JPH0291516A - Photoelectric type end part position detecting device - Google Patents

Photoelectric type end part position detecting device

Info

Publication number
JPH0291516A
JPH0291516A JP63243684A JP24368488A JPH0291516A JP H0291516 A JPH0291516 A JP H0291516A JP 63243684 A JP63243684 A JP 63243684A JP 24368488 A JP24368488 A JP 24368488A JP H0291516 A JPH0291516 A JP H0291516A
Authority
JP
Japan
Prior art keywords
light
light emitting
receiving element
light receiving
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63243684A
Other languages
Japanese (ja)
Other versions
JPH0640013B2 (en
Inventor
Kiyoshi Shibukawa
澁川 清
Hideo Hamanaka
浜中 秀郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Original Assignee
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp filed Critical Nireco Corp
Priority to JP63243684A priority Critical patent/JPH0640013B2/en
Publication of JPH0291516A publication Critical patent/JPH0291516A/en
Publication of JPH0640013B2 publication Critical patent/JPH0640013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To easily enable analog detection for the end position of even a light emitting object of measurement by controlling the blinking period of a light emitting element which blinks so that the time integral quantity of only the AC component of the generated voltage of a 2nd light receiving element per unit time is constant. CONSTITUTION:Part of light emitted by the semiconductor light emitting element(LED) 11 is received by the light receiving element(silicon photodiode) 26 and converted photoelectrically, an AC amplifier 27 amplifies only the AC components, and an AC/DC converter 28 converts the component into a DC signal. Then the DC signal is compared with the signal of a setter 29 for setting the quantity of light, and a controller 30 performs operation so that the deviation value becomes zero to control the output frequency of a V/F converter 31. Further, the LED 11 is driven through an LED driver 13 with the output frequency of the V/F converter 31 to blink and control is performed so that the deviation value becomes zero. Consequently, the analog detection for the end part position of the light emitting object of measurement is facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、可視光又は赤外光を透過しにくい板材やウェ
ブなどの端部位置を検出するもので外乱光に強い光電式
端部位置検出装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention detects the end position of a board or web that is difficult to transmit visible light or infrared light, and is a photoelectric end position that is resistant to external light. This invention relates to a detection device.

〔従来の技術〕[Conventional technology]

第7図Aに示す方式は直流電源1によって光学ランプ2
を点灯することにより、受光素子3で光学ランプ2と受
光素子3間(投受光間隔)17に介在する測定対象物を
検出するものである。受光素子3の検出電流は直流アン
プ4で増巾され、レベル判別回路5で設定レベルに対す
る判別を行い、測定対象物の有無を出力回路6から出力
信号8を出力する。各回路は電源7でドライブされる。
In the system shown in FIG. 7A, an optical lamp 2 is connected to a DC power source 1.
By lighting up, the light-receiving element 3 detects an object to be measured that is present between the optical lamp 2 and the light-receiving element 3 (light emitting/receiving interval) 17. The detection current of the light-receiving element 3 is amplified by a DC amplifier 4, a level discrimination circuit 5 discriminates against a set level, and an output signal 8 is output from an output circuit 6 indicating the presence or absence of the object to be measured. Each circuit is driven by a power supply 7.

この方式は光学ランプ非変調方式といわれ、高速応答性
にすぐれている反面、外乱光に弱く、ランプ寿命がある
。そのため外乱光に対しては検出防止対策として装置周
辺に遮光板を設ける必要があり、その上ランプ交換作業
のタイミングによってはラインの操業に支障を来す場合
もある。
This method is called an optical lamp non-modulation method, and although it has excellent high-speed response, it is vulnerable to external light and has a limited lamp life. Therefore, it is necessary to provide a light shielding plate around the device as a measure to prevent detection of ambient light, and depending on the timing of lamp replacement work, line operations may be hindered.

第7図Bに示す方式は半導体発光素子llを用いる場合
で、発光素子11はドライバー13でドライブされる。
The system shown in FIG. 7B uses a semiconductor light emitting element 11, and the light emitting element 11 is driven by a driver 13.

