回転停止により従動歯車16が固定されるた
め、慣性回転を行なう中間歯車13により固定歯
車14が固定部材15に対して回転を開始する。
この際の固定歯車14の駆動軸11に対する回転
減速比i2は次式の如く表わされる。
When the rotation of the output rotating shaft 17 is stopped by stopping the rotation of the rotating member 5, a sudden force is applied to each part of the mechanism shown in the first diagram due to the inertial rotation of the drive shaft 11, intermediate gear 13, etc. At this time, the output rotation shaft 17
Since the driven gear 16 is fixed by stopping the rotation, the fixed gear 14 starts rotating with respect to the fixed member 15 by the intermediate gear 13 that performs inertial rotation.
At this time, the rotational reduction ratio i 2 of the fixed gear 14 with respect to the drive shaft 11 is expressed by the following equation.

i2=1−Z2/Z1 ……(2) このように固定歯車14と固定部材15との間
にスリツプ機構が設けられているため、回転部材
5の回転停止時に加わる力による中間歯車軸12
の曲がりや、中間歯車13、固定歯車14、従動
歯車16夫々の破損等を防止することができる。
i 2 =1−Z 2 /Z 1 ...(2) Since the slip mechanism is provided between the fixed gear 14 and the fixed member 15 in this way, the intermediate gear is damaged by the force applied when the rotating member 5 stops rotating. axis 12
It is possible to prevent bending of the gear and damage to each of the intermediate gear 13, fixed gear 14, and driven gear 16.

上記の如く、回転部材5の回転時に固定歯車1
4を固定部材15に固定し、かつ回転部材5の停
止時に固定歯車14を固定部材15に対して回転
させるためには、固定歯車14を固定部材15に
対して回転させるに要するトルクTが次式を満足
するよう設定する。
As mentioned above, when the rotating member 5 rotates, the fixed gear 1
4 to the fixed member 15 and to rotate the fixed gear 14 relative to the fixed member 15 when the rotating member 5 is stopped, the torque T required to rotate the fixed gear 14 relative to the fixed member 15 is as follows. Set so that the formula is satisfied.

1/1−Z1/Z2・η・T0<T ……(3a) 1/1−Z2/Z1・η・T0≧T ……(3b) 但し、ηは駆動軸11から出力回転軸17まで
の回転力の伝達効率、T0は駆動軸11の駆動ト
ルクである。
1/1-Z 1 /Z 2・η・T 0 <T ... (3a) 1/1-Z 2 /Z 1・η・T 0 ≧T ... (3b) However, η is from the drive shaft 11 The transmission efficiency of the rotational force to the output rotation shaft 17, T 0 is the drive torque of the drive shaft 11.

このトルクTの設定はネジ22の挿入量を可変
することによつて行なわれる。
This torque T is set by varying the insertion amount of the screw 22.

なお、ネジ22、鋼球23夫々は4個以上であ
つても良く、また、波状バネ21の代りにゴム等
の弾性部材を用いても良く、更に鋼球23を用い
た軸受構造はラジアル軸受を含むころがり軸受構
造であれば良く、上記実施例に限定されない。
Note that the number of screws 22 and steel balls 23 may be four or more, and an elastic member such as rubber may be used instead of the wavy spring 21. Furthermore, a bearing structure using steel balls 23 is a radial bearing. Any rolling bearing structure may be used as long as the structure includes the following, and is not limited to the above embodiments.

考案の効果 上述の如く、本考案になる歯車減速機構は、中
間歯車とこれに噛合する固定歯車及び従動歯車
と、固定歯車と固定部材との間にバネ部材とネジ
部材とよりなるスリツプ機構を設けてなるため、
歯車数が少なく簡単な構成で小型化が可能であ
り、コストを低く抑えることができノイズの発生
も小さく耐久性が向上し、更に従動歯車はころが
り軸受構造で固定歯車に支持されているため回転
力の伝達効率が向上する等の特長を有している。
Effects of the Invention As described above, the gear reduction mechanism according to the present invention includes an intermediate gear, a fixed gear and a driven gear that mesh with the intermediate gear, and a slip mechanism comprising a spring member and a screw member between the fixed gear and the fixed member. Because it is established,
It has a simple configuration with a small number of gears and can be miniaturized, reducing costs, generating less noise, and improving durability.Furthermore, the driven gear has a rolling bearing structure and is supported by the fixed gear, so it does not rotate. It has features such as improved power transmission efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案機構の一実施例の断面図、第2
図は本考案機構が適用される緩衝効率可変機構を
説明するための図、第3図及び第4図は第1図示
の機構の各部の拡大断面図である。 11……駆動軸、13……中間歯車、14……
固定歯車、14a,16b……溝、14b……凹
部、14d……孔、15……固定部材、15a…
…ネジ穴、16……従動歯車、17……出力回転
軸、21……波状バネ、22……ネジ、23……
鋼球。
Figure 1 is a sectional view of one embodiment of the mechanism of the present invention;
The figure is a diagram for explaining a variable buffer efficiency mechanism to which the mechanism of the present invention is applied, and FIGS. 3 and 4 are enlarged sectional views of each part of the mechanism shown in FIG. 1. 11... Drive shaft, 13... Intermediate gear, 14...
Fixed gear, 14a, 16b...groove, 14b...recess, 14d...hole, 15...fixing member, 15a...
...screw hole, 16...driven gear, 17...output rotating shaft, 21...wavy spring, 22...screw, 23...
wrecking ball.