他の回路及び機能は第8図A方式と同様である。この方
式は半導体発光素子(LED)非変調方式といわれ、高
速応答には優れているものの、外乱に弱く、更に、発光
素子11は直流電源1によってドライバー13を介して
ドライブされる。現在ランプに相当する発光輝度を持つ
LEDはないので発光輝度が弱く、投、受光間隔17を
長(とることができない等の欠点を持っている。第7図
Cに示す方式は半導体発光素子(LED)11をパルス
発振回路12を介してドライバー13でパルスドライブ
する変調方式であり、現在量も多く用いられ、単に被測
定体の有無、すなわちオン、オフ検出であれば外乱に強
く、高感度にできるので投受光間隔17を長くできる特
徴があるものの板材やウェブなどの端部位置をアナログ
量として検出する場合には第8図の相対放射強度!□と
周囲温度Ta(”C)の関係図に示す如く、半導体発光
素子(LED)は周囲温度の影響を受けやすく、例えば
周囲温度25゛cの時に相対放射強度を1とすれば0℃
で約1.3.50℃では約0.7となるため、温度ドリ
フトを生ずると同時に、LEDllの経年変化による出
力変化も生じ、検出誤差の原因となる。
Other circuits and functions are the same as those of the method shown in FIG. 8A. This method is called a semiconductor light emitting device (LED) non-modulation method, and although it is excellent in high-speed response, it is vulnerable to external disturbances.Furthermore, the light emitting device 11 is driven by the DC power supply 1 via the driver 13. At present, there are no LEDs with a luminance equivalent to that of a lamp, so the luminance is weak, and the method shown in FIG. This is a modulation method in which the LED (LED) 11 is pulse-driven by a driver 13 via a pulse oscillation circuit 12, and is widely used.It is resistant to external disturbances and has high sensitivity when simply detecting the presence or absence of an object to be measured, that is, on or off. Although it has the feature of being able to lengthen the light emitting/receiving interval 17, when detecting the edge position of a plate or web as an analog quantity, the relationship between relative radiant intensity!□ and ambient temperature Ta ("C) in Figure 8 is used. As shown in the figure, semiconductor light emitting devices (LEDs) are easily affected by the ambient temperature. For example, if the relative radiation intensity is 1 at an ambient temperature of 25°C, it is 0°C.
At about 1.3.50° C., it becomes about 0.7, which causes a temperature drift and at the same time causes an output change due to aging of LEDll, causing a detection error.

14はフィルター、15は交流アンプ、16は検波積分
回路である。第9図は第7図Cを実装置的に変形したも
のであり、測定対象物20との関連を示すものである。
14 is a filter, 15 is an AC amplifier, and 16 is a detection and integration circuit. FIG. 9 is a modification of FIG. 7C in the form of an actual device, and shows the relationship with the object to be measured 20. FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第1図の概念図に示す如く、投光部9と受光部10の間
隔を長くして対向設置し、測定対象物20が投光部9か
らの平行光Aを遮光Bすることにより、その端部を受光
部10によってアナログ的に検出する装置であって、第
2図に示す如(、遮光量即ち測定対象材の侵入量21と
受光部出力22の関係が直線23となるとともに、分解
能が良いことに加えて外乱光の影響を受けにくく、投受
光間隔17を長くできること、さらには保守不要である
とともに温度ドリフトが小さく、再現性が良い光電式端
部位置検出装置の提供を目的としている。
As shown in the conceptual diagram of FIG. 1, the distance between the light emitting part 9 and the light receiving part 10 is increased and they are installed facing each other, so that the object to be measured 20 blocks the parallel light A from the light emitting part 9. This is a device that detects the edge in an analog manner using a light receiving section 10, as shown in FIG. The purpose of the present invention is to provide a photoelectric end position detection device that is not easily affected by external light, has a long light emitting/receiving interval 17, does not require maintenance, has small temperature drift, and has good reproducibility. There is.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は第一に周期的に点
滅する発光素子を有する投光部と光電受光素子を有する
受光部の間に被測定物体が入り上記発光素子から上記発
光素子に入る光量が変化することにより、上記受光素子
が発生する電圧の交流成分のみの変化量を検出して、上
記被測定物体の位置を検出する装置において、上記投光
部内に第2の光電受光素子を設けて上記の点滅する発光
素子の光の一部を受光し、第2の受光素子の発生電圧の
交流成分のみの単位時間当たりの時間積分量が一定にな
るように、上記点滅する発光素子の点滅周期を制御する
ものである。
In order to achieve the above object, the present invention first provides that an object to be measured enters between a light emitting part having a periodically flashing light emitting element and a light receiving part having a photoelectric light receiving element, and the object is transferred from the light emitting element to the light emitting element. In the apparatus for detecting the position of the object to be measured by detecting the amount of change in only the alternating current component of the voltage generated by the light receiving element due to a change in the amount of incident light, a second photoelectric light receiving element is provided in the light projecting section. is provided to receive a part of the light from the blinking light emitting element, and the blinking light emitting element This controls the blinking cycle of the .

また第二に、前記の点滅する発光素子及び受光素子に近
赤外線用のものを用いるものである。
Second, the blinking light-emitting element and light-receiving element are those for near-infrared rays.

第三に、前記発光素子から被測定物体に向かって放射さ
れる光を散乱(乳白色)ガラスを経由させて一様分布さ
せ、かつレンズ系と組合わせて平行光線を得ることによ
り、投光間隔が長くても、被測定物体の位置に対して、
線形出力を得ようとするものである。
Thirdly, by uniformly distributing the light emitted from the light emitting element toward the object to be measured via scattering (milky white) glass and combining it with a lens system to obtain parallel rays, the projection interval can be reduced. Even if it is long, relative to the position of the object to be measured,
The aim is to obtain a linear output.

第四に、前記被測定物検出用の受光素子の前に可視光を
カットするフィルタを設置して外光の影響を少なくする
ものである。
Fourthly, a filter for cutting visible light is installed in front of the light receiving element for detecting the object to be measured to reduce the influence of external light.

すなわち、第3図に示す如く、半導体発光素子(LED
)11の発する光を受光素子26によって受光し、交流
アンプ27によって、交流成分のみ増巾し、AC/DC
交換器28でDC信号として、光量設定器29で設定さ
れた値とDC信号を比較し、その偏差が零になるように
制御器3oで制御し、その出力をV/F変換器31へ出
力する。
That is, as shown in FIG.
) 11 is received by the light receiving element 26, only the AC component is amplified by the AC amplifier 27, and the AC/DC
The exchanger 28 compares the DC signal with the value set by the light amount setting device 29, and the controller 3o controls the deviation to zero, and outputs the output to the V/F converter 31. do.

V/F変換器31はLEDドライバー13を介してLE
DIIを点滅制御し、常に偏差値が零となるようにLE
Dの点滅周波数制御するものである。
The V/F converter 31 connects to the LED via the LED driver 13.
Control DII blinking and set LE so that the deviation value is always zero.
This controls the blinking frequency of D.

〔作用〕[Effect]

上記構成の本発明検出装置は前述の如く、投受光間に存
在する測定対象物の有無を検出するのではなく、測定対
象物の端部位置をアナログ量として検出するものである
から、半導体発光素子(LED)の輝度変動は誤検出の
原因となるもので、その対策として、第3図のブロック
図に示す如く、半導体発光素子(LED)11が発生す
る光の一部を受光素子(シリコンフォトダイオード)2
6にて受光し、光電変換してACアンプ27にてAC成
分のみを増幅し、AC/DC交換器28にてDC信号と
する。そして、DC信号は光量を設定する設定器29の
信号と比較され、その偏差値が零になるように制御装置
30で演算し、■/F変換器31の出力周波数を制御す
る。V/F変換器31の出力周波数でLEDドライバー
13を介して、LEDIIを点滅ドライブし、前述の偏
差値が零になるように制御するものである。
As described above, the detection device of the present invention having the above configuration does not detect the presence or absence of the object to be measured existing between the emitting and receiving light, but rather detects the end position of the object to be measured as an analog quantity. Fluctuations in the brightness of the device (LED) can cause false detection, and as a countermeasure, as shown in the block diagram of FIG. Photodiode) 2
6 receives the light, photoelectrically converts it, amplifies only the AC component in an AC amplifier 27, and converts it into a DC signal in an AC/DC exchanger 28. Then, the DC signal is compared with a signal from a setting device 29 that sets the light amount, and a control device 30 calculates the deviation value to zero, thereby controlling the output frequency of the /F converter 31. The LED II is driven to blink at the output frequency of the V/F converter 31 via the LED driver 13, and is controlled so that the deviation value described above becomes zero.