Claims (1)

【実用新案登録請求の範囲】 (1) 回転する駆動軸に偏心して取付けた中間歯車
を固定歯車に噛合させて自転及び公転させると
共に、該中間歯車を該固定歯車に対して歯数差
を有する従動歯車に噛合させて、該従動歯車を
該歯数差に応じて減速回転せしめる歯車減速機
構であつて、該固定歯車とこれを挿嵌支持する
固定部材との間に、該固定歯車を該固定部材よ
り離脱する方向に付勢するバネ部材と、該固定
部材に螺合挿入されて該固定部材外周のV字状
溝に係合し挿入量に応じ該固定歯車を該バネ部
材の付勢に抗して該固定部材に挿嵌圧接するネ
ジ部材とよりなるスリツプ機構を設け、該中間
歯車より該固定歯車に加わるトルクが所定値を
越えたとき該固定歯車を該固定部材に対して回
転せしめるよう構成してなる歯車減速機構。 (2) 該従動歯車は、ころがり軸受構造を用いて該
固定歯車に支持されてなる実用新案登録請求の
範囲第1項記載の歯車減速機構。
[Claims for Utility Model Registration] (1) An intermediate gear eccentrically attached to a rotating drive shaft is meshed with a fixed gear to rotate and revolve, and the intermediate gear has a difference in the number of teeth with respect to the fixed gear. A gear reduction mechanism that meshes with a driven gear to slow down and rotate the driven gear according to the difference in the number of teeth, the fixed gear being interposed between the fixed gear and a fixed member that fits and supports the fixed gear. A spring member that is biased in a direction to separate from the fixed member; and a spring member that is screwed into the fixed member and engages with a V-shaped groove on the outer periphery of the fixed member, and biases the fixed gear according to the amount of insertion. A slip mechanism is provided that includes a screw member that is inserted into and press-contacted to the fixed member against the rotational force, and when the torque applied to the fixed gear from the intermediate gear exceeds a predetermined value, the fixed gear is rotated with respect to the fixed member. A gear reduction mechanism configured to (2) The gear reduction mechanism according to claim 1, wherein the driven gear is supported by the fixed gear using a rolling bearing structure.
JP18534685U 1985-11-29 1985-11-29 Expired JPH029151Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18534685U JPH029151Y2 (en) 1985-11-29 1985-11-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18534685U JPH029151Y2 (en) 1985-11-29 1985-11-29

Publications (2)

Publication Number Publication Date
JPS6292339U JPS6292339U (en) 1987-06-12
JPH029151Y2 true JPH029151Y2 (en) 1990-03-06

Family

ID=31133887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18534685U Expired JPH029151Y2 (en) 1985-11-29 1985-11-29

Country Status (1)

Country Link
JP (1) JPH029151Y2 (en)

Also Published As

Publication number Publication date
JPS6292339U (en) 1987-06-12

Similar Documents

Publication Publication Date Title
US4271726A (en) Planetary transmission
JPH0926011A (en) Rolling ball type transmission
WO2017152429A1 (en) Two-stage parallel cycloid ball reducer
CN110425255B (en) Sinusoidal plane two-stage movable tooth speed reducer
US3427901A (en) Gearing
JPH0228027B2 (en)
US5470283A (en) Speed reduction device
EP0233303B1 (en) Planetary gear apparatus
CN112343972B (en) Movable tooth and fixed tooth compound transmission reducer without backlash
JPH01312250A (en) Differential gear mechanism using planetary gear speed reducer of internal engagement type
JPH029151Y2 (en)
US5443428A (en) Gearless mechanical transmission
CN111288077A (en) Speed reduction transmission bearing
CN205639487U (en) Poor NN type planet gear of few tooth of two eccentric shafts
CN111442064B (en) Cycloid speed reducer with dynamic balance
CN112128319A (en) High-speed silent type sealing speed reducing mechanism
KR101422190B1 (en) Reduction apparatus with only one eccentric gear
JPH0510400A (en) Reduction gear
CN201137671Y (en) Rail -type rotary type decelerator
JP4831319B2 (en) Motor with reduction gear
US4478100A (en) Automatic transmission
CN207364192U (en) Swinging cycloidal-pin gear speed reducer
JPH029150Y2 (en)
CN201133447Y (en) Open type rotary type decelerator
CN208153656U (en) Revolving actuator