〔実施例〕〔Example〕

第3図は本発明検出装置の発光部を示すブロック図で、
構成作用については前述した通りであり、周囲温度が上
昇し、半導体発光素子(LED)11の輝度が低下する
と、受光素子(SPD)26で検出する、発光輝度信号
も当然ながら低下する。この状態は第4図の様になる。
FIG. 3 is a block diagram showing the light emitting part of the detection device of the present invention.
The configuration and operation are as described above, and as the ambient temperature rises and the brightness of the semiconductor light emitting device (LED) 11 decreases, the light emission brightness signal detected by the light receiving device (SPD) 26 naturally also decreases. This state is as shown in FIG.

即ち、受光素子(SPD)26の出力波形は34の状態
からドリフト68分だけ低下し、35の状態となる。
That is, the output waveform of the light receiving element (SPD) 26 decreases from the state of 34 by the amount of drift 68, and becomes the state of 35.

当然のことながら、A/Cアンプ27及びAC/DC変
換器28の出力DC信号も低下するので、光量設定VR
29の値より、低くなるので偏差が発生し、その偏差値
により制御装置30で例えばPI演算して、V/F変換
器31に出力し、周波数を上昇させ、ドライバー13を
介してLEDllを点滅制御する。
Naturally, the output DC signal of the A/C amplifier 27 and AC/DC converter 28 also decreases, so the light intensity setting VR
Since it is lower than the value of 29, a deviation occurs, and the control device 30 calculates, for example, PI based on the deviation value, outputs it to the V/F converter 31, increases the frequency, and blinks the LEDll via the driver 13. Control.

点滅周波数が上昇することは、第4図の点灯間隔Tが短
くなることであり、A C/D C変換器31の出力を
上昇させて、偏差が零となる方向に制御する。
An increase in the blinking frequency means that the lighting interval T shown in FIG. 4 becomes shorter, and the output of the AC/DC converter 31 is increased to control the deviation to zero.

この発光部9の制御は第4図の斜線部分波形(発光量)
34.35の面積が単位時間当たり、一定の面積となる
ように、LEDIIの点滅周波数(周期T)をフィード
バック制御するものである。32は発光部の受光素子の
出力であり、33は時間である。受光部10は第9図に
示す如く、従来法と変わりない、第9図中24はレンズ
である。このレンズ24の組合せで平行光線を得、かつ
乳白色ガラス25を併用することは、投光間隔17を大
きくしても、第4図のように被測定対象物の変位に対し
て直線状の出力を得るために重要である。
The control of this light emitting unit 9 is shown in the shaded part waveform (light emission amount) in Fig. 4.
The blinking frequency (cycle T) of the LED II is feedback-controlled so that the area of 34.35 becomes a constant area per unit time. 32 is the output of the light receiving element of the light emitting section, and 33 is the time. As shown in FIG. 9, the light receiving section 10 is the same as the conventional method, and 24 in FIG. 9 is a lens. By combining this lens 24 to obtain parallel light beams and also using the milky white glass 25, even if the projection interval 17 is increased, the output is linear with respect to the displacement of the object to be measured, as shown in Fig. 4. It is important to obtain

第5図は受光部10の受光素子(SPD)3の検出出力
波形であり、波形37は投受光間17に測定対象物20
の端面が全(侵入していない時で全光束v1が受光素子
(SPD)3に達している状態を示している。波形38
は光束のv8が測定対象物の端面で遮光され1/2の光
束vtが受光素子3に達した状態を示すものである。す
なわち、この斜線部分で示される波形37.38の単位
時間当たり面積を演算し、測定対象物20の端面位置を
検出することになる。
FIG. 5 shows the detection output waveform of the light receiving element (SPD) 3 of the light receiving unit 10, and the waveform 37 shows the measurement target 2 between the light emitting and receiving portions 17.
Waveform 38 shows a state in which the entire luminous flux v1 has reached the light receiving element (SPD) 3 when the end face of is not penetrating.
shows a state in which the light flux v8 is blocked by the end face of the object to be measured, and 1/2 of the light flux vt reaches the light receiving element 3. That is, the area per unit time of the waveforms 37 and 38 shown by the hatched portions is calculated to detect the end face position of the measurement target 20.

第6図は本実施例の外乱に対する影響を実験した模式図
であり、投受光器9.10間17を70011IIIに
セットし、測定対象物20の端面を172の位置で固定
した状態とし、投光部9側に隣接した位置に外乱光とし
て、AClooV、100Wのタングステン電球39を
設置し、受光面に向けて点滅させた結果、受光部10の
出力は2.5V(全遮光OV、全入光5■)と安定し、
全く外乱の影響は受けなかった。
FIG. 6 is a schematic diagram in which an experiment was conducted to examine the influence of this embodiment on disturbances, with the emitter/receiver 9, 10 and 17 set at 70011III, the end face of the object to be measured 20 fixed at position 172, and the An AClooV, 100W tungsten bulb 39 was installed as a disturbance light in a position adjacent to the light section 9, and as a result of flashing it toward the light receiving surface, the output of the light receiving section 10 was 2.5V (fully shaded OV, fully illuminated). Light 5 ■) and stable,
It was not affected by external disturbances at all.

当然のことながら従来法では著しく外乱の影響を受け、
測定誤差の大きいことが確認された。
Naturally, the conventional method is significantly affected by disturbances,
It was confirmed that the measurement error was large.

温度ドリフトについては約25℃の時受光部10の出力
信号を5vに調整しておき、恒温槽内で影響温度をO〜
50’Cまで変化させ、受光部10の出力信号変化をチ
エツクしたが、0°Cのとき5.IV。
Regarding temperature drift, adjust the output signal of the light receiving section 10 to 5V when the temperature is about 25℃, and set the influence temperature to 0~ in a constant temperature bath.
I checked the change in the output signal of the light receiving section 10 by changing the temperature up to 50'C, but when it was 0°C, it was 5. IV.

50°Cのとき4.9vとなり、0°Cから50℃間は
リニアに変化した。51℃差で0.2vの変化は端面位
置の変化に換算すると約1.2閣のドリフトなった。
At 50°C, it was 4.9v, and it changed linearly from 0°C to 50°C. A change of 0.2V with a difference of 51 degrees Celsius is equivalent to a drift of approximately 1.2V when converted to a change in the position of the end face.

従来法での点検では0℃のとき5.8■、50°Cのと
き3.7vとなり、50°C差で2.1■の変化は端面
位置の変化に換算すると12.6m11となり、本発明
に比し、約10倍の誤差となった。更に、表面がミラー
のように光る鋼板でテストした結果、本発明では全く誤
検が無く良好な結果を得たが従来法では誤検出が屡々起
こった。
In inspection using the conventional method, it was 5.8V at 0℃ and 3.7V at 50℃, and the change of 2.1V due to a difference of 50℃ is converted to a change in the end face position of 12.6m11. The error was about 10 times that of the invention. Furthermore, as a result of testing on a steel plate whose surface shines like a mirror, the present invention had no false positives and good results were obtained, whereas the conventional method frequently caused false positives.

〔発明の効果〕〔Effect of the invention〕

本発明を実施することで、外乱光のある環境、温度変化
のある環境に於いて、ミラーのように光る測定対象物で
も容易に端部位置のアナログ検出が高精度で容易となり
、この種測定装置分野に於ける利益は大きい、又装置コ
ストも従来品に若干の機器を付加する程度であり、利益
に対する付加価値は高く評価できる。
By implementing the present invention, analog detection of the edge position of even a shiny measurement object like a mirror can be easily performed with high accuracy in an environment with ambient light or temperature changes, and this type of measurement can be easily performed. The profits in the field of equipment are large, and the equipment cost is only the addition of some equipment to conventional products, so the added value to profits can be highly evaluated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は投受光器と測定対象物、光束との関係を示す検
出装置の概念図、第2図は遮光量と受光部出力との関係
を示す線図、第3図は本発明装置の発光部を示すブロッ
ク図、第4図は発光部の受光素子出力波形とドリフトの
関係を示す線図、第5図は発光部の受光素子出力波形と
端部検出位置との関係を示す線図、第6図は本発明の装
置を用いて外乱の影響を調査するための概略図、第7図
Aは従来法の光学ランプを用いた非変調方式を示すブロ
ック図、第7図Bは従来法の半導体発光素子(LED)
を用いた非変調方式を示すブロック図、第7図Cは従来
法の半導体発光素子(LED)を用いた変調方式を示す
ブロック図、第8図は周辺温度の変化に対する相対放射
強度の変化を示す線図、第9図は従来法の第7図Cの実
装装置のブロック図である。 11・・・半導体発光素子(LED) 13・・・LEDドライバー 25・・・散乱(乳白色)ガラス 26・・・受光素子 27・・・交流アンプ 28・−・AC/DC交換器 29・・・光量設定器 30・・・制御器 31・・・v/F変換器 図 第2図 第4図 時間 第5図 第3 図 時間 第6図 31・・・V/F変換器 第 図 第 図 (6)  明細書第10頁第18行目のr51”c差」
との記載をr s o ’cの温度差」と補正する。 (7)図面中第2図、第4図および第5図を別紙補正図
面の通り補正する。 8、添付書類の目録 (1)  補正図面            1 通第 第4図 時間 1、事件の表示 昭和63年 特 許 願 第243684号2、発明の
名称 光電式端部位置検出装置 3、補正をする者 事件との関係  特許出願人 住 所 東京都八王子市石川町2951番地4名称株式
会社 ニ し コ 代表者久保1)勝寿 4、代理人〒105 住 所 東京都港区浜松町2丁目2番15号7、補正の
内容 (1)  明細書第6頁第7行目の「投光間隔」との記
載を「投受光間隔」と補正する。 (2)明細書第9頁第1行目および第2行目の記載を下
記の通り補正する。 「この発光部9の制御は第4図に示す波形34゜35部
分の面積が単位時間当り、」 (3)明細書第9頁第9行目の記載を下記の通り補正す
る。 「つ第3図に示す乳白色ガラス25を併用することは投
受光間隔」 (4)明細書第9頁第10行目の「第4図」との記載を
「第2図」と補正する。 (5)明細書第9頁第16行目乃至第19行目の記載を
下記の通り補正する。 「全光束が受光素子(SPD)3に達し電気信号へ変換
した状態vIを示している。波形38は光束が測定対象
物の端面で遮光され1/2の光束が受光素子3に達し電
気信号へ変換した状態V2を示すものである。すなわち
、こ」(6)明細書第10頁第18行目の「51°C差
」との記載をr50″Cの温度差」と補正する。 (7)図面中筒2因、第4図および第5図を別紙補正図
面の通り補正する。 8、添付書類の目録 (1)  補正図面            l 通第 図 ^−一 弔 図 A≠− 第 図
Figure 1 is a conceptual diagram of the detection device showing the relationship between the light emitter/receiver, the object to be measured, and the luminous flux, Figure 2 is a diagram showing the relationship between the amount of light shielding and the output of the light receiver, and Figure 3 is a diagram of the device of the present invention. A block diagram showing the light emitting section, FIG. 4 is a line diagram showing the relationship between the light receiving element output waveform of the light emitting section and drift, and FIG. 5 is a line diagram showing the relationship between the light receiving element output waveform of the light emitting section and the end detection position. , FIG. 6 is a schematic diagram for investigating the influence of disturbance using the device of the present invention, FIG. 7A is a block diagram showing a conventional non-modulation method using an optical lamp, and FIG. 7B is a conventional method. Legal semiconductor light emitting device (LED)
Figure 7C is a block diagram showing a non-modulation method using a conventional semiconductor light emitting device (LED), and Figure 8 shows changes in relative radiation intensity with respect to changes in ambient temperature. The diagram shown in FIG. 9 is a block diagram of the conventional mounting apparatus shown in FIG. 7C. 11... Semiconductor light emitting device (LED) 13... LED driver 25... Scattering (milky white) glass 26... Light receiving element 27... AC amplifier 28... AC/DC exchanger 29... Light amount setting device 30... Controller 31... V/F converter diagram Figure 2 Figure 4 Time Figure 5 Figure 3 Time Figure 6 Figure 31... V/F converter diagram Figure ( 6) r51”c difference on page 10, line 18 of the specification”
The description of ``temperature difference between r s o 'c'' is corrected. (7) Figures 2, 4, and 5 of the drawings will be corrected as shown in the attached correction drawings. 8. List of attached documents (1) Amended drawings 1 copy Figure 4 Time 1. Indication of the incident 1988 Patent Application No. 243684 2. Name of the invention Photoelectric end position detection device 3. Person making the amendment Relationship to the case Patent applicant address: 2951 Ishikawa-cho, Hachioji-shi, Tokyo 4 Name: Nishiko Co., Ltd. Representative: Kubo 1) Katsutoshi 4, Agent: 105 Address: 2-2-15 Hamamatsucho, Minato-ku, Tokyo 7. Contents of the amendment (1) The description of "light emission interval" on page 6, line 7 of the specification will be corrected to "light emission/reception interval." (2) The statements in the first and second lines of page 9 of the specification are amended as follows. ``This control of the light emitting section 9 is such that the area of the 34°35 portion of the waveform shown in FIG. ``Using the opalescent glass 25 shown in FIG. 3 in combination means the light emitting/receiving interval.'' (4) The description ``FIG. 4'' on page 9, line 10 of the specification is corrected to ``FIG. 2''. (5) The statement on page 9, line 16 to line 19 of the specification is amended as follows. "The state vI is shown in which the total luminous flux reaches the light receiving element (SPD) 3 and is converted into an electrical signal. The waveform 38 shows that the luminous flux is blocked by the end face of the object to be measured, and 1/2 of the luminous flux reaches the light receiving element 3 and is converted into an electrical signal. In other words, (6) The statement "51°C difference" on page 10, line 18 of the specification is corrected to "temperature difference of r50"C. (7) The two cylinders in the drawing, Figures 4 and 5 will be corrected as shown in the attached correction drawings. 8. List of attached documents (1) Amended drawings l Figure ^ - Funeral map A ≠ - Figure

Claims (4)

【特許請求の範囲】[Claims] (1)周期的に点滅する発光素子を有する投光部と光電
受光素子を有する受光部の間に被測定物体が入り上記発
光素子から上記受光素子に入る光量が変化することによ
り、上記受光素子が点滅光により発生する電圧の交流成
分のみの変化量を検出して、上記被測定物体の位置を検
出する光電式端部位置検出装置において、 上記投光部内に第2の光電受光素子を設けて上記の点滅
する発光素子の光の一部を受光し、第2の受光素子の発
生電圧の交流成分のみの単位時間当たりの時間積分量が
一定になるように、上記の点滅する発光素子の点滅周期
を制御することを特徴とする光電式端部位置検出装置。
(1) An object to be measured enters between a light emitting part having a periodically flashing light emitting element and a light receiving part having a photoelectric light receiving element, and the amount of light entering the light receiving element from the light emitting element changes, causing the light receiving element to change. In a photoelectric end position detection device that detects the position of the object to be measured by detecting the amount of change in only the alternating current component of the voltage generated by the flashing light, a second photoelectric light receiving element is provided in the light projecting part. to receive a part of the light from the blinking light emitting element, and the blinking light emitting element A photoelectric end position detection device characterized by controlling a blinking cycle.
(2)前記点滅する発光素子及び受光素子に近赤外線用
のものを用いることを特徴とする請求項1記載の光電式
端部位置検出装置。
(2) The photoelectric end position detection device according to claim 1, wherein the blinking light emitting element and light receiving element are for near infrared rays.
(3)前記発光素子から被測定物体に向かって放射され
る光を散乱ガラスを経由させること特徴とする請求項1
記載の光電式端部位置検出装置。
(3) Claim 1 characterized in that the light emitted from the light emitting element toward the object to be measured is passed through a scattering glass.
The photoelectric end position detection device described.
(4)前記被測定物検出用の受光素子の前に可視光をカ
ットするフィルタを設置することを特徴とする請求項2
記載の光電式端部位置検出装置。
(4) Claim 2 characterized in that a filter for cutting visible light is installed in front of the light receiving element for detecting the object to be measured.
The photoelectric end position detection device described.
JP63243684A 1988-09-28 1988-09-28 Photoelectric end position detector Expired - Fee Related JPH0640013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63243684A JPH0640013B2 (en) 1988-09-28 1988-09-28 Photoelectric end position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243684A JPH0640013B2 (en) 1988-09-28 1988-09-28 Photoelectric end position detector

Publications (2)

Publication Number Publication Date
JPH0291516A true JPH0291516A (en) 1990-03-30
JPH0640013B2 JPH0640013B2 (en) 1994-05-25

Family

ID=17107449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243684A Expired - Fee Related JPH0640013B2 (en) 1988-09-28 1988-09-28 Photoelectric end position detector

Country Status (1)

Country Link
JP (1) JPH0640013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000599A (en) * 2005-05-24 2007-01-11 Yoshiharu Otani Handpiece for dentistry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263813A (en) * 1984-06-11 1985-12-27 Brother Ind Ltd Rotary angle detecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263813A (en) * 1984-06-11 1985-12-27 Brother Ind Ltd Rotary angle detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000599A (en) * 2005-05-24 2007-01-11 Yoshiharu Otani Handpiece for dentistry

Also Published As

Publication number Publication date
JPH0640013B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
SU1479012A3 (en) Method of detecting changes in material color
US7821618B2 (en) Method for light propagation time measurement
BR0212734A (en) Circuit with an optoelectronic display unit
DE3687701D1 (en) DISPLAY DEVICE OF THE TRANSMISSIVE TYPE.
PL1821582T3 (en) System and method for controlling an illumination device
US5675150A (en) Active IR intrusion detector
US20140339989A1 (en) Method for operating a lamp
JP2604754B2 (en) Spectrophotometer
JPH0291516A (en) Photoelectric type end part position detecting device
US10948422B2 (en) Device for emitting electromagnetic radiation, in particular UV radiation
EP3311069B1 (en) Lighting device, in particular for lighting exhibition objects
ATE249032T1 (en) COMPENSATION AND CONDITION MONITORING DEVICE FOR FIBER OPTICAL INTENSITY MODULATED SENSORS
CN113933268A (en) Optical detection device and optical detection method
US10281324B1 (en) Systems and methods for determining ambient illumination having dual sensors controlled by a bypass switch
US4607955A (en) Stock consistency transmitter
US5220179A (en) Method of and apparatus for detecting the presence of vapor and/or smoke in the outgoing air of a device for heating materials
JPH0827239B2 (en) Lighting equipment
CN103398779B (en) The quick measurement mechanism of a kind of permanent illumination transmitted colour
DE50204129D1 (en) SENSOR FOR VISUAL POSITION DETECTION (COMPONENT, SUBSTRATE) WITH A MODULAR LIGHTING UNIT
CN105092538B (en) Transmission-type visibility meter White LED light source generating means
CN204964387U (en) Transmission -type visibility meter white LED light source generating device
CN113796883B (en) LED brightness adjustable beam expander, X-ray generator assembly and medical device
JPH0668457B2 (en) Stabilized light pulser
CN103335713B (en) A kind of fixed ampllitude transmission dispersion sensitivity spectrum line measurement mechanism
CN115843138A (en) Novel LED lamp bead and luminous intensity detection method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